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A theory of the binocular system with asymmetric eyes (AEs) is developed in the

framework of bicentric perspective projections. The AE accounts for the eyeball’s global

asymmetry produced by the foveal displacement from the posterior pole, the main source

of the eye’s optical aberrations, and the crystalline lens’ tilt countering some of these

aberrations. In this theory, the horopter curves, which specify retinal correspondence of

binocular single vision, are conic sections resembling empirical horopters. This advances

the classic model of empirical horopters as conic sections introduced in an ad hoc way

by Ogle in 1932. In contrast to Ogle’s theory, here, anatomically supported horopteric

conics vary with the AEs’ position in the visual plane of bifoveal fixations and their

transformations are visualized in a computer simulation. Integrating horopteric conics

with eye movements can help design algorithms for maintaining a stable perceptual

world from visual information captured by a mobile robot’s camera head. Further,

this paper proposes a neurophysiologically meaningful definition for the eyes’ primary

position, a concept which has remained elusive despite its theoretical importance to

oculomotor research. Finally, because the horopteric conic’s shape is dependent on

the AE’s parameters, this theory allows for changes in retinal correspondence, which

is usually considered preformed and stable.

Keywords: binocular vision, eye movement, retinal correspondence, horopter, eye’s aplanatic design, asymmetric

model eye, conic sections, vergence resting position

1. INTRODUCTION

Our eyes receive two disparate perspective projections of a scene due to their bilateral separation.
Their two-dimensional (2D) layer of photoreceptors sampling these projections is part of an
unstable retinal circuitry. This happens because our eyes are constantly moving 3–4 times
per second to fixate the high-acuity fovea successively on the salient and behaviorally relevant parts
of the scene (Kowler, 2011). Thus, there is visible motion due to eye movements even during steady
fixations (Martinez-Conde et al., 2004).

Therefore, the retinal images have visible motion due to both the eyes’ incessant movements and
the movements of objects in the scene. Although this should lead to a compromised understanding
of the scene, we instead perceive, with vivid impressions of forms in depth, stable visual scenes
containing moving objects. To understand our perceived constancy of a 3D world from 2D,
unstable sensory inputs, we need to understand how binocular vision is integrated with the
eyes’ movements.
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Whenever a retinal element is stimulated by a localized
light, the stimulus is perceived in a specific direction. If the
stimulus projecting to the two retinal elements, one for each
eye in the binocular system, is perceived in the same direction,
then they are considered to be corresponding elements. Normal
correspondence occurs when the fovea of one eye corresponds to
the fovea of the other eye; their single visual direction is called
the principal visual direction, or the Cyclopean direction. The
visual directions of all other pairs of stimulated corresponding
elements are perceived in relation to this principal direction.
The horopter is the set of all points in the binocular visual field
stimulating retinal corresponding elements. Because the normal
binocular vision is specified by two foveae being corresponding,
all other corresponding retinal elements can then be determined
from laboratory measurements of the empirical horopter (Ogle,
1950; Shipley and Rawlings, 1970).

The empirical horopters were comprehensively modeled in
Ogle (1932) and Amigo (1965) and, more recently, in Turski
(2016c, 2018). The equations with free parameters that were
introduced on an ad hoc basis in Ogle (1932) for the forward gaze
and extended in Amigo (1965) to any horizontal gaze furnished
longitudinal horopters as conic sections. Introduced in Turski
(2016c) and numerically studied in Turski (2018), the empirical
horopters were modeled as conic sections in the binocular system
with asymmetric eyes (AEs). The AE is themodel eye that extends
the reduced eye with its inclusion of the fovea’s displacement
from the posterior pole and the cornea’s and lens’ relative tilts
observed in healthy human eyes (Chang et al., 2007; Schaeffel,
2008). This fovea’s anatomical displacement is the main source
of optical aberrations and the lens’ tilts cancel out some of
these aberrations by contributing to the eye’s aplanatic design
(Tabernero et al., 2007; Artal, 2014).

My studies in Turski (2018) found that the horopteric conics
were numerically similar but geometrically different from the
conic sections in Ogle (1932) and Amigo (1965); my conic
sections pass through the nodal points’ anatomical location and
their conic sections pass, incorrectly, through the eyes’ rotation
centers. Further, in my studies, the straight-line empirical
horopter, defining the abathic distance to the symmetrically
fixated point, resulted from the AEs’ position in which their lens’
equatorial planes are coplanar. Then, when the AE’s parameters
are set to the average values for the human eye, the resulting
abathic distance of 1 m complies with its average physiological
value in humans (Gibaldi et al., 2017). This resulting abathic
distance is also within the range of the eye muscles’ natural tonus
resting position distance (Jaschinski-Kruza, 1991; Jaschinski
et al., 2007).

In this paper, I extend numerical studies in Turski (2018)
by developing a simple geometric theory in which the retinal
correspondence of the binocular system with AEs is elaborated in
the framework of bicentric perspective projections (Koenderink,
1992). Because the eye muscles’ natural tonus resting position
serves as a zero-reference level for convergence effort (Ebenholtz,
2001), this theory contends that the primary position of
the AEs coincides with the abathic-distance bifoveal fixation.
The primary position, originally intended for a single eye,
is often described in binocular vision as both eyes being

directed straight ahead by an erect head. This rather imprecise
definition of the eyes’ primary position could be the reason
for its neurophysiological significance remaining elusive despite
its theoretical importance to oculomotor research (Hess and
Thomassen, 2014). Thus, this novel characterization of the
eyes’ primary position integrates binocular conics with the eyes’
movements in a precise and natural way that has been unavailable
until now.

The result of such an integration is that we are now able
to graphically simulate the horopteric conics’ transformations
from the movement of the fixation point in the visual plane,
which also demonstrate the horopteric conics’ classification
in terms of the eyes’ position. GeoGebra’s dynamic geometry
software is used in this paper to demonstrate all geometric results
found for the horopters and the retinal correspondence. The
simulation of horopteric conics’ transformations is included in
the Supplementary Material.

The theory’s binocular framework of bicentric retinal
projections accounts for the fact that the human decodes
properties of the 3D environment from neural processes
fundamentally constrained by the sensory organs’ geometric
relationships to the environment (Rokers et al., 2011; Bonnen
et al., 2019). In addition, the AE accounts for some of the
eye’s aplanatic design that correlates the lens’s misalignment
with corneal aberration to produce nearly diffraction-free retinal
images close to the visual axis (Artal, 2014).

Although the distribution of retinal corresponding elements is
usually considered fixed (Hillis and Banks, 2001), the horopter’s
shape and the retinal correspondence are dependent on the
asymmetry parameters of the model eye and can, therefore,
change when the AE’s parameters change. For example, when
the crystalline lens is replaced during refractive surgery with a
toric intraocular lens (IOL), it does not only correct for refractive
errors and provide sharper focus, but corneal astigmatism can
be also be corrected for by adjusting the lens’s orientation. The
evaluation of a group of patients in Wang et al. (2019) shows
that the IOL tilt magnitude increased significantly compared
to the preoperative crystalline lens’s tilt. This increase in
tilt can postoperatively modify the horopter’s shape and the
retinal correspondence.

2. ASYMMETRIC EYE

The AE model (Figure 1), discussed in detail in Turski (2018),
incorporates the most important features of the human eye’s
asymmetric design. However, the AE model is slightly modified
here by its use of the effective lens. The eye’s natural asymmetry
is modeled by two parameters; the angle α which specifies the
fovea’s temporalward displacement from the posterior pole, and
the angle β which gives the effective lens’ tilt and decentration
relative to the optical axis. The effective lens introduced in the
AE model simplifies the description of the lens’ tilt and defines
the optical axis as the eyeball’s line of axial symmetry when α =

β = 0. I assume that α − β > 0 because it is satisfied in a
typical binocular system. Because angle α has a low interpatient
variability (Holladay, 2007), I use the angle α’s average value of
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FIGURE 1 | Asymmetric eye (AE) model for the right eye. The fovea, f , is displaced from the posterior pole by the eyeball’s global tilt of α degrees. The relative

misalignment of the cornea and lens is represented by the β-degree tilt of the equatorial plane of a single effective lens. Both angles of tilt are at the nodal point N

located on the optical axis 0.6 cm anterior to the eyeball’s rotation center C. The optical axis is defined by α = β = 0. The image plane is obtained by tilting the frontal

plane by β degrees at the eyeball’s rotation center C. The visual axis passing through N and f intersects the image plane at its optical center O.

5.2◦. Angle β is assumed to vary between −0.4◦ and 4.7◦, the
range of β ’s values observed in human eyes.

The tilt of the effective lens is represented in my geometrical
model of the binocular system with AEs by the image plane
passing through the eye’s rotation center that is parallel to the
equatorial plane of the effective lens. The image impinged on
the retina is defined by the pencil of light rays passing through
the nodal point. In the AE model, these light rays may be
parameterized in angular coordinates on the curved surface of
the retina, or on the image plane with more convenient in image
processing rectangular coordinates. The cornea and crystalline
lens’s misalignment, represented by the effective lens’ tilt, is one of
the eye’s sophisticated aplanatic elements designed to compensate
for some of the limitations to optical quality caused by the fovea’s
displacement form the eyeball’s posterior pole (Artal, 2014).

3. BINOCULAR SYSTEM WITH AES

The horopteric conic sections resembling empirical horopters
were numerically studied in Turski (2018) in the binocular
system with AEs. This section introduces basic definitions in
the geometry of this binocular system displayed in Figure 2,
but a detailed elaboration of binocular geometry is developed
throughout the following sections. In particular, the horopteric
curves and retinal correspondence are geometrically constructed
in the next two sections.

I note that in the binocular system with symmetric eyes, i.e.,
with model eyes satisfying α = β = 0, φr and φl are angles
describing the eyes’ rotations from their primary position, often
described as both eyes directed straight ahead in an erect head.
In this case, the angle subtended at the resulting fixation point is
given by the vergence angle

η = φr − φl, (1)

see fixation F0 in Figure 3C.
The distance to the symmetrically fixated point, Fa shown in

Figure 2, through which a linear horopter is passing, is known
as the abathic distance. To get the subtense of the fixation points
Fa and another point F, I use the equality of alternate angles: two
angles, not adjoined, formed on opposite sides of a line where the
line intersects two other parallel lines. In Figure 2, α − β − φl at
both vertices, Nl and F, are alternate angles for the left eye, and
α − β + φr at both vertices, Nr and F, are alternate angles for the
right eye. Note that the angle φl is subtracted from α−β because
its value is negative. It is easy then to verify, by taking the sums
of respective alternate angles, that the angle subtended by visual
lines at Fa is 2(α − β) and the angle at F is 2(α − β) + η. Thus,
since α 6= β , the angle at any fixation obtained by the change of
gaze from Fa never takes on the vergence angle η in Equation (1).
Therefore, in this work, the angles subtended by the visual lines at
the spatial points are called binocular subtense, or just subtense.
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FIGURE 2 | The eyes’ asymmetry angles α and β are shown only for fixation Fa. The rotating angles, φr and φl , change the eyes’ gaze from the abathic-distance

position, fixation Fa, to the position in which eyes are fixating on F. This results in the subtense changing from σa = 2(α − β) at Fa to the subtense σF = 2(α − β)+ η at

F, where η is the vergence (1). The horopteric ellipse, shown here for the fixation F, is constructed in section 4 using the nodal points, Nr and Nl , and the intersection

point, F∞, of the lines through the nodal points and parallel to the respective image planes. The condition φr − φl = 0 furnishes a curve with a constant subtense σa.

This is the abathic iso-subtense curve (AIS) that passes through Fa. Later, similarly to the case of the symmetric (reduced) model eye, the Cyclopean direction of the

fixation point F in the binocular system with AEs will be specified relative to the point A on the Vieth-Müller circle (VMC) passing through F.

Eye positions reached from the abathic distance fixation by
equal eye rotations, φr = φl, have fixation points that lie on, what
I call, the abathic iso-subtense curve (AIS). For each different
symmetric fixation of subtense 2(α − β) + η, we get different

iso-subtense curve. This curves differ from the iso-vergence
curves, or Vieth-Müller circles (VMCs), because, in contrast
to the iso-subtense curves, the VMC passes through the eyes’
rotation centers. The AIS curve, the iso-subtense curve which
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FIGURE 3 | The horopteric conic sections constructed in the demonstration of BINOCULAR CONICS CONSTRUCTION. (A) The hyperbola and the ellipse (not

shown). (B) The straight line and the parabola. (C) The proof that the conic section orientation is given by version angle, carried out only for the ellipse.

passes through Fa at the abathic distance, is graphed numerically
in Figure 2 for fixations in the azimuthal range±45◦, the neurally
determined range of typical gaze eccentricities (Guitton and
Volle, 1987). For anthropomorphic binocular system parameters,
the AIS will be closely approximated in section 6 by the VMC.

Further, for symmetric eyes (α = β = 0), the version angle,

ω = (1/2)(φr + φl), (2)

is the azimuthal angle of the ray that starts from the point
on the VMC’s that is midway between the eyes’ centers and
passes through the fixation point (cf. the fixation point F0 in
Figure 3C) given by the rotation angles φr and φl from the eyes’
primary position. I recall that the eyes’ primary position is often

described as both eyes directed straight ahead in an erect head.
The VMC’s midpoint and the azimuthal angle (2) specify the
Cyclopean eye’s position (Turski, 2016a) and, hence, the principal
visual direction. Section 6 will discuss how the fixation point F’s
Cyclopean eye position can be defined in the binocular system
with AEs.

4. THE GEOMETRIC CONSTRUCTION OF
BINOCULAR CONICS

In the binocular system with AEs, parameters α, β , a, and
the eyes’ rotation angles φr and φl specify coordinates of the
four points in the horizontal visual plane which lie on, or
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are associated with, the corresponding horopteric curve. These
points are the nodal points Nr and Nl, the fixation point F,
and the point denoted by F∞. The point F∞ (cf. Figure 2)
is the intersection of the two lines, each passing through the
nodal point of one eye and parallel to both the AE’s image
plane and effective lens’ equatorial plane. Thus, in the projective
geometry framework (Henle, 1997), F∞ projects to the points
at infinity, one for each of the AE’s image planes. The fixation
point F projects along the visual axes to the foveae, which are
corresponding retinal elements in normal binocular vision. In
contrast, the lines projected from F∞ to the pair of points at
infinity do not intersect the retinae.

Thus, the points at infinity are not corresponding retinal
elements though they are called geometrical corresponding
points here because of the significant role they play in the
horopteric curves’ geometric constructions. These geometrical
constructions for the binocular system with AEs are given below
in this section. These constructions are motivated by the results
obtained in Turski (2016a) for horopteric circles in binocular
system with symmetric (reduced) eyes. They are reframed
here in Proposition 1 to include F∞ into the formulation,
which is otherwise not needed because it is a theorem of
Euclidean geometry.

Proposition 1. Let the nodal point be located on the optical axis
at any point at or between the spherical eyeball’s rotation center
and its pupil. Then, for the binocular eyes’ position with fixation
point F in the horizontal visual plane, the lines that pass through
the nodal points and are perpendicular to the visual axes intersect
at the point F∞ on the circular horopter. It then follows that line
segment FF∞ must pass through the horopteric circle’s center.

The proof of Proposition 1 is given in Supplement 1. It shows
that, in the binocular system with symmetric model eyes, F and
F∞ are diagonally opposite points on the horopteric circle. The
anatomically correct location of the nodal point is 0.6 cm anterior
to the eye’s rotation center, though the proof is for any nodal point
location between the eye’s rotation center and pupil.

The construction of horopteric curves in binocular system
with AEs incorporates the horopteric circles’ point symmetry of
Proposition 1. The rationale for this extension is the continuity
requirement of the horopteric curves’ transformations as the AE’s
parameters α and β both approach zero. Moreover, referring to
my previous research, the extension also accurately reflects F and
F∞’s relation in projective geometry, the geometric framework
that is essential to the constructions of horopteric curves for the
binocular system with AEs.

To explicate this further, I note that the mapping between
points of the spherical retina and points of the image plane can
be modeled by stereographic projection through the nodal point
for both symmetric and asymmetric model eyes (Turski, 2016c).
This mapping is not defined at the nodal point. Stereographic
projection is extended to one-to-one and onto by appending
the image of the nodal point under the mapping, called the
point at infinity, to the image plane. The image plane with
the point at infinity is the celebrated object in geometry and
mathematical analysis known as the Riemann sphere (Needham,

2002). Stereographic projection is conformal, that is, it preserves
the angle of two intersecting curves. Further, it maps circles in the
spherical retina that do not contain the nodal point to circles in
the image plane. Therefore, this conformal geometry preserves
receptive fields and retinal illuminance, providing constructive
properties for human vision (Turski, 2012).

Now, for each of the binocular system’s AEs, the fixation
point F in the horizontal visual field defines the origin in
the image plane and F∞ is projected to the point at infinity.
The origin and the point at infinity are images of the fovea
and the nodal point under stereographic projection, which
identifies the spherical retina with the image plane and,
therefore, they are opposite points in the Riemann sphere. I
assume that F and F∞ are opposite points on the horopter
of the binocular system with AEs. This assumption, which is
confirmed in this paper by geometric constructions supported
with dynamic geometry software, provides us with a particularly
simple theory of empirical horopters that is both biologically
supported and geometrically precise, advancing the classic model
of empirical horopters introduced by Ogle (1932). Surprisingly,
both stereographic projection and the horopter were first
introduced by Aguilonius in his Six Books of Optics published
in 1613.

The demonstration of the main results of horopteric conics,
referred to as binocular conics, is constructive and, thus, making
possible to design algorithms formodeling stable binocular vision
in mobile robots.

Binocular Conics Construction. For the binocular system with

AEs’ orientations such that point F∞ is in the visual field, the
horopteric curve’s center is designated the midpoint M of line
segment FF∞. This means that for each point on the curve, there
is another point on this curve diagonally opposite to it. Then, this
curve, either an ellipse or a hyperbola, is fully specified by F, F∞
and the nodal points Nr and Nl. For coplanar image planes, when
the eyes are fixating at the abathic distance, the parallel to the image
planes straight line horopter passes through the symmetrically
fixated point. Further, when F∞ is at infinity, that is, when the
image planes are parallel but not coplanar, the horopteric curve is
a parabola. Each conic section’s orientation is exactly given by the
version angle (2).

DEMONSTRATION: The horopteric curves in the binocular
system with AEs are binocular conics under the assumed point
symmetry of the horopteric circles in Proposition 1, they are
geometrically constructed and graphically visualized inGeoGebra
(Figure 3). Because the construction involves the same steps
for both hyperbolas and ellipses, I construct only a hyperbola. For
a given position in which the eyes’ image planes are nonparallel,
the eyes’ nodal points Nr1 and Nl1, fixation point F1, and
point F1∞, are all shown in Figure 3A. Then, two additional
points on the conics are constructed in Figure 3A by taking
reflections of the nodal points about midpointM1 of line segment
F1F1∞. These additional points, shown as R1 and S1, determine
the conics. Shown in this panel, the conic section graphed in
GeoGebra by taking any five of these six constructed points, is the
same hyperbola. Symmetric fixation at the abathic distance has
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coplanar image planes and fixations obtained from the primary
position when eyes rotated by the same angle have parallel, non-
coplanar image planes. In the first case, the two horizontal lines
passing through their respective nodal points and parallel to their
respective image planes overlap. We can use any point that is
different from nodal points on the overlapping lines, point Fa∞
in Figure 3B, to obtain the midpoint between that point and Fa.
Reflections of the nodal points about the midpoint, point Ma

in Figure 3B, provide us with two additional points Ra and Sa
that are colinear with point Fa and, thus, define the straight line
horopter that is parallel to the image planes. For any fixation
obtained from Fa by the same rotation angle of both eyes, the
resulting image planes are parallel but not coplanar and F∞ is at
infinity. In the projective geometry framework, F∞ is represented
by a family of lines parallel to the eyes’ image planes and the
conics are parabolas. One of these parabolas is constructed for
fixation F3 in Figure 3B as follows. First, midpoint L of the line
segment connecting Nr3 and F3 is obtained and the line in the
visual plane through L that is parallel to the image planed. This
line intersects the line that passes through Nl3 and is parallel to
segmentNr3F3 at the pointMl. Then, point R3 on the parabola we
want to construct is obtained by reflectingNl3 about the pointMl.
The same steps are repeated starting with line segment Nl3F3 to
obtain points K andMr . These points then give the second point
S3 on the parabola by taking a reflection ofNr3 aboutMr . All steps
in these constructions, for example, taking a reflection about
a point, are done via dynamic geometry environments of the
GeoGebra system. The proof of the conic sections’ orientations,
specified by the version angle (2), is given for the horopteric
ellipse in Figure 3C. The rays passing through F∞ intersect at
18◦. This is the vergence at fixation point F0 that is obtained for
the symmetric eyes’ azimuthal rotation angles φr2 = 12◦ and
φl2 = 30◦. The two bisecting lines at F∞ and F0 intersect at the
right angle, proving that the orientation of the ellipse is given by
the angle ω = 21◦ equal to the version ω0 = 21◦. This proof also
holds for hyperbolas and parabolas. Because the values of the eye’s
asymmetry parameters are chosen arbitrarily, this proof applies
to any parameters chosen for the eyes. Thus, the link between
the horopter’s geometry and eye movements is established. This
ends DEMONSTRATION.

The geometrical construction of binocular conics in
GeoGebra allows the graphical simulation the horopteric
conics’ transformations from the movement of the fixation
point in the visual plane. The computer simulation
of horopteric conics’ transformations is included
in Supplement 2.

How are these intrinsic properties of the theory related
to human binocular vision? The human brain functions
in physical space and receives information carried by
light that is centrally projected onto the eyes’ retinae
and transduced by photoreceptors into electrochemical
signals. After initial processing by the retinal circuitry, this
visual information is mainly sent to the primary visual
cortex where it produces specific retino-cortical mappings
and forms input to other cortical areas (Wandell et al.,
2007). This immensely complex processing decodes the
environment from retinal stimulation and creates a neural

representation of space (Sereno and Lehky, 2011), our subjective
visual space.

The newest computational modeling in neuroscience
that incorporates bicentric perspective mapping of the 3D
environment onto the retinae demonstrates that this mapping is
fundamental to the tuning of retino-cortical neuronal processes
and these process’s corresponding aspects of perception
(Bonnen et al., 2019). Although the tuning was specifically
examined for 3D motion in the primate cortical area MT,
the process of decoding the world from retinal stimulation
in visuomotor cortical areas must be strongly affected by
the geometry that links the environment to the sensory
epithelium, regardless of whether nonhuman or human primates
locomote or scan the environment while standing still. This
geometric relationship constraining visual perception in
my theory is the bicentric projective mapping between 3D
space and the AEs’ image planes, which are determining the
horopter’s shape.

5. RETINAL CORRESPONDENCE

In normal binocular vision, the foveae are corresponding
elements. This means that the fixated point is perceived in one
direction—the principal, or Cyclopean, direction. The horopter
curve through the fixation point is the locus of spatial points that
project to the retinal corresponding elements such that each point
of the horopter is perceived in the same direction relative to the
Cyclopean direction.

Based on the results obtained in BINOCULAR CONICS

CONSTRUCTION, the straight line horopter shown in Figure 4,
which passes through the fixation point Fa, is established by
the image planes’ coplanarity. The right AE’s visual axis passes
through its respective nodal point and intersects the retina at the
fovea fr and the image plane at point Or . The other visual axis
passes, similarly, through the nodal point of the left eye before
intersecting the retina at fl (the fovea) and the image plane at Ol.
TheseOr andOl points are the binocular correspondence centers
of the image planes.

A point Q on the linear horopter projects to retinal
corresponding points: qr in the right eye, ql in the left eye, and
Qr and Ql on the respective image planes, also called the image
planes’ corresponding points. The corresponding points qr and ql
are located at different distances from their respective foveae such
that the asymmetric distribution of corresponding retinal points
with respect to the foveae is the result of the eyes’ asymmetry
and the head’s bilateral symmetry (Porter et al., 2001; Mosquera
and Verma, 2016). However, from similar triangles,△QFaNr and
△QrOrNr for the right eye, and similar triangles, △QFaNl and
△QlOlNl for the left eye, we conclude that |QrOr| = |QlOl|. This
line horopter and the head’s bilateral symmetry is used here to
define the binocular correspondence as follows.

Retinal Correspondence. Referring to Figure 4, let Or and Ol

be projection points of fixation point Fa into the right and left
image planes of AEs, respectively. Then, any two points Qr and
Ql of the equal distance from, and on the same side of Or and
Ol project, through the nodal points Nr and Nl, to the retinal
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FIGURE 4 | The retinal correspondence’s relation is formulated for the linear horopter at the abathic distance fixation Fa in the binocular system with AEs. Fa projects

along the visual axes to the foveae fr and fl and the related image planes’ optical centers Or and Ol . The point Q projects to the retinal corresponding points qr and ql

and their image planes’ counterparts Qr and Ql . The asymmetric distribution of retinal corresponding points covers, under the projections through the nodal points,

the symmetric distribution of related points on the image planes, which is proved in the text.

corresponding points qr and ql of unequal distance from the foveae
fr and fl, respectively.

This definition of the retinal correspondence, which is based on
the geometric construction of binocular conics in the previous
section, fully agrees with the retinal correspondence formulated
in an ad-hoc way in Turski (2018). The abathic distance da =

|OFa| to the linear horopter at Fa was obtained in Turski
(2018). Here, the abathic distance is given in terms of asymmetry
parameters, α and β , and interocular length, 2a = |CrCl|, in an
equivalent but simplified form,

da =
a cos(α − β)+ 0.6 sinα

sin(α − β)
, (3)

where 0.6 is the distance in centimeters from the nodal point to
the eye’s rotation center. Then, using the average human values
2a = 6.5 cm, α = 5.2◦, and −0.4◦ ≤ β ≤ 4.7◦ in Equation
(3), we obtain 34 cm ≤ da ≤ 380 cm. However, in rare cases, the
values of β can approachmore closely the value of α, givingmuch
larger value of da.

Further, for the average value of β = 3.3◦, the abathic distance
(3) is 99.61 cm, a value consistent with the average value recorded
in humans (Gibaldi et al., 2017). This distance is similar to the
eye muscle’s natural tonus resting position distance (Jaschinski
et al., 2007), which serves as a zero-reference level for the eyes’
convergence effort (Ebenholtz, 2001). Therefore, I refer to the
position of the eyes fixating at the abathic-distance as the resting
vergence position in order to distinguish it from the primary
eyes’ position.
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Each point on one of the binocular conics projects along the
eyes’ visual lines to the retinae of the AEs and defines one pair of
corresponding points. However, only two pairs of points are used
in the binocular conics’ construction: the two foveae and the two
points at infinity. All other corresponding retinal elements are
established by the bicentric retinal projections of the horopter’s
points. The retinal correspondence is a well-defined concept
only if the corresponding retinal points are independent of the
binocular conics transformations when the fixation point moves
in the visual plane. To verify this, in a computer simulation in
the GeoGebra, available in Supplement 2, retinal corresponding
points, qr and ql, and the image plane’s corresponding points,
Qr and Ql, are both determined by point Q (cf. Figure 4) on
the abathic distance line horopter and so remain corresponding
when the eyes’ position changes in the visual plane of fixations.
Because this must be true for all pairs of retinal corresponding
points, I conclude the following:

Remark 1. The Binocular correspondence’s relationship
introduced in RETINAL CORRESPONDENCE is well-defined.

The horopter’s shape establishes a well-defined retinal
correspondence. This theoretical relationship mirrors the
one in human binocular vision in which retinal correspondence
of normal binocular vision is specified by the two, corresponding,
foveae such that all other corresponding retinal elements are
then determined from laboratory measurements of the empirical
horopter. However, the question of whether the corresponding
retinal elements are fixed or not has remained undecided (Wick,
1991; Hillis and Banks, 2001).

In the theory presented here, binocular correspondence
depends on the eye’s asymmetry parameters. Therefore, the
retinal correspondence can change when the asymmetry
parameters change. Such changes can occur during refractive
surgery. For example, to correct for refractive errors and achieve
sharper vision, which is common for people with presbyopia,
the crystalline lens are surgically replaced with an artificial
IOL. Toric IOLs can also correct astigmatism caused by the
shape of the cornea by adjusting the lens’ orientation because
they have different powers in different meridians. When a
group of 333 patients were evaluated in Wang et al. (2019) for
preoperative crystalline lens and postoperative IOL tilt, their
IOL’s tilt magnitude was found to have increased significantly
by 1.2◦ ± 1.1◦ compared to the preoperative crystalline lens tilt.
I conclude from these results that postoperative change in the
lens’ tilt can be large enough to change the patient’s empirical
horopter’s shape and the horopter’s retinal correspondence. In the
binocular system with asymmetric eyes, this change in the lens’s
tilt is modeled by the angle β ’s corresponding change.

6. ANTHROPOMORPHIC BINOCULAR
CONICS

Figure 5 depicts the binocular conics given by the numerical
method from Turski (2018) (dashed lines) and the geometric
method developed in section 4 (solid lines) and drawn by
GeoGebra’s software for the average parameters observed in

humans: α = 5.2◦, β = 3.3◦, and ocular distance 2a = 6.5
cm. From the figure, we see that the hyperbolas for fixation F1
and the ellipses for fixation F2 obtained by both methods overlay
each other nearly perfectly. However, the horopteric parabola for
fixation F3 on AIS differs from the tangent line to the VMC at
F3. Figure 5 shows that the difference between AIS (solid line
through Fa) and VMC (dot-dashed line through F3) should be
insignificant to the perceptually important 90◦ of the central
visual field.

To find the difference between the AIS and VMC, I first note
that the AIS can be well-approximated with a circle. In fact, using
GeoGebra, I find that the AIS’s approximation in the visual field’s
range of ±45◦ (cf. section 3) to 2 decimal places is the circle
x2 + (y − 49.46)2 = (50.13)2. To find the equation of the VMC
passing through F3, I recall the exact geometric description of the
VMC given in Turski (2016a): the center (0, k) = (0, a/(2 tan η)
and the radius R = a/(2 sin η). Then, upon substituting a = 3.25
cm and using the computed inGeoGebra value of η = 3.73◦ at F3,
the VMC’s equation is x2 + (y− 49.80)2 = (49.91)2. This verifies
that the difference between the two circles is negligible.

In Figure 5, all angles are obtained in GeoGebra by the
geometric method of this paper and displayed to an accuracy of
5 decimal points. The fixation point F1 is obtained by rotations
φr = 9◦ and φl = 10◦ from the resting vergence position and
gives rise to the hyperbola constructed in section 4. Version ω1 =

9.5◦ gives the hyperbola’s orientation while F1’s orientation angle
is ωF1 = 9.50009◦. The fixation point F2 results from rotations
by φr = −13◦ and φl = −15◦ and gives rise to the ellipse,
again with an orientation specified by version ω2 = −14◦ and
the direction of F2, which was given by azimuthal angles ωF2 =

14.00061◦. Rotations φr = φl = −20◦ from the resting vergence
position gives the fixation point F3 on AIS and version ω3 =

−20◦ specifies the resulting parabola’s symmetry axis’s direction.
The point on the corresponding VMC midway between the eyes
provides the direction, ωF3 = −20.00039◦, of F3. We see that the
conics’ orientations and the fixation points’ directions differ by
<4 s of an arc. This insignificant difference allows me to place
the Cyclopean eye at the same point on the corresponding VMC
it was placed at in the binocular system with symmetric eyes
(Turski, 2016a): midway between the eyes’ centers.

We conclude from Figure 5 and the results in Turski (2018)
that, for the anthropomorphic binocular system, the binocular
conics in my theory are numerically close to the conic sections
obtained in Ogle (1932) and Amigo (1965). I can therefore
express the conic sections’ parameter H used in those studies in
terms of the AE’s parameters α and β . At the abathic distance,
H = 2a/da, 2a = 6.5 cm is the interocular separation and da
is the abathic distance to the fixation point given in Equation
(3). Thus, H can be expressed in terms of the eye’s asymmetry
parameters as follows:

H =
2a sin(α − β)

a cos(α − β)+ 0.6 sinα
. (4)

Because the subtense σa = 2(α − β) at the abathic distance
fixation is small (0.066 radians for the anthropomorphic
parameters α = 5.2◦, β = 3.3◦), we obtain the approximation
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FIGURE 5 | Horopteric conics for anthropomorphic parameters. The conics shown in solid lines: the line horopter for Fa at the abathic distance of 99.61 cm, the

hyperbola for fixation F1, the ellipse for fixation F2, and the parabola for fixation F3 on the abathic iso-subtense curve (AIS) (solid line) through Fa are constructed in

section 4. Each fixation point is on the corresponding Vieth-Müller circle (VMC) (dot-dash line). The conics obtained for the same fixation points by the method from

Turski (2018) are shown as dashed lines. As we can see, the hyperbola and ellipse for both methods overlay each other nearly perfectly. The difference between the

parabola for F3 and the tangent line to the VMC at F3 is explained in the next section. The conics’ orientations are given by the version angles in BINOCULAR

CONICS CONSTRUCTION of section 4.

H ≈ 0.065, which differs from σa by approximately 0.001 rad.
Moreover, for α = 5.2◦ and the range of β ’s values, −0.4◦ <

β < 4.7◦ (cf. section 2), I obtain the range of H’s values
in Equation (4) as follows: 0.01 < H < 0.19. This result
for H’s values is consistent with Ogle’s original estimation of
0 < H < 0.2 for human subjects (Ogle, 1932, 1950). Ogle
(1950) presented the values of H calculated from the data of
Helmholtz, Lau, and Libermann among many other researchers
obtained in Nonius observations, which are in the range of
his original values of H reported in Ogle (1932). See also the
relevant discussion in Shipley and Rawlings (1970). It is also
consistent with the values estimated more recently in Schreiber
et al. (2008) and Gibaldi and Banks (2019). However, these recent
studies were more general by considering the Hering–Hillebrand
deviation parameter H and the Helmholtz shear, or the
vertical horopter’s backward inclination, that is not included in
my study.

7. BINOCULAR CONICS IN VISUAL PLANE

A theory of horopteric circles in the binocular system with
symmetric (reduced) eyes may be based on Euclidean geometry
alone. But for a theory of horopteric conics in the binocular
system with AEs, a framework of projective geometry is
necessary. In projective geometry terms (Henle, 1997), the
general conic equation given by the inhomogeneous quadratic
polynomial c(x, y),

c(x, y) = Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0, (5)

is also expressed by the homogeneous quadratic form
C(X,Y ,Z) = Z2c(X/Z,Y/Z).

Although no more than five points on a conic are
needed to find its equation, this straightforward task appears
computationally unfeasible for binocular conics because the
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expressions for the points specifying a generic binocular conic
are too complicated. To circumvent this limitation, I classify
binocular conics in terms of discriminants of Equation (5) and
analyze the classes of conics in the “general position” when
the point of bifoveal fixation moves in the horizontal visual
plane. The notion “general position” will be explained below in
this section.

The conic (5) is degenerate if and only if its discriminant, i.e.,
the determinant Ŵ of the symmetric matrix of its homogeneous
quadratic polynomial, vanishes. Here,

Ŵ = det





A B/2 D/2
B/2 C E/2
D/2 E/2 F



 . (6)

Then, for either degenerate or nondegenerate conics, its type is
determined by the sign of the quadratic part of discriminant of
Equation (6),

1 = det

[

A B/2
B/2 C

]

= AC −
1

4
B2. (7)

The cases restricted to the real degenerate conics Ŵ = 0 are: two
intersecting lines 1 < 0, two parallel lines 1 = 0, and one point
1 > 0. The non-degenerate conicsŴ 6= 0 are classified as follows:
the conic is a hyperbola if 1 < 0, an ellipse if 1 > 0, and a
parabola if 1 = 0 (see Reid, 1988).

The three conics are as follows: the hyperbola for the fixation
F1, the ellipse for the fixation F2, and the parabola for the
fixation F3, shown in Figure 5, have the following equations and
discriminants (7) obtained in the numerical simulations with
GeoGebra for the calculated points in the constructions carried
out for demonstration of BINOCULAR CONICS CONSTRUCTION in
section 4.

1. Hyperbola’s branch containing F1: 2.73x
2 + 3.77xy− 8.22y2 −

0.40x+ 115.86y− 7.11 = 0; 1 = −26
2. Ellipse containing F2: 1.12x

2 + 0.90xy + 2.81y2 − 0.12x −

19.24y+ 0.99 = 0; 1 = 2.9
3. Parabola containing F3: 0.21x

2 + 1.14xy + 1.56y2 − 0.14x −

17.72y+ 0.97 = 0; 1 = −6× 10−7 ≈ 0

The discriminant value for the parabola, which should be 0,
is only approximated by −0.0000006. This explains why the
parabola was approximated in Turski (2018) by a straight line,
whereas, here, it is given by the parabola (cf. Figure 5). In this
theory, the parabola is built into the model of horopteric curves
by way of construction. However, in the numerical simulation in
Turski (2018), the conics’ sensitivity near 1 = 0 allows us to see
either an ellipse or hyperbola with the shape that resembles the
tangent line near the fixation point. What could explain this?

Intuitively, the set of conics satisfying condition Ŵ = 0 is
negligible when compared to the set of conics satisfying Ŵ 6= 0
because the number of conics enumerated by {Ŵ = x, x ∈ R\{0}}
is huge compared to conics enumerated by Ŵ = 0. Similarly,
when Ŵ 6= 0, the set of conics satisfying 1 = 0 is negligible
when compared to the set of conics satisfying 1 6= 0. In
mathematics, see Hazewinkel (1989) for example, the “general

position” is a notion of genericity for geometric objects satisfying
some special conditions that distinguishes them from all other
geometric objects in a given collection. Thus, in the whole
collection, the subcollection of objects in their general position is
“massive,” and the complementary set “meager,” with its objects
“negligible.” Thus, only ellipses and hyperbolas are conics in the
general position.

Now, after these preliminary remarks, I can analyze the
binocular conics in the visual plane of bifoveal fixations. To
this end, I note that the fixation points inside the AIS curve
produce the eyes’ positions such that η = φr − φl > 0, while
the eyes’ positions with fixation points outside the AIS satisfy
η = φr − φl < 0. This simple property of the eyes’ positions and
the computer simulation of binocular conics lead to the following
proposition about horopteric geometry in the visual plane:

Binocular Conics Transformation. If α > β, then the AIS of a
constant subtense of 2(α − β) divides the visual plane into three
distinct regions: (A) The fixation point F on the AIS determines the
horopter as a parabola if F 6= Fa, and a straight line if F = Fa.
(B) The fixation point outside of the AIS specifies the branch of
a horopteric hyperbola through this point, possibly degenerating
into two intersecting lines at some of the fixation points. (C) The
fixation point in the binocular field inside of the AIS specifies a
horopteric ellipse. On the other hand, in the monocular field inside
the region enclosed by AIS, an ellipse can change into a hyperbola
such that the sequence of transformed conics passes through the
degenerate case of two parallel lines.

This classification of binocular conics transformations is
demonstrated in a GeoGebra simulation for human-like
binocular system parameters when the fixation point moves in
the visual plane (Supplement 2).

This simulation provides the binocular conics “noisy”
classifications given in terms of eye position, information that
is available to the visual system. Thus, when the fixation point
is moved in the visual plane, only the initial linear horopter
and the evolution of subsequent conics in the general position
can be observed. For example, the degenerate conics cases
mentioned above in BINOCULAR CONICS TRANSFORMATION: the two
intersecting lines and two parallel lines can only be inferred
from observing neighboring conics in their general positions.
The three typical cases of observed binocular conics: the straight
line as the initial horopter at the abathic distance fixation, and
the hyperbola and ellipse obtained in the simulation, are shown,
respectively, in Figures 6A–C. Atypical cases of the simulation
are also shown in Figures 6D–F. In these panels, the conic
morphs through two parallel lines from ellipses to hyperbolas.
Further, in Figure 6E, the conic shown is indeed a hyperbola,
although its branches may appear in the figure to be parallel
lines. Running several dozens of simulation sessions attests that
this will only happen well outside the binocular region. In these
three last panels, points where the visual axes intersect are
near the eyeball in a space where fixations are prevented by
human anatomy.

To summarize the conclusions of this section, both the
perceived direction of the point being fixated on, i.e., the
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FIGURE 6 | Typical snapshots of the simulation (Supplement 2) in binocular regions are shown in (A–C). Snapshots in (D–F) show the atypical conics in the

monocular region morphing through two parallel lines from ellipses to hyperbolas at points humans are anatomically unable to fixate on.

Cyclopean direction, and the binocular conic’s orientation can
be assumed to be entities specified by the version angle (2). This
would mean that when the eyes rotate to change gaze in the
horizontal plane, both the Cyclopean direction and the binocular
conic undergo the same rotations by the version angle. But this
would also imply that an object seen to be moving in a frontal
line is really moving along the constantly changing horopters
in the direction tangential to the instantaneous horopter curves.
The curve traced out by the fixation point tracking this object
is an iso-subtense curve. This implies that the rotations of both
eyes during this pursuit are equal for the AIS passing through
the resting vergence position, or that the rotations differ by a
constant value along other iso-subtense curves in the horizontal
plane. For eyes pursuing other object’s trajectories, the difference
in the two eyes’ rotations is time dependent. For example, this
is the case when the object in pursuit moves along the straight
frontal line on a flat projection screen in what is a typical
laboratory setting.

8. DISCUSSION

The horopter’s significance in stereoscopic vision can be
explained as follows. When a point in the visual plane lies in
front of or behind the horopter curve containing the fixation
point, the difference in the angles subtended on each retina
between the image and the fovea’s center defines retinal disparity.
For each point on the horopter, there is maximum disparity
for the single vision that defines Panum’s fusional area around
the horopter curve. In this region, non-corresponding retinal
elements are fused to provide us with both single vision and
the ability to see visual objects stereoscopically in depth from
the observer’s current point of fixation. Taking the difference in
retinal disparities for a pair of points then provides us with the
relative disparity used for our perception of 3D form. Objects
outside Panum’s area fall on widely disparate retinal areas and
are seen as coming from two different visual directions, causing
physiologic diplopia, or double vision. Here, with bicentric
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projective geometry and a novel model eye, I studied the basic
concepts most useful to understanding stereopsic vision: retinal
correspondence, horopters, and the Cyclopean axis.

8.1. Retinal Correspondence and
Geometric Horopters
The geometry of longitudinal horopteric conics integrated with
eye movements is constructed in the framework of bicentric
perspective projections on the image planes of the AEs. The
AE is a model eye that includes the eyeball’s global asymmetry
caused by the fovea’s displacement from its posterior pole—
the main source of the eye’s optical aberrations—and the
crystalline lens’ tilt that is countering some of these aberrations
(Artal, 2014). The theory demonstrates that (i) the longitudinal
horopteric curves for the binocular system with AEs are conic
sections and (ii) the retinal correspondence obtained from the
horopteric conics is a well-defined concept. Moreover, using this
theory allows us to assert that the conics sections’ branches,
which pass through the fixation points and referred to as
binocular conics, closely resemble empirical horopters obtained
by laboratory measurements with the Nonius method (Ogle,
1950; Shipley and Rawlings, 1970). Until recently, there has
been only one comprehensive model of empirical horopters
and it was elaborated in Ogle (1932) and Amigo (1965) by an
ad hoc introduced equation with a free parameter determined
experimentally for each subject. The geometric theory developed
here advances that classic model of Ogle and Amigo by
establishing a physiologically motivated model of the empirical
horopters integrated with the eyes’ movements.

This theory accounts for the fundamental fact that the human
visual system functions in physical space and acquires visual
information by actively scanning the environment when we are
awake. Incident light rays reflected from objects in a scene in 3D
space are projected onto the unstable 2D retinae and neuronal
processes activated in the visual and visuomotor cortical areas
decode and interpret the scene’s 3D properties. Therefore, any
decoding of the environment’s 3D properties from sensory
information must be fundamentally constrained by the sensory
organs’ geometric relationship to the environment (Rokers et al.,
2011; Bonnen et al., 2019) andmodulated by the eyes’ movements
(Hejtmancik et al., 2016).

The conceptual framework used here in constructing
horopteric conics for the binocular system with AEs not only
provides a biologically based model that reproduces empirical
horopters, it also provides a framework for the theory of
geometric horopters developed in Turski (2016a) for the
binocular system with the symmetric (reduced) model eye. This
result is proved here in Proposition 1 for any position of the nodal
point between the eye’s pupil and its center of rotation, including,
of course, the location of the anatomical nodal point. Thus,
three qualitatively different theories of the geometric horopters,
including the theory of the VMC, are constructed here in the
framework of bicentric projections. The three theories are briefly
compared below in the order of their respective model eye’s
anatomical fidelity.

The first model is a special case of the symmetric model
eye in which the nodal point is taken to coincide with the
eye’s rotation center. Proposed almost two centuries ago, the
resulting horopter curves are the iso-vergence circles, or VMCs,
each passing through the fixation point and connecting the eyes’
rotation centers. When the eyes fixate on points along the VMC,
the eyes’ rotation centers do not move. This means that the
VMC and the vergence value also do not change when the
eyes fixate on points along the VMC. Further, relative disparity
becomes independent of eye position in this model eye (Turski,
2016a). This model-dependent constancy is a consequence of
incorrectly locating the nodal point at a position that is not its
anatomical position.

The second model is the symmetric model eye with a nodal
point located 0.6 cm anterior to the eyeball’s rotation center
as required by the eye’s anatomy. Its horopter curves consist
of a family of circles passing through the fixation point and
connecting the nodal points (Turski, 2016a). For a constant
vergence value, these horopteric circles are parameterized by
specific fixation points on the binocularly visible part of the VMC
and intersect at the VMC’s point of symmetric convergence.
Relative disparity, in this model, depends on eye movement and
its changes are always within the binocular acuity limits for
fixational eye movements (Wilcox and Harris, 2010). Regardless
of this result, relative disparity is often assumed independent
of the eyes’ position. I hypothesized in Turski (2016a) that
the size and shape changes perceived during fixational eye
movements may not only provide perceptual benefits, such as
breaking camouflage, but may also provide the aesthetic benefit
of stereopsis (Ponce and Born, 2008).

The third binocular system, with AEs of the highest
anatomical fidelity, is the subject of this paper. In this system, the
geometric horopters are binocular conics resembling empirical
horopters and their orientation is exactly specified by the version
angle, giving this angle a new significant meaning in biological
vision. On the other hand, if the Cyclopean axis is defined from
the midpoint on the VMC’s arc connecting the eyes’ centers of
rotation, the same way as it was defined in the binocular system
with symmetric eyes, its direction given by the azimuthal angle
provides the best approximation of the vergence angle in the
human’s binocular system; the difference between the Cyclopean
eye direction and the binocular conic orientation given by the
version is on the order of a few seconds of an arc (Figure 5).

Although the VMCs and empirical horopters have different
geometries, the VMC is often identified with the longitudinal
horopter. The VMC does provide a good approximation for the
empirical horopter near the fixation point, but the difference in
their geometries is significant in the periphery. A small object
peripherally located on the VMC will have zero disparity with
respect to this horopter model, but it will have a nonzero
disparity with respect to the binocular conics that approximate
well the empirical horopters over the whole visual field. Visually
guided saccades intercepting a peripherally viewed object will be
well off the target if programmed in terms of VMC’s disparity.
Although the simplicity of the VMC makes it useful in some
numerical aspects of visuomotor research, its approximation of
both geometric and empirical horopters is a crucial condition
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that should always be emphasized in order to avoid its, currently
frequent, mischaracterizations.

Further, it is suggested in Sprague et al. (2015) that the shape of
the longitudinal horopter is a result of the visual system allocating
resources according to natural disparity statistics for binocular
correspondence matches. Although the horopter’s shape can
support these statistics, my theory instead asserts that the shape of
empirical horopters is caused primarily by the misaligned optical
elements modeled by the AE. In fact, in healthy eyes, the fovea
is displaced from the eyeball’s posterior pole and the cornea and
the crystalline lens are tilted relative to each other (Chang et al.,
2007; Holladay, 2007; Schaeffel, 2008). The crystalline lens’ tilt
cancels out some of the aberrations caused by foveal displacement
and the cornea’s asphericity and produces nearly aberration-free
perception near the visual axis (Tabernero et al., 2007; Artal,
2014). Then, the adaptation to the natural environment’s visual
statistics can be achieved through the binocular eye’s movements
(Canessa et al., 2017; Gibaldi and Banks, 2019).

8.2. Binocular Conics and Eye Movement
The fovea, which has the highest visual acuity on the retina,
subtends only a two-degree visual angle. To prevent diplopia, a
saccade must quickly direct the eyes’ foveae toward the object—
in what is called the conjugate eye movements because the eyes
are rotating in the same direction. Saccades usually need to be
corrected by a vergence—the disjunctive eye movements as they
rotate in opposite directions, and then the foveae must be held
precisely aligned on the object (Masson et al., 2001; Maxwell
and Schor, 2006). This corrective vergence movement, or motor
fusion, adjusts the eyes’ alignment to maintain sensory fusion
(Schor, 1979; Liversedge et al., 2006).

Cortical activity derived from bicentric perspective retinal
stimulation must, therefore, be modulated by the eyes’
movements (Hejtmancik et al., 2016). The size and direction
of the adjustment is given by the binocular disparity between
the currently viewed object and the next one to be viewed.
Thus, the concept of retinal corresponding elements is not
only fundamental to single vision and stereopsis, it is also
important in the binocular coordination of the eyes’ movements.
Understanding how the eyes’ movements are controlled by
the visuomotor processes and how they affect the precise
correspondence of the retinal elements remains uncertain
(Waitzman, 2016).

Moreover, during natural viewing, the human eye’s rotational
speeds during saccades are as fast as 700◦/s, with an
acceleration exceeding 20, 000◦/s2 (Waitzman, 2016). Saccadic
eye movements are performed about 3-4 times/s, meaning that
visual information is mainly acquired by the brain during 3-
4 brief fixations within a second. In addition, we are not only
able to execute smooth pursuit eye movements that keep the
foveae focused on a slowly moving object up to 100◦/s; we also
employ a combination of smooth pursuit and saccades to track
an object moving unpredictably or moving faster than 30◦/s
(Westheimer, 1954; Meyer et al., 1985). By stabilizing the tracked
object’s image on the fovea, smooth pursuit eye movements
(SPEMs) superimpose additional motion on the retinal images
of the stationary background and on the moving objects.

For example, the consequences of the saccadic eyemovements’
high speed and acceleration markedly restricts the use of visual
information between fixations. Therefore, the basic feature
underlying natural viewing is the occurrence of intricate dynamic
disparity that is then processed to maintain our clear vision
that appears continuous and stable. In this regard, my theory
provides the binocular conics’ transformations by integrating the
binocular conic’s geometry with the eyes’ changing position in the
horizontal visual plane of bifoveal fixations, therefore extending
my work on modeling the monocular vision stability in Turski
(2010, 2016b) to the binocular framework.

The kinematics of visually guided eye movements is
constrained by Listing’s law, which involves the primary eye
position in this law’s formulation. In its typical version, which
originally applied to a single eye’s rotation, when the eye fixates
on a target at optical infinity, Listing’s law asserts that, with
the head upright and stationary, there is an eye position called
the primary position such that any other eye orientation can
be reached by a single eye rotation about the axis in the
plane perpendicular to the eye’s primary direction. This plane is
known as Listing’s plane. Consequently, during eye movements
that obey Listing’s law (e.g., saccades and smooth pursuit), the
eyeball assumes a unique torsion, or a rotation about the line
of regard, for each eye orientation (Crawford et al., 2003). In
my study, all eye movements are constrained to rotate about the
vertical axis such that the torsion specified by Listing’s law is
always zero.

Further, when both eyes are constrained to fixate binocularly
during the eyes’ rotations, binocular extension of Listing’s law,
known as L2, applies to the eyes’ positions. L2 asserts that during
convergence, the eyes’ rotation axes still remains confined to a
plane for each vergence angle; however, as the eyes converge,
these planes rotate relative to Listing’s planes temporally and
roughly symmetrically (Bruno and van den Berg, 1997; Tweed,
1997; Somani et al., 1998).

My theory specifies the AEs’ primary position at the abathic
distance fixation, or the resting vergence position, to allow for the
physiologically motivated replacement of the imprecise primary
eye position as follows. In the absence of visual cues, the eyes’
gaze shifts to the eyes’ natural tonus resting vergence position,
which serves as a zero-reference level for convergence effort
(Ebenholtz, 2001). In fact, the average natural tonus resting
vergence distance for the forward gaze is of the same value as
the human’s average abathic distance, which also agrees with the
abathic distance for the average anthropomorphic parameters
of the AE. Moreover, though both the tonus resting vergence
distance and the abathic distance vary from about 40 cm to
optical infinity across subjects, they are reliable parameters within
a subject (Owens and Leibowitz, 1980). Further, the resting
vergence position is supported by recent results demonstrating
that Listing’s law and kinematics related to Listing’s law are
implemented peripherally and by the oblique extraocularmuscles
(EOMs) mechanism rather than centrally (Demer, 2006). In fact,
these EOM’s forces are indispensable to 3D modeling of eye
movements and are responsible for the mechanical equilibrium
of the eye suspended in resting vergence position (Gao et al.,
2014). Moreover, the resting vergence position’s change with
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lowered and elevated gaze (Heuer and Owens, 1989) agrees with
the vertical horopter’s backward inclination and its effect on
perception (Amigo, 1974; Grove et al., 2001; Schreiber et al.,
2008).

The above discussion strongly support my choice of
the resting vergence position at the abathic distance of
bifoveal fixation to replaces the eyes’ primary position that
essentially applies only to a single eye, but is often stated
as describing both eyes fixating at optical infinity with an
obvious lack of precision. This could be the reason that despite
theoretical importance of the eyes’ primary position, its precise
formulation and neurophysiological significance remain elusive
(Hess and Thomassen, 2014).

The theory of binocular conics constructed here needs to be
further extended with the vertical component and integrated
with 3D eye movements. This extension to a full framework
of bicentric perspective (Koenderink, 1992) will inevitably
introduce a host of geometric difficulties. For example, the
visual line in the AE model that passes through the fovea,
the optical node, and the fixation point differs, because of the
fovea’s displacement from the posterior pole of the eyeball,
from the line of regard, or fixation axis, connecting the eye’s
rotation center with the fixation point. One of the questions this
introduces is how to model the rotation of the visual axis by
the eye’s torsion around the line of regard because a rotation
complicates the control of the binocular eyes’ alignments in
near-vision conditions. Moreover, the extension of Listing’s law
that applies when the eyes start rotating from their tertiary
position, the so-called half-angle rule, was not needed here, but
will be indispensable when my theory is extended to 3D rotations
because this extensions requires the use of angular velocity rather
than rotation axes (Tweed et al., 1990).

Also specific to 3D kinematics of eye-head bifoveal fixations
is either the Listing’s plane’s tilt or Listing’s plane geometry
change to a twisted surface. The Listing’s plane’s geometry
changes have been analytically modeled as the effect of the
alignment maximization method (Chen et al., 2019). Further,
it has been proposed in Ghosh et al. (2011, 2012) that the
crystalline lens’ horizontal tilt and the eye’s axial length change
during a 25◦ downward gaze with binocular fixations at the 0.2 D

and 2.5 D accommodative states for near-visual tasks. Although
recent results in Liu and Thibos (2017) and Lu et al. (2020)
support this proposition, the theory regarding the physiological
mechanism of accommodation is still incomplete. It appears that
the crystalline lens can change its tilt due to a loosening of
the zonule—the fiber band attached to the lens that changes its
curvature during accommodation—and gravity (Radhakrishnan
and Charman, 2007), and careful modeling of this and
other accommodative mechanisms may contribute to a fuller
understanding of the origins of the elusive presbyopic changes
(Charman, 2008). Thus, modeling physiological mechanisms
underlying stereoscopic vision should include not only the
eye’s optical asymmetry but also the tilted, accommodating
crystalline lens.
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