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Abstract. Lung adenocarcinoma (LUAD) is the most common 
type of non-small cell lung cancer and has a poor 5 year 
survival rate (<10%). Cisplatin is one of the most effective 
chemotherapeutic treatments for LUAD, even though it is 
of limited overall utility due to acquired drug resistance. To 
identify possible genetic targets for the mitigation of cisplatin 
resistance, gene expression data from cisplatin-resistant cell 
lines were integrated with patient information. Expression 
data for cisplatin-resistant and cisplatin-sensitive A549 cell 
lines were obtained from the Gene Expression Omnibus data-
base, while LUAD patient data was obtained from The Cancer 
Genome Atlas (TCGA) database. Differentially expressed 
mRNAs (DEmRNAs), microRNAs (DEmiRNAs) and long 
non-coding RNAs (DElncRNAs) were identified between 
the cisplatin-sensitive and cisplatin-resistant cells. Using the 
TCGA patient data, 33 DEmRNAs associated with survival 
were identified. A total of 74 DElncRNAs co‑expressed with 
the survival-associated DEmRNAs, and 11 DEmiRNAs that 
regulated the survival-associated DEmRNAs, were also 
identified. A competing endogenous RNA (ceRNA) network 
was constructed based on the aforementioned results, which 
included 17 survival‑associated DEmRNAs, 9 DEmiRNAs 
and 16 DElncRNAs. This network revealed 8 ceRNA pathway 
axes possibly associated with cisplatin resistance in A549 
cells. Specifically, the network suggested that the lncRNAs 
HOXD-AS2, LINC01123 and FIRRE may act as ceRNAs to 
increase cisplatin resistance in human LUAD cells. Therefore, 
it was speculated that these lncRNAs represent potentially 
rewarding research targets.

Introduction

Lung cancer is a common malignancy and is the leading cause 
of cancer-associated mortality worldwide (1,2). Non-small cell 
lung cancer (NSCLC) accounts for ~85% of all lung cancers (3). 
Lung adenocarcinoma (LUAD) is the most common patho-
logic subtype of NSCLC in non‑smoking males, and in all 
females (both smokers and non‑smokers) (4,5). Although 
numerous resources have been directed towards the develop-
ment of novel LUAD treatments, the prognosis of patients with 
advanced LUAD remains unsatisfactory, with a 5 year survival 
rate <10% in 2018 (6). LUAD is relatively sensitive to primary 
chemotherapy, but tumors rapidly acquire chemoresistance, 
leading to death for most patients (7,8).

Cisplatin is one of the most effective chemotherapeutic 
drugs and is used to treat various tumors, including testicular 
cancer, ovarian cancer, cervix carcinoma, breast cancer, pros-
tate carcinoma, bladder cancer, lung cancer, melanoma and 
head‑and‑neck cancer (9,10). Cisplatin has a broad‑spectrum 
anticancer activity, but its use is limited due to it causing 
severe side effects and due to a number of tumors acquiring 
cisplatin resistance (9). Although the side effects caused by 
cisplatin have been mildly alleviated by newly-developed 
antagonists (11), cisplatin resistance, which commonly origi-
nates from multiple cellular self-defense adaptations, often 
results in disease recurrence (12). Thus, the development of 
cisplatin resistance remains a substantial challenge for chemo-
therapeutics.

A major impediment to a comprehensive understanding 
of the molecular mechanisms underlying cisplatin-induced 
drug resistance is that most currently available results were 
generated using isolated cell lines. These studies can be 
misleading when extended to in vivo experiments and clinical 
trials (12,13). However, the integration of cell line data with 
clinical information, especially overall survival (OS) time, 
may improve this issue. For example, Zhao et al (14) used The 
Cancer Genome Atlas (TCGA) database to demonstrate that 
patients expressing high levels of the long non-coding RNA 
(lncRNA) HOMEOBOX A11 antisense RNA (HOXA11-AS) 
have shorter survival rates compared to the low expression level 
group; mechanistic experiments subsequently showed that the 
microRNA (miRNA/miR) targeted by HOXA11-AS affects 
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cisplatin resistance in LUAD cells. The aforementioned study 
thus provides a framework for the identification of additional 
miRNAs associated with cisplatin resistance in LUAD cells.

In the present study, the framework of Zhao et al (14) 
was used to identify miRNA targets that may be useful for 
the mitigation of cisplatin resistance. The present study 
aimed to: i) Identify differentially expressed (DE) mRNAs 
(DEmRNAs), DEmiRNAs and DElncRNAs between two 
LUAD cell lines, namely A549 (cisplatin-sensitive) and 
A549-DDP (cisplatin-resistant), using data from the Gene 
Expression Omnibus (GEO) database (15); ii) quantify the 
expression levels of these DEmRNAs in samples of patients 
with LUAD using data downloaded from the TCGA database; 
iii) construct a competing endogenous RNA (ceRNA) network 
based on the aforementioned data; and iv) assess the associa-
tions between the elements of the ceRNA network and patient 
OS time to identify potential research targets.

Materials and methods

A549/A549‑DDP data retrieval. Two miRNA and mRNA 
expression datasets were downloaded from the GEO data-
base (16): GSE43249 (17), which was derived from the 
GPL14613 (miRNA-2) Affymetrix Multispecies miRNA-2 
Array, and GSE43493 (18), which was derived from the 
GPL15314 Arraystar Human LncRNA microarray V2.0 
(Agilent_033010 Probe Name version). Each dataset contained 
six samples, three that were cisplatin-sensitive and three that 
were cisplatin-resistant.

A549/A549‑DDP data pre‑processing. The raw microarray 
data were read using the package affy v1.52.0 (19) in R v3.4.3 
(http://www.bioconductor.org/packages/release/bioc/html/affy. 
html), and was standardized using the robust multi-array 
average (20,21) method, with background adjustment, quantile 
normalization and summarization on a log2 scale. Using the plat-
form annotation file, the probe was annotated and the unmatched 
probe was removed. To map different probes to the same mRNA 
or miRNA data, the mean value of each different probe was used 
as the final expression, and the genes were divided into mRNAs 
and lncRNAs following the guidelines of the HUGO Gene 
Nomenclature Committee (22).

Identification of DEmRNAs, DEmiRNAs and DElncRNAs. 
The DEmRNAs, DElncRNAs and DEmiRNAs were identified 
in the GEO datasets using the R package limma v3.34.9 (23). 
The classical Bayesian test was used to calculate P-values. 
mRNAs, lncRNAs and miRNAs were considered significantly 
differentially expressed if |log2 (fold change)|≥1 and P<0.05. 
To visualize the DEmRNAs, DElncRNAs and DEmiRNAs, 
heat maps and volcano maps were generated using the R pack-
ages ggplot2 (24) and heatmap2 (25), respectively.

TCGA patient data retrieval. RNA sequence data and clinical 
information (specifically, cisplatin treatment status and OS 
time) for 576 patients with LUAD were retrieved from the 
TCGA database (https://www.cancer.gov/tcga; accessed 
on August 29, 2017). The use of TCGA data in the present 
study is in accordance with TCGA publication guidelines 
(https://cancergenome.nih.gov/publications/publicationguide-

lines). Since the patient data used originated from the TCGA 
database, no further ethical approval was required.

Identification of DEmRNAs associated with patient survival. 
The expression levels of each of the identified DEmRNAs were 
quantified in each patient with LUAD. For each DEmRNA, 
patients were divided into a low- and a high-expression group 
based on mean gene expression. Kaplan-Meier survival curves 
were generated, and the DEmRNAs that were significantly 
associated with OS were identified using a log‑rank test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Functions and interactions of the survival‑associated 
DEmRNAs. The Database for Annotation, Visualization 
and Integrated Discovery v.6.8 (26) was used to identify the 
Gene Ontology (GO) (27) terms and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (28) pathways significantly 
enriched in the survival-associated DEmRNAs (i.e. those with 
P<0.05). The STRING database v10.5 (29) was used to predict 
protein-protein interactions (PPIs) of the survival-associated 
DEmRNAs. PPI scores ≤0.15 were considered of low confi-
dence. Cytoscape v3.6.1 (30) was used to visualize the PPI 
network and to calculate node degrees.

Co‑expression of DElncRNAs and survival‑associated 
DEmRNAs. The Pearson correlation coefficient between each 
DElncRNA and each survival-associated DEmRNA was calcu-
lated. P-values were adjusted using the false discovery rate (FDR) 
to control for the effects of multiple comparisons. DElncRNAs 
and survival-associated DEmRNAs were considered to be 
co-expressed when |r|>0.95 and P<0.05 (FDR-adjusted). The 
functions of the co-expressed DElncRNAs were predicted 
based on the lncRNA‑mRNA regulatory network; the R 
package clusterProfiler (31) was used to identify the pathways 
significantly enriched in the target genes of the co‑expressed 
DElncRNAs. Pathways with Benjamini-Hochberg-adjusted 
P‑values <0.05 were considered significantly enriched.

DEmiRNA regulatory networks and KEGG pathway enrichment. 
The target gene prediction module of miRWalk v2.0 (http://zmf.
umm.uni-heidelberg.de/apps/zmf/mirwalk2/miRretsys-self.
html) (32) was used to identify possible target genes of the 
DEmiRNAs in eight databases miRWalk (http://mirwalk.
umm.uni-heidelberg.de), Microt4 (http://mirtarbase.mbc.
nctu.edu.tw/php/index.php), MiRanda (http://www.microrna.
org/microrna/home.do), miRDB (http://www.mirdb.
org/miRDB/policy.html), miRMap (https://mirmap.ezlab.
org), PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_
dyn_data.html), RNA22 (https://cm.jefferson.edu/rna22) and 
Targetscan (http://www.targetscan.org/vert_71/). To increase 
the reliability of the search results, only genes identified in ≥5 
databases were used to construct the miRNA control network, 
which was visualized with Cytoscape v3.6.1 (30). The KEGG 
pathway enrichment of the predicted DEmiRNA target genes 
was investigated using clusterProfiler (31).

Construction of a ceRNA regulatory network. lncRNAs 
associated with the DEmiRNAs were identified using the 
prediction module of DIANA-LncBase v2 (33); only lncRNAs 
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with scores >0.75 were included. Subsequently, a ceRNA 
network based on several data sources was constructed: The 
lncRNA‑miRNA regulatory network; the miRNA‑target 
mRNA regulatory network; and the DElncRNAs that were 
positively co-expressed with survival-associated DEmRNAs.

Association between OS time and the expression levels of 
selected lncRNA targets. Preliminary results demonstrated that 
the lncRNAs HOXD-AS2, LNC01123 and FIRRE appeared 
in one or more ceRNA axes. Therefore, the expression levels 
of these lncRNAs were quantified, as well as those of the 

co-expressed lncRNAs and survival-associated DEmRNAs, 
in non‑LUAD tumors using the Gene Expression Profiling 
Interactive Analysis (GEPIA) server (34); GEPIA analyses 
RNA expression in 9,736 tumors and 8,587 normal samples 
from the TCGA and the Genotype-Tissue Expression projects.

Statistical analysis. The classical Bayesian test was used to 
test differentially expressed mRNAs, lncRNAs and miRNAs. 
DEmRNAs that were significantly associated with OS time 
were identified using the log‑rank test. Fisher's exact test was 
applied for the GO enrichment of DEmRNAs associated with 

Figure 1. Heat maps and volcano plots showing differentially expressed long non-coding RNAs, microRNAs and mRNAs. (A and B) DELncRNAs. 
(C and D) DEmiRNAs. (E and F) DEmRNAs. Blue columns, cisplatin-sensitive group; red columns, cisplatin-resistant group; orange dots, upregulated genes; 
green dots, downregulated genes; blue dots, unchanged genes.
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OS time. All comparisons were between cisplatin-resistant 
A549-DDP cells and cisplatin-sensitive A549 cells. P<0.05 
was considered to indicate a statistically significant differ-
ence, unless otherwise specified. The statistical analysis was 
performed with R v.3.4.3 (35).

Results

DEmRNAs, DEmiRNAs and DEIncRNAs in the A549 and 
A549‑DDP cell lines. A total of 842 mRNAs were identified to 

be differentially expressed between the A549 and A549-DDP 
cell lines. Among these DEmRNA, 245 (29.10%) were upregu-
lated in the A549-DDP cell line compared with the A549 cell 
line, while 597 (70.90%) were downregulated (Fig. 1). In 
addition, 90 DElncRNAs and 18 DEmiRNAs were identified. 
Among these DEmiRNAs and DElncRNAs, 37 DElncRNAs 
(41.11%) and 8 DEmiRNAs (44.44%) were upregulated in the 
A549-DDP cell line compared with the A549 cell line, while 
53 lncRNAs (58.89%) and 10 miRNAs (55.56%) were down-
regulated (Fig. 1; Table SI).

Table I. Survival-associated mRNAs differentially expressed between cisplatin-resistant and cisplatin-sensitive cell lines.

Symbol Log2 FC Low median High median Description

MT1A -2.63  2.55 Metallothionein 1A
VGF -2.50 4.15 2.55 VGF nerve growth factor inducible
SARM1 ‑2.22 2.86 4.15 Sterile alpha and TIR motif containing 1
DPP4 ‑2.21 2.86 4.15 Dipeptidyl‑peptidase 4
SIRT4 ‑1.85 2.87  Sirtuin 4
SH2B2 ‑1.65  2.86 SH2B adaptor protein 2
PER1 ‑1.65  2.86 PER1
FKBP1B -1.60 4.15 2.60 FK506 binding protein 1B
FAM117A ‑1.55 2.86  Family with sequence similarity 117 member A
DIRAS3 -1.50  2.60 DIRAS family GTPase 3
STAC3 ‑1.47  2.60 SH3 and cysteine rich domain 3
MAGEH1 -1.42 2.60  MAGE family member H1
RAB9B ‑1.40 2.87  RAB9B, member RAS oncogene family
SLC17A9 ‑1.28 2.86  Solute carrier family 17 member 9
ADRA1D -1.21 4.15 2.55 Adrenoceptor alpha 1D
ELOVL2 ‑1.19  2.87 ELOVL fatty acid elongase 2
DBP ‑1.19 2.87  D‑box binding PAR bZIP transcription factor
NR1D1 ‑1.10 2.87  Nuclear receptor subfamily 1 group D member 1
HSPA2 ‑1.07 4.15 2.55 Heat shock protein family A (Hsp70) member 2
GJA1 -1.04 4.15 2.21 Gap junction protein alpha 1
CEACAM6 -1.03 4.15 2.55 Carcinoembryonic antigen related cell adhesion molecule 6
ID4 -1.01 4.15 2.60 Inhibitor of DNA binding 4, HLH protein
NDST3 1.01 2.53 2.53 N-deacetylase and N-sulfotransferase 3
ZNF417 1.06 2.60  Zinc finger protein 417
PHOSPHO2 1.09  2.86 Phosphatase, orphan 2
ARC 1.11  2.55 Activity regulated cytoskeleton associated protein
TXN 1.13 4.15 2.60 Thioredoxin
ARF4 1.15 2.86  ADP ribosylation factor 4
RHBG 1.27 4.15 2.86 Rh family B glycoprotein (gene/pseudogene)
EDEM1 1.28 2.86  ER degradation enhancing alpha‑mannosidase like protein 1
KIF26A 1.48  2.55 Kinesin family member 26A
NCAM1 2.20 2.86  Neural cell adhesion molecule 1
MED12 2.46 2.53 4.15 Mediator complex subunit 12

Genes highlighted in bold are the five highly‑expressed DEmRNAs associated with low OS time. The column ‘Symbol’ contains the gene 
name/ID; the column ‘LOG FC’ contains the log2 FC of up/downregulated genes; the column ‘Low median’ contains the median OS time of 
the low expression group; the column ‘High median’ contains the median OS time of the high expression group; and the column ‘Description’ 
contains the full gene name. OS time, overall survival; FC, fold change. If genes are without low median the overall survival time of their low 
expression group is out of the end of follow‑up time point (e.g. five years). If genes are without high median the overall survival time of their 
high expression group is out of the end of follow-up time point.
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Survival‑associated DEmRNAs. In the TCGA patient dataset, 
86 patients treated with cisplatin were identified. These patients 
expressed 786 of the identified DEmRNAs. Among these, 
33 DEmRNAs were significantly associated with OS time 
(Table I). Five upregulated DEmRNAs were associated with 
low OS time: Rh family B glycoprotein (RHBG), phospha-
tase orphan 2 (PHOSPHO2), activity regulated cytoskeleton 
associated protein (ARC), thioredoxin (TXN) and kinesin 
family member 26A (KIF26A; Fig. 2A-E; Table SII). Four 
other upregulated DEmRNAs were associated with high OS 

time: Zinc finger protein 417, neural cell adhesion molecule 1 
(NCAM1), mediator complex subunit 12 (MED12) and ADP 
ribosylation factor 4 (ARF4; Fig. 2F-G; Table SII). These nine 
DEmRNAs comparing with the other 24 DEmRNAs, were 
more related to the prognosis of patients.

Functional enrichment and PPIs of the survival‑associated 
DEmRNAs. The GO terms most over-represented in the 
DEmRNAs annotations were ‘extracellular region’, ‘blood 
microparticle’, ‘extracellular space’ and ‘linoleic acid meta-

Figure 2. Kaplan-Meier survival curves for the six most upregulated mRNAs in the cisplatin-resistant A549-DDP cell line compared with the cisplatin-sensitive 
A549 cell line. (A) RHBG. (B) PHOSPHO2. (C) ARC. (D) TXN. (E) KIF26A. (F) ZNF417. (G) NCAM1. (H) MED12. (I) ARF4. Red lines represent the overall 
survival of the patients expressing low levels of each mRNA; blue lines represent the overall survival of the patients expressing high levels of each mRNA. The 
cut-off point for high/low levels was the mean of gene expression. The shaded areas are the 95% CI of the corresponding groups. RHBG, Rh family B glycopro-
tein; PHOSPHO2, phosphatase, orphan 2; ARC, activity regulated cytoskeleton‑associated protein; TXN, thioredoxin; KIF26A, kinesin family member 26A; 
ZNF417, zinc finger protein 417; NCAM1, neural cell adhesion molecule 1; MED12, mediator complex subunit 12; ARF4, ADP ribosylation factor 4.
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bolic process’ (Fig. 3A; Table SIII). No KEGG pathways 
enriched in the DEmRNAs were identified (data not shown). 
The PPI network of the survival‑associated DEmRNAs 
(Fig. 3B) contained 19 nodes and 26 interaction pairs, including 
6 upregulated and 13 downregulated DEmRNAs.

Co‑expression of DElncRNAs and survival‑associated 
DEmRNAs. A total of 168 positively co‑expressed pairs 
of DElncRNAs and survival-associated DEmRNAs were 

identified (74 DElncRNAs and 32 DEmRNAs). According 
to the DElncRNA‑DEmRNA network, the target genes of 
the co-expressed DElncRNAs were over-represented in three 
KEGG pathways: ‘Protein processing in endoplasmic reticulum’, 
‘mineral absorption’ and ‘circadian rhythm’ (Fig. 4; Table SIV).

DEmiRNA target gene prediction and functional enrich‑
ment analysis. Using miRWalk v2.0 (32), 11 DEmiRNAs 
targets, 17 survival‑associated DEmRNA targets and 52 

Figure 4. KEGG pathway enrichment of the co-expressed lncRNAs differentially expressed between the cisplatin-resistant and cisplatin-sensitive A549 cells 
lines. Dot colors represent the significance of the enrichment of each miRNA in each pathway; dot size represents the enriched to un‑enriched gene ratio. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; miRNA/miR, microRNA.

Figure 3. Survival-associated mRNAs differentially expressed between the cisplatin-resistant and cisplatin-sensitive A549 cell lines. (A) GO enrichment. 
Fisher's exact test was used and P≤0.01 was considered to indicate a statistically significant difference. (B) Protein‑protein interactions. Red nodes represent 
upregulated genes; green nodes represent downregulated genes. *P≤0.01 cisplatin‑resistant vs. cisplatin‑sensitive A549 cell lines. GO, Gene Ontology.
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DEmiRNA/survival-associated DEmRNA pairs were identi-
fied in the DEmiRNA regulatory network (Fig. 5; Table SV). 
Several KEGG pathways, including ‘cell adhesion molecules 
(CAMs)’ and ‘circadian rhythm’, were enriched in the target 
genes (Fig. 6; Table SVI).

ceRNA regulatory network. Using Cytoscape (30), the 
DElncRNA‑DEmiRNA regulatory network was combined 
with the DEmiRNA‑DEmRNA network to obtain a 
DElncRNA‑DEmiRNA‑DEmRNA ceRNA network 
(Fig. 7A; Table SVII). The ceRNA network included 
9 DEmiRNAs, 16 DElncRNAs, 17 target DEmRNAs 
and 87 pairs with a regulatory association. The present 
putative ceRNA network (Fig. 7B) included eight axes: 
HOXD-AS2/hsa-miR-152-3p/MED12, HOXD-AS2/
hsa-miR-152-3P/NCAM1, LINC01123/hsa-miR-152-3p/

MED12, LINC01123/hsa-miR-152-3P/NCAM1, LINC01123/
hsa-miR-152-3P/ARF4, LINC01123/hsa‑miR‑762/NCAM1, 
LINC01123/hsa‑miR‑762/RHBG and FIRRE/hsa-miR-1231/
ARF4. HOXD-AS2/has-miR-152-3p/ARF4 was not included 
in the axes list as HOXD-AS2/hsa-miR-152-3p/ARF4 didn't 
form a triangle and there was no line to connect HOXD-AS2 
and ARF4 (Fig. 7B). The putative ceRNA axes included 
three lncRNAs (HOXD-AS2, LINC01123 and FIRRE), three 
miRNAs (hsa‑miR‑152‑3p, hsa‑miR‑762 and hsa‑miR‑1231) 
and four genes (MED12, RHBG, NCAM1 and ARF4).

Association between OS time and the expression of selected 
lncRNA targets. The GEPIA analysis identified RHBG and 
NCAM1 as co-expressed genes of HOXD-AS2 and LNC01123, 
respectively. LNC1123 was positively co-expressed with 
RHBG in LUAD (R=0.18; Fig. 8A), lung squamous cell 

Figure 5. miRNA‑mRNA regulatory network. Circles represent genes and triangles represent miRNAs. Red shapes represent upregulated molecules and green 
shapes represent downregulated molecules. miRNA/miR, microRNA.

Figure 6. KEGG pathway enrichment of the miRNAs differentially expressed between the cisplatin-resistant and cisplatin-sensitive A549 cells lines. Dot 
colors represent the significance of the enrichment of each lncRNA in each pathway; dot size represents the enriched to un‑enriched gene ratio. KEGG, Kyoto 
Encyclopedia of Genes and Genomes; lncRNA, long non-coding RNA.
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carcinoma (LUSC; R=0.14; Fig. 8B) and testicular germ cell 
tumors (TGCT; R=0.63; Fig. 8C). LNC1123 was positively 
co‑expressed with NCAM1 in mesothelioma (MESO; R=0.27; 
Fig. 8D), pheochromocytoma and paraganglioma (PCPG; 
R=0.34; Fig. 8E), and TGCT (R=0.41; Fig. 8F). In addition, 
LNC1123 upregulation was associated with shorter patient OS 
time in head and neck squamous cell carcinoma (HNSCC; 
Fig. 9A), and in cervical squamous cell carcinoma and endo-
cervical adenocarcinoma (P=0.057; Fig. 9B).

HOXD-AS2 upregulation was associated with shorter 
patient OS time in colon adenocarcinoma (COAD; Fig. 9C), 
brain lower-grade glioma (LGG; Fig. 9D), LUSC (Fig. 9E) 
and uveal melanoma (Fig. 9F). HOXD-AS2 was positively 
co-expressed with NCAM1 in COAD (R=0.15; Fig. 10A), 
LUAD (R=0.17; Fig. 10B), LUSC (R=0.09; Fig. 10C), TGCT 
(R=0.6; Fig. 10D), uterine corpus endometrial carcinoma 
(R=0.25; Fig. 10E) and uterine carcinosarcoma (R=0.37; 
Fig. 10F). No positive associations were identified between 
HOXD-AS2 and RHBG (data not shown).

FIRRE was positively co-expressed with NCAM1 in 
glioblastoma multiforme (R=0.47; Fig. 11A), liver hepatocel-
lular carcinoma (LIHC; R=0.12; Fig. 11B), PCPG (R=0.29; 
Fig. 11C) and TGCT (R=0.49; Fig. 11D). FIRRE was posi-
tively co-expressed with RHBG in prostate adenocarcinoma 
(R=0.24; Fig. 11E) and TGCT (R=0.44; Fig. 11F). In addition, 
FIRRE upregulation was associated with shorter patient OS 
time in kidney renal clear cell carcinoma (Fig. 12A), kidney 
renal papillary cell carcinoma (Fig. 12B), LGG (Fig. 12C), 
LIHC (Fig. 12D), MESO (Fig. 12E) and pancreatic adenocar-
cinoma (Fig. 12F).

Discussion

The present analysis of gene expression patterns (based on the 
GEO datasets) identified 33 genes differentially expressed in 

Figure 7. Competing endogenous RNA (ceRNA) regulatory network. (A) Whole ceRNA network. (B) Subset of the ceRNA network showing the potential 
miRNA-lncRNA-mRNA axes. Circles represent genes, triangles represent miRNAs and diamonds represent lncRNAs. Red shapes represent upregulated 
molecules and green shapes represent downregulated molecules. Solid lines represent regulatory relationships, where the gene at one end is regulated by the 
gene/miRNA/lncRNA at the opposite end. Dashed lines connect co‑expressed molecules. Arrows indicate the miRNA‑mRNA regulatory network. T‑shapes 
show the lncRNA‑miRNA regulatory network. ceRNA, competing endogenous RNA; miRNA, microRNA; lncRNA, long non‑coding RNA.

Figure 8. Co‑expression associations in various types of cancer. Co‑expression 
of LNC01123 and RHBG in (A) lung adenocarcinoma, (B) lung squamous 
cell carcinoma and (C) TGCT. Co-expression of LNC01123 and NCAM1 
in (D) mesothelioma, (E) pheochromocytoma and paraganglioma and 
(F) TGCT. TPM, transcripts per million; RHBG, Rh family B glycoprotein; 
NCAM1, neural cell adhesion molecule 1; TGCT, testicular germ cell tumors.
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cisplatin-resistant A549-DDP cells compared with in cispl-
atin-sensitive A549 cells. Among these, nine were upregulated 
in the cisplatin-resistant cells and 24 were downregulated. 
By cross-referencing these results with patient data from the 
TCGA dataset, five of these upregulated genes (PHOSPHO2, 
ARC, TXN, RHBG and KIF26A) were identified to be associ-
ated with poor OS time outcomes. These five genes may be 
useful potential targets for the reversal of cisplatin resistance 
in LUAD.

RHBG was identified as being of particular interest, as 
this gene also appeared in one of the axes of the putative 
ceRNA network generated in the present study. RHBG is a 
non-erythroid membrane glycoprotein of the Rh antigen 
family, and the mechanisms regulating RHBG expression 
remain poorly studied. Consistent with the results of the present 
study, RHBG has been demonstrated to be expressed in LIHC 
and COAD cell lines (36). Additionally, RHBG has been 
implicated in the growth of brain tumors in mice (37). RHBG 

deserves further study both as a possible maker of poor LUAD 
outcomes and as a potential target for cisplatin-resistance 
reversal therapy.

Furthermore, NCAM1, MED12 and ARF4 appeared in one 
or more ceRNA network axes, but increased expression levels 
of these genes were associated with improved OS time. NCAM1 
encodes a cellular adhesion protein and is a well‑known poten-
tial target of antibody‑based cancer immunotherapies (38). In 
addition, NCAM1 has been identified as an immunohistochem-
ical marker for lung neuroendocrine tumors (39), and it was 
recently proposed that the NCAM1‑180 splice variant might be 
a useful marker for NSCLC (40). Furthermore, NCAM1 may 
be a useful biomarker and therapeutic target for acute myeloid 
leukemia (41), the follicular variant of papillary thyroid carci-
noma (42) and breast cancer (43). Although NCAM1 has been 
associated with cisplatin resistance in ovarian cancer (44,45), 
the in vitro expression of NCAM improved the response of 
multiple myeloma cells to Bortezomib (Btz) treatment (46). 
Consistent with this, the present study revealed that NCAM 
upregulation was associated with improved patient OS time 
outcomes.

MED12 is a component of the CDK8 subcomplex. MED12 
mutations are associated with tumorigenesis (47). Indeed, 

Figure 9. Patient OS time with respect to lncRNA expression in various types 
of cancer. Survival curve based on the expression of LNC01123 in (A) head 
and neck squamous cell carcinoma and (B) cervical squamous cell carcinoma 
and endocervical adenocarcinoma. Survival curve based on the expression 
of HOXD-AS2 in (C) colon adenocarcinoma, (D) brain lower-grade glioma, 
(E) lung squamous cell carcinoma and (F) uveal melanoma. Red lines rep-
resent the OS time of the patients expressing high levels of each lncRNA; 
blue lines represent the OS time of the patients expressing low levels of each 
lncRNA. The criteria for being considered as high/low levels was the mean 
of expression of lncRNA. The dotted lines represent the 95% CIs of the corre-
sponding groups. lncRNA, long non-coding RNA; OS time, overall survival; 
HR, hazard ratio (P-value of HR is presented in the right upper corner of the 
figure).

Figure 10. Co-expression of the long non-coding RNAs HOXD-AS2 and 
NCAM1 in (A) colon adenocarcinoma, (B) lung adenocarcinoma, (C) lung 
squamous cell carcinoma, (D) testicular germ cell tumors, (E) uterine corpus 
endometrial carcinoma and (F) uterine carcinosarcoma. NCAM1, neural cell 
adhesion molecule 1; TPM, transcripts per million.
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somatic mutations in MED12 exon 2 have been observed 
in uterine leiomyosarcoma, colorectal cancer (CRC) (47), 
uterine leiomyoma, breast fibroadenoma, phyllodes tumors 
and prostate cancer (48). Additionally, inhibition of MED12 
expression has been associated with resistance to cisplatin and 
other chemotherapy drugs (49,50). This is consistent with the 
results of the present study, in which patients with high levels 
of MED12 had improved OS time.

ARF4 is a small guanine-binding protein that serves a 
role in vesicular trafficking (51). Although the results of the 
present study suggested that ARF4 upregulation was associ-
ated with improved patient outcomes, it has been previously 
reported that high expression levels of ARF4 in patients with 
breast cancer are significantly associated with increased risk 
of distant metastasis and shorter OS time. Conversely, ARF4 
silencing reduces the colonization of the lung by metastatic 
breast cancer cells in vivo (51). These contradictory results 
suggest that the role of ARF4 in LUAD deserves further 
investigation.

The present putative ceRNA network included three 
miRNAs (hsa‑miR‑152‑3p, hsa‑miR‑762 and hsa‑miR‑1231) 
across the eight axes. In several types of cancer (including 

prostate, ovarian and breast), miR-152 expression has been 
shown to reduce tumor cell viability and proliferation (52-54). 
In addition, the suppression of miR-152 biogenesis increases 
cisplatin resistance in epithelial ovarian cancer (55). However, 
the overexpression of miR-152 increases cisplatin resistance 
and proliferation of nasopharyngeal carcinoma cells (56), 
while the overexpression of miR‑762 stimulates the develop-
ment of various tumors, including ovarian (57) and breast 
cancer (58). Conversely, the expression of miR‑762 (in combi-
nation with other miRNAs) leads to the apoptosis of breast 
cancer cells (59). In the present study, miR‑152 and miR‑762 
were downregulated in the cisplatin-resistant LUAD cells. 
Overall, these results suggested that the behavior of these 
miRNAs may vary in different types of cancer.

By contrast, miR-1231 expression consistently nega-
tively regulates the progression of various types of cancer, 
including glioma (60,61), pancreatic cancer (62) and papil-
lary thyroid cancer (63). Additionally, miR-1231 has been 
identified as an independent prognostic factor; low expres-
sion of miR-1231 is associated with worse patient outcomes 

Figure 11. Co-expression relationships in various types of cancer. 
Co-expression of FIRRE and NCAM1 in (A) glioblastoma multiforme, 
(B) liver hepatocellular carcinoma, (C) pheochromocytoma and paragan-
glioma, and (D) TGCT. Co-expression of FIRRE and RHBG in (E) prostate 
adenocarcinoma and (F) TGCT. TPM, transcripts per million; NCAM1, 
neural cell adhesion molecule 1; RHBG, Rh family B glycoprotein; TGCT, 
testicular germ cell tumor.

Figure 12. Patient OS time with respect to FIRRE expression in various can-
cers. (A) kidney renal clear cell carcinoma, (B) kidney renal papillary cell 
carcinoma, (C) brain lower grade glioma, (D) liver hepatocellular carcinoma, 
(E) mesothelioma and (F) pancreatic adenocarcinoma. Red lines represent 
the OS time of the patients with high levels of FIRRE; blue lines represent 
the OS time of the patients with low levels of FIRRE. The criteria for being 
considered as high/low levels was the mean expression of FIRRE. The dotted 
lines represent the 95% CIs of the corresponding groups. OS time, overall 
survival; HR, hazard ratio (P-value of HR is presented on the right upper 
corner of the figure).
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compared with high expression of miR-1231 in glioma and 
pancreatic cancer (60-62). Consistent with these results, 
the present study revealed that miR-1231 upregulation was 
associated with improved patient OS time and cisplatin 
sensitivity.

The present putative ceRNA axes included three lncRNAs 
(HOXD-AS2, LINC01123 and FIRRE). Each of these three 
lncRNAs has been shown to be upregulated in one or more 
types of cancer, and each one is commonly associated 
with poor patient prognosis. For example, LINC01123 is 
upregulated in intrahepatic cholangiocarcinomas (64) and 
is associated with poor prognosis in prostate cancer (65). 
Similarly, HOXD-AS2 is upregulated in glioma cells and is 
associated with poor prognosis (66). Consistent with these 
previous studies, the present study revealed that LINC01123 
and HOXD-AS2 were upregulated in numerous types of 
cancer and were associated with reduced patient OS time. 
Importantly, the HOXD-AS2/hsa-miR-152-3P/NCAM1 and 
LINC01123/hsa‑miR‑762/RHBG axes in the present putative 
ceRNA network were supported by the co‑expression results, 
which showed that LINC01123 was co-expressed with RHBG 
and that HOXD-AS2 was co-expressed with NCAM1.

FIRRE upregulation is associated with poor OS time 
in diffuse large B‑cell lymphoma, CRC and HNSCC (67). 
However, FIRRE upregulation is also associated with signifi-
cantly improved OS time in CRC (68). The present study 
revealed that FIRRE was upregulated in numerous types of 
cancer, possibly indicating that this lncRNA behaves differ-
ently under different circumstances.

In combination with the aforementioned results, the 
analyses of the current study revealed that the mRNAs, 
miRNAs and lncRNAs that form the potential axes in the 
present putative ceRNA network serve various important 
roles in cancer pathogenesis and progression. Importantly, 
a number of these molecules may serve different roles in 
different types of cancer. Thus, the results of the present study 
suggest these molecules as important targets for future studies 
focused on cancer diagnosis, prognosis and therapy. NCAM1 
and miR-152 are particularly intriguing targets with respect 
to cisplatin resistance, as NCAM1 increases Btz sensitivity 
and miR-152 reduces cisplatin-induced effects (46). However, 
further investigations are necessary to determine the ceRNA 
mechanisms underlying cisplatin resistance in LUAD.

In addition, the present study presents some limitations, 
such as that the TCGA dataset included relatively few patients 
that met the set criteria and that the available clinical survival 
data was restricted to OS time. Future studies should recruit 
patients with lung cancer for cisplatin chemotherapy, collect 
lung lesion biopsy samples from patients with disease progres-
sion after three cycles of chemotherapy and then quantify the 
expression levels of the candidate lncRNAs (HOXD-AS2 and 
LINC01123), miRNAs (hsa‑miR‑152‑3p and hsa‑miR‑762) and 
mRNAs (NCAM1, MED12 and ARF4) identified herein in the 
biopsy samples. Additionally, patients should be followed-up at 
3 months, 6 months, 1 year and 3 years after chemotherapy to 
determine survival rates.

Despite these limitations, the results of the present study 
suggested that the integration of cell line experimental data 
with clinical information may be a valuable method to identify 
key cancer genes and potentially useful research targets.
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