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Abstract

The incidence of stillbirth in Sweden has essentially remained constant since the 1980’s,

and despite thorough investigation, many cases remain unexplained. It has been suggested

that a proportion of stillbirth cases is caused by heart disease, mainly channelopathies. The

aim of this study was to analyze DNA from 290 stillbirth cases without chromosomal abnor-

malities for pathogenic single nucleotide variants (SNVs) in 70 genes associated with car-

diac channelopathies and cardiomyopathies. The HaloPlex Target Enrichment System

(Agilent Technologies) was utilized to prepare sequencing libraries which were sequenced

on the Illumina NextSeq platform. We found that 12.1% of the 290 investigated stillbirth

cases had one (n = 31) or two (n = 4) variants with evidence supporting pathogenicity, i.e.

loss-of-function variants (nonsense, frameshift, splice site substitutions), evidence from

functional studies, or previous identification of the variants in affected individuals. Regarding

identified putative pathogenic variants in genes associated with channelopathies, the preva-

lence was significantly higher in the stillbirth cohort (n = 23, 7.93%) than the corresponding

prevalence of the same variants in the non-Finnish European population of the Exome

Aggregation Consortium (2.70%, p<0.001) and SweGen, (2.30%, p<0.001). Our results

give further support to the hypothesis that cardiac channelopathies might contribute to still-

birth. Screening for pathogenic SNVs in genes associated with heart disease might be a

valuable complement for stillbirth cases where today’s conventional investigation does not

reveal the underlying cause of fetal demise.

Introduction

The incidence of stillbirth in Sweden, defined as fetal death occurring at completed gestational

week 22 or later, has essentially remained constant at approximately 3–4 per 1 000 live births

since the 1980’s [1]. Stillbirth can be caused by several factors, such as infections, placental
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insufficiency or abruption, maternal conditions (e.g. preeclampsia), chromosomal aberrations,

malformations and umbilical cord complications [2]. In Stockholm County, all cases of still-

birth pass a thorough investigation, with the aim of identifying the underlying factor of fetal

demise. The investigation includes physical examination and autopsy, infectious disease test-

ing and chromosome analysis by conventional chromosome analysis by karyotyping, or, when

it fails, by quantitative fluorescence polymerase chain reaction (QF-PCR). Using these meth-

ods, chromosomal abnormalities are identified in 6–17% of stillbirth cases [3,4]. We have pre-

viously shown that analysis with chromosomal microarray (CMA) increases both the analysis

success rate, as well as the chromosomal aberration detection frequency, compared with con-

ventional karyotyping [5]. However, many stillbirth cases remain unexplained, and determina-

tion of the underlying cause is important as a history of stillbirth is associated with an

increased recurrence risk in following pregnancies [6].

Studies have suggested that long QT syndrome (LQTS) might contribute to stillbirth in

some cases [7,8]. LQTS is a channelopathy affecting cardiac ion channels, and is characterized

by a prolonged Q-T interval on electrocardiogram. The condition is a common cause of sud-

den death postnatally, and is diagnosed in up to 9.5% of infant death syndrome cases [9]. Also

other channelopathies, such as Brugada syndrome (BrS) and catecholaminergic polymorphic

ventricular tachycardia (CPVT), as well as cardiomyopathies, such as hypertrophic cardiomy-

opathy (HCM), have been suggested to cause infant death [10–13]. Common for cardiac chan-

nelopathies is that the structure and function of ion channels are affected, which in turn leads

to disrupted action potential propagation and thereby causes development of arrhythmias

[14]. Cardiomyopathies, i.e. disorders of the heart muscle, are impairments of the ability of the

myocardium to contract, which can result in heart failure [15]. A study including 47 cases of

sudden unexpected death in infancy (SUDI) identified one or more genetic variants with likely

functional effects in 34% of the cases, by investigation of 100 genes associated with cardiac

channelopathies and cardiomyopathies [16]. It is reasonable to suspect that genetic variants

associated with death in infancy might as well cause fetal death. However, this has not been

extensively studied.

In this study, DNA from 290 stillbirth cases without chromosomal abnormalities was ana-

lyzed using a gene panel, including 70 genes associated with cardiac channelopathies and car-

diomyopathies. We suggest that the results might provide clues to the underlying cause of

stillbirth for a proportion of cases.

Materials and methods

Study population

The study included 290 stillbirth cases without known pathogenic chromosomal abnormali-

ties, based on data from karyotyping (174 cases), CMA (84 cases), and QF-PCR (32 cases). All

cases are part of a cohort that we have described previously [5], which includes all stillbirth

cases that occurred in the Stockholm County between January 1, 2008 and December 31, 2012.

The complete cohort has been investigated by the Stockholm stillbirth group, which consists of

obstetricians and perinatal pathologists representing all delivery departments in Stockholm,

according to guidelines described in the Stockholm classification of stillbirth [17]. Parental

samples were not available. All data were fully anonymized prior to analysis. The study was

approved by the Regional Ethical Review Board in Stockholm.

DNA extraction, quantification, and quality control

DNA was extracted from fetal or placental tissue, using the Gentra PureGene protocol (Qia-

gen, Hilden, Germany). DNA concentrations were measured using a Qubit fluorometer
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together with the DS BR DNA assay (Thermo Fisher Scientific, Waltham, MA, USA). DNA

quality was assessed using a NanoDrop spectrophotometer (Thermo Fisher Scientific), where

A260/A280 ratios between 1.8 and 2.0, and A260/A230 ratios >1.5 were accepted. DNA frag-

mentation was evaluated using agarose gel electrophoresis (1.5% agarose).

Panel design and library preparation

By using the SureDesign tool (Agilent Technologies, Santa Clara, CA, USA), probes were

designed to cover the exons and exon-intron boundaries of the 70 genes displayed in Table 1.

The genes were selected according to the available literature and were reported to be associated

with cardiac channelopathies and cardiomyopathies. The design was optimized twice through

addition of probes in areas where coverage was low, both in areas with no in silico coverage

and where actual sequencing coverage was below 20X, as well as in areas where only one probe

was functional, prior to running stillbirth cases. Sequencing libraries for massive parallel

sequencing (MPS) were obtained by using HaloPlex target enrichment system (Agilent Tech-

nologies) according to the manufacturer’s protocol. Briefly, 225 ng of genomic DNA was used

for restriction reactions. Before continuation of the protocol, the digestion of a control DNA

sample was assessed using a high-sensitivity DNA kit and Bioanalyzer (Agilent Technologies),

to ensure that the restriction reaction was successful and yielded DNA fragments of the

expected lengths. Hybridization of the probes and index cassettes was performed at 54˚C for

16 hours ± 10 minutes. PCR amplification of all libraries was performed on a 2720 Thermal

cycler (Applied Biosystems, Foster City, CA, USA). The number of PCR cycles was adjusted to

19 instead of the recommended 20, as signs of overamplification were noted in the quality con-

trol of the first batch of processed samples. The last step of the protocol, i.e. bead-based purifi-

cation of the libraries, was routinely done twice, as a single purification was insufficient to

diminish the 125 bp peak generated by an adapter-primer complex, which is a common

byproduct according to the manufacturer. The finished libraries were once again quality con-

trolled using a high-sensitivity DNA kit and Bioanalyzer (Agilent Technologies), and quanti-

fied using a Qubit fluorometer (Thermo Fisher Scientific). Libraries were pooled to contain 30

samples for medium output sequencing reagents, or 90 samples for high output sequencing

Table 1. Genes included in the customized HaloPlex gene panel and their associated diseases.

Disease category Genes

Channelopathies AKAP9 (1), ANK2 (1, 2, 3), CACNA1C (2), CACNA2D1 (2, 4), CACNB2 (2), CASQ2 (3),

GPD1L (2, 5, 6), HCN4 (2, 7), KCNE1 (1, 8), KCNE2 (1, 10), KCNE3 (2), KCNH2 (1, 4), KCNJ2
(1, 8, 4), KCNJ5 (1), KCNJ8 (2, 6), KCNQ1 (1, 4, 8), RYR2 (3, 1, 9), SCN1B (2, 8), SCN3B (2, 8),

SCN4B (2, 8), SCN5A (1, 2, 6, 7, 8, 10, 11, 12), SNTA1(1, 6, 13), TRPM4 (2, 10)

Cardiomyopathies ABCC9 (12), ACTC1 (12, 13, 14, 15), ACTN2 (12, 14), ANKRD1 (12), BAG3 (12), BRAF (14,

15), CALR3 (14), CAV3 (1, 6, 14), CSRP3 (12, 13, 14), DES (12), DMD (12), DNAJC19 (12),

DSC2 (9), DSG2 (9, 12), DSP (9, 12), DTNA (13, 15), FHL2 (12), GLA (14), JPH2 (14), JUP (9),

LAMP2 (14), LDB3 (9, 12, 13), LMNA (9, 12), MIB1 (12), MYBPC3 (12, 13, 14), MYH7 (12, 13,

14), MYL2 (14), MYL3 (14), MYLK2 (14), MYOZ2 (12, 14), NEBL (12), NEXN (12, 14), PLN (9,

12, 14), PRKAG2 (14), PKP2 (9, 2), RBM20 (12), TAZ (12, 13), TCAP (12, 14), TGFB3 (9),

TMEM43 (9), TMPO (12), TNNC1 (12, 14), TNNI3 (12, 14), TNNT2 (12, 13, 14), TPM1 (12, 13,

14), TTN (12, 14), VCL (12, 14)

(1) Long QT syndrome (LQTS), (2) Brugada syndrome (BrS), (3) Catecholaminergic polymorphic ventricular

tachycardia (CPVT), (4) Short QT syndrome (SQTS), (5) Right bundle branch block (RBBB), (6) Sudden infant death

syndrome (SIDS), (7) Sick sinus syndrome (SSS), (8) Familial atrial fibrillation (FAF), (9) Arrhythmogenic right

ventricular cardiomyopathy (ARVC), (10) Cardiac conduction disease (CCD), (11) Paroxysmal familial ventricular

fibrillation (PFVF), (12) Dilated cardiomyopathy (DCM), (13) Left ventricular non-compaction (LVNC), (14)

Hypertrophic cardiomyopathy (HCM), (15) Congenital heart defects (CHD)

https://doi.org/10.1371/journal.pone.0210017.t001
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reagents. The final concentration of the pools was 4 nM, and 1 pM was used as input for

sequencing. Sequencing was performed using NextSeq reagent kit version 2, 300 cycles, on the

NextSeq instrument (Illumina Inc., San Diego, CA, USA). The obtained cluster densities were

between 180 000–230 000 clusters/mm2.

HaloPlex data analysis and bioinformatics

A previously described custom script pipeline [18], originally developed to achieve a faster

analysis procedure, and which has been shown to yield results of higher quality than other

pipelines commonly used for analysis of MiSeq HaloPlex MPS data, was modified to eliminate

the detrimental effects of the higher frequency of erroneous low quality base calls obtained

with the Illumina NextSeq instrument used in the present series. Instead of removing reads

with low quality bases�Q13, the low quality base calls were N-substituted and paired-end

analysis was performed (without pooling of identical read pairs) using bwa-mem 0.7.12 [19].

The sequence reads were mapped against the human genome version GRCh37/hg19. The

resulting SAM-files were used for further analysis as described earlier. Integrative Genomics

Viewer (IGV, Broad Institute, Cambridge, MA, USA) was used for visualization of BAM-files,

and Alamut Visual (Interactive Biosoftware, Rouen, France) was used for annotation and eval-

uation of identified SNVs. Combined Annotation Dependent Depletion (CADD) scores were

used to assess the deleteriousness of the variants [20]. In contrast to other tools used to predict

functional effects of genetic variants, CADD has the advantage that it combines several differ-

ent annotations to create a single score. The scaled CADD score, used in the present study,

relates the variant of interest to all possible theoretical variants in the genome, and returns a

logarithmic representation of the score. A score of 20 indicates that the variant is among the

1% most deleterious variants in the genome, 30 indicates that it is among the 0.1% most delete-

rious variants, and so on. Variants occurring at a frequency of>1% in population databases

were excluded from further analysis, as were synonymous variants and intronic variants that

were not predicted to affect splicing, according to the Human Splicing Finder integrated in

Alamut Visual. The remaining variants were individually evaluated based on available litera-

ture, type of variant (missense, loss-of-function variant), entries in the Human Gene Mutation

Database (www.hgmd.org), ClinVar (www.ncbi.nlm.nih.gov/clinvar/) and dbSNP (www.ncbi.

nlm.nih.gov/SNP/), as well as in regard to evolutionary conservation and CADD score. Loss-

of-function (LoF) variants were considered putative pathogenic, as were missense variants

where previously published data suggested an association between the variant and the disease

of interest. Variants interpreted as putative pathogenic were classified according to guidelines

from the American College of Medical Genetics and Genomics (ACMG) [21]. Missense vari-

ants for which no data supporting pathogenicity had been published, and which additionally

were located at poorly conserved positions and had a low CADD score, were considered likely

benign and excluded. Missense variants which did not fall into either of these categories were

considered to be of unknown clinical significance.

Statistical analysis

The number of identified putative pathogenic variants in the study cohort was compared to

the corresponding number for the same variants reported in the Non-Finnish European

(NFE) population of the Exome Aggregation Consortium (ExAC NFE) [22] and SweGen [23],

using Fisher’s exact test. Since only frequency data were available from ExAC and SweGen,

this test was performed under the assumption that no individual in the different data sets was

carrier of more than one putative pathogenic variant. Minor allele frequencies (MAFs) for var-

iants identified in the study cohort were calculated and compared with the corresponding
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MAFs in ExAC NFE and SweGen. As the KCNQ1 gene was the gene in which most putative

pathogenic SNVs were identified (n = 5), it was selected for a gene-wide comparison of the

number of putative pathogenic variants between the stillbirth cohort and ExAC NFE. All mis-

sense and LoF variants in KCNQ1 registered in ExAC NFE were systematically searched for in

ClinVar, to get an approximation of how common putative pathogenic SNVs are in the Euro-

pean population for this gene. The number of variants registered as “Pathogenic” or “Likely

pathogenic” was compared to the number of putative pathogenic SNVs identified in the still-

birth cohort, using Fisher’s exact test.

In order to explore whether a difference in the proportion of pathogenic SNVs in the still-

birth cohort vs. ExAC NFE was present across all genes included in the HaloPlex gene panel, a

Monte Carlo permutation test with 10 000 iterations was performed. Each iteration included

50 variants randomly selected from each cohort. Missense and LoF variants occurring at a fre-

quency of<1% in ExAC NFE for the 70 genes were included, and variants reported as patho-

genic or likely pathogenic was extracted from ClinVar, in order to make it comparable with

the variants identified in the stillbirth cohort. For each iteration, the number of pathogenic

variants was counted, whereupon the average proportion of putative pathogenic SNVs across

all iterations was calculated for both cohorts. The chi2 test was used to assess differences in dis-

tribution of gestational age intervals of stillbirth cases harboring a putative pathogenic SNV

compared with the complete cohort, whereas Fisher’s exact test was used to assess differences

in sex distribution. The significance level of the analyses was set to p = 0.05.

Results

The mean sequencing coverage for the complete HaloPlex gene panel was 99.5%. The mean

coverage for each gene is displayed in S1 Table. Of the 290 investigated stillbirth cases, 35

(12.1%) had one (n = 31) or two (n = 4) variants with evidence supporting pathogenicity, i.e.
LoF variants (nonsense, frameshift, splice site substitutions), evidence from functional studies,

or previous identification of the variants in affected individuals (Table 2). The proportion of

individuals harboring the same variants in ExAC NFE and SweGen was significantly lower,

4.8% (p<0.001) and 5.1% (p<0.001), respectively (Table 3). Twenty cases had a variant in a

channelopathy gene (i.e. CACNB2, GPD1L, KCNH2, KCNJ8, KCNQ1, RYR2, SCN5A and

TRPM4), whereas 15 cases had one (n = 11) or two (n = 1) variants in cardiomyopathy genes

(i.e. ABCC9, BAG3, DES, DSG2, DSP, MYBPC3, NEBL, NEXN, TNNI3 and TTN). Three cases

(34, 286 and 290) had one variant in a cardiomyopathy gene and one in a channelopathy gene

(CSRP3 and TRPM4, PKP2 and ANK2, MYH7 and KCNH2, respectively). The proportion of

individuals harboring putative pathogenic variants in the different categories are displayed in

Table 3. As KCNQ1 was the gene in which most putative pathogenic SNVs were identified in

the stillbirth cohort (n = 5), all missense and LoF variants recorded in ExAC NFE were system-

atically searched for in ClinVar, to get an approximation of how common pathogenic SNVs

are in the European population for this gene. The results showed a significantly higher total

number of observations of putative pathogenic alleles in KCNQ1 in relation to wild type alleles

in the study cohort compared with ExAC NFE (5/580 (0.86%) vs. 219/66 740 (0.33%),

p = 0.046). A Monte Carlo permutation test with 10 000 iterations was performed to compare

the proportion of pathogenic SNVs in the stillbirth cohort to ExAC NFE across all 70 genes

included in the gene panel. Groups of 50 variants from each cohort were drawn in each itera-

tion. The average proportions of putative pathogenic SNVs did not differ between the stillbirth

cohort and ExAC NFE, which were calculated as 3.1% and 3.2%, respectively.

We found no support for a difference between stillbirth cases with putative pathogenic

SNVs compared with the complete cohort in regard to gestational age (p = 0.429) and sex

Putative pathogenic variants in stillbirth
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distribution (p = 0.284) (Fig 1). In addition to the variants with evidence supporting pathoge-

nicity, 144 missense variants of unknown significance were identified in 110 stillbirth cases

(S2 Table).

Discussion

We have analyzed DNA from 290 stillbirth cases for prevalence of pathogenic SNVs in 70

genes associated with heart disease. To our knowledge, this is the first MPS-based study

including a large stillbirth cohort, and according to our results, SNVs with evidence supporting

pathogenicity was identified in as many as 12.1% of the cases. The proportion was significantly

higher than the corresponding proportion for the same variants in ExAC NFE, (5.3%,

p<0.001) as well as in SweGen (5.1%, p<0.001). When divided into the different disease cate-

gories, i.e. channelopathies and cardiomyopathies, the significant difference was seen only for

channelopathies (Table 3).

Previous studies have mainly focused on stillbirth in association with LQTS. Crotti et al
studied 91 stillbirth cases for SNVs in the most common LQTS susceptibility genes, i.e.
KCNQ1, KCNH2 and SCN5A, and identified three putative pathogenic variants (3.3%) [8].

The proportion of putative pathogenic SNVs for the same genes in our study was 3.1% (n = 9),

i.e. very similar to what was reported by Crotti. One variant, KCNQ1, p.(Arg397Trp), was

Table 3. Proportions of individuals with pathogenic SNVs in the study cohort, compared with the corresponding

proportions of the same variants in ExAC NFE and SweGen.

Category Putative

pathogenic

SNVs, study

cohort

Putative

pathogenic

SNVs, ExAC

NFE�

P-Value, study

cohort vs. ExAC

NFE (Fisher’s

exact test)

Putative

pathogenic

SNVs, SweGen�

P-Value, study

cohort vs.

SweGen (Fisher’s

exact test)

All genes 35/290 (12.07%) 1,776/33 370

(5.32%)

<0.001 51/1 000

(5.10%)

<0.001

Channelopathy

genes

23/290 (7.93%) 977/33 370

(2.70%)

<0.001 23/1 000

(2.30%)

<0.001

Cardiomyopathy

genes

15/290 (5.17%) 972/33 370

(2.72%)

0.015 28/1 000

(2.80%)

0.061

� = Only SNVs identified in the study cohort are included

https://doi.org/10.1371/journal.pone.0210017.t003

Fig 1. Gestational age (A) and sex (B) distribution of the stillbirth cases.

https://doi.org/10.1371/journal.pone.0210017.g001
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identified in both studies. Crotti et al showed that this variant caused a significant reduction in

current densities across the potassium channel encoded by KCNQ1, compared with the wild

type channel [8]. Furthermore, the total number of pathogenic alleles in KCNQ1 observed in

our cohort was significantly higher compared with ExAC NFE (p = 0.046), which supports

that SNVs in this gene might play a role in stillbirth. In addition to the most common LQTS

genes, one case in our cohort harbored a putative pathogenic SNVs in ANK2. Taken together,

LQTS associated SNVs were identified in 10 cases (3.4%) of the stillbirth cases included in the

present study.

Three cases (1%) harbored putative pathogenic SNVs in RYR2, associated with CPVT.

CPVT is one of the most severe cardiac channelopathies, and is characterized by ventricular

arrhythmias causing syncope, cardiac arrest and sudden cardiac death, predominantly in

young patients including infants [11]. Thereby, these SNVs are good candidates for being asso-

ciated with stillbirth. BrS associated SNVs were identified in 5.2% (n = 15) of the cases in the

cohort. As BrS has mainly been described in association with sudden death in adults, its role in

stillbirth is difficult to interpret. However, one of the BrS associated SNVs are worth highlight-

ing, namely GPD1L, p.(Ile124Val). This variant was identified in four cases, and has been asso-

ciated with sudden infant death syndrome (SIDS) in a previous study [24]. According to ExAC

NFE, it has a minor allele frequency (MAF) of 0.24% in the European population, whereas the

MAF in our cohort is 0.69%, i.e. almost three times as high (p = 0.054). Although not statisti-

cally significant, this might indicate that this variant is a risk factor for stillbirth as well as

SIDS.

In our cohort, SNVs with evidence supporting pathogenicity in genes associated with car-

diomyopathies (HCM, DCM and ARVC) were identified in 12 cases. As cardiomyopathies are

progressive disorders which are generally not detected during the early years of life, they have

not been studied in association with stillbirth previously. However, increasing evidence sug-

gests that they might play a role in SIDS [13,25]. Brion et al studied 286 SIDS cases for variants

in genes associated with HCM and found variants with possibly damaging effects in 4% of the

cases [13]. One of their identified SNVs, MYBPC3, p.(Ala833Thr), was detected in two of our

cases. Brion et al hypothesized that their identified variants might cause sudden cardiac death

even in the absence of a cardiac phenotype, but they do also emphasize the possibility that the

variants could be non-disease causing rare variants [13]. Furthermore, the proportion of puta-

tive pathogenic variants associated with cardiomyopathies identified in this study was not sig-

nificantly higher than the corresponding proportion in ExAC NFE and SweGen. The Monte

Carlo permutation test revealed no significant difference in proportions of putative pathogenic

variants between the study cohort and ExAC NFE, which probably reflects that the majority of

the 70 genes included in the panel are indeed not associated with stillbirth.

Although the putative pathogenic SNVs identified in this study had a significantly higher

prevalence in in the stillbirth cohort compared with ExAC NFE data, the results should be

interpreted with caution. As the cohort included in this study is substantially smaller than the

one included in ExAC NFE, there is a high probability that MAFs of rare alleles are overesti-

mated, and do not reflect the true MAFs in all cases. Nonetheless, to our knowledge, this is the

largest cohort of stillbirth cases investigated for pathogenic SNVs in a large set of genes associ-

ated with heart disease that has been analyzed to date. Thereby it provides some insight to the

frequency of putative pathogenic SNVs in stillbirth cases. However, there are additional limita-

tions to the study which need to be addressed. No parental DNA samples were available, and

hence it is unknown whether the identified variants are inherited or of de novo origin. This

information would otherwise have provided additional support for or against a clinical signifi-

cance of the variants. Additionally, no clinical information regarding the parents was available,

and therefore it is unknown whether there is a history of heart disease or recurrent stillbirth in
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any of the families. Furthermore, we did not perform any functional studies on the identified

variants. Because of the inherent limitations of the study, most of the putative pathogenic vari-

ants identified in this study only qualify as variants of unknown significance (VUS) when clas-

sified in accordance to the current state-of-the-art guidelines used in a clinical setting,

formulated by ACMG [21]. Hence, the SNVs displayed in Table 2 should not be interpreted as

verified pathogenic variants that, without further investigation, could be used for carrier test-

ing and/or prenatal testing in a clinical laboratory. Although we have based our classifications

on damage prediction of the variants and previously published data, studies suggest that patho-

genicity of several reported LQTS and cardiomyopathy associated variants is overestimated

[26–28]. Indeed, recent data reveals that the importance of several cardiomyopathy- and BrS

related genes—some of which are included in our gene panel—is probably not as high as previ-

ously thought [29,30]. Conversely, some of the 144 missense variants of unknown significance

displayed in S2 Table might be associated with heart disease, but have not yet been reported as

such. Additional research is required to further clarify the clinical impact of the SNVs identi-

fied in this study.

Better knowledge of the etiology of stillbirth is needed in order to achieve a reduction in the

stillbirth rate. Our results give further support to the hypothesis that cardiac channelopathies

might contribute to stillbirth. Screening for pathogenic SNVs in genes associated with heart

disease might be valuable in cases of stillbirth where today’s conventional investigation does

not reveal the underlying cause of fetal demise.
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