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1  | INTRODUC TION

Lower grade gliomas (LGGs) in the brain arise from neuroepithelial tis-
sue and include World Health Organization (WHO) grade II/III gliomas. 
These types of gliomas exhibit highly variable clinical behaviour and 

are therefore more difficult to predict.1 Their highly invasive nature 
precludes the possibility of complete neurosurgical resection, which 
indicates that postoperative adjuvant therapy is especially important. 
Historically, RT was the primary treatment of unresectable and pro-
gressive LGG; however, the trend shifted towards delaying RT because 
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Abstract
For a long time, the guidance for adjuvant chemoradiotherapy for lower grade glioma 
(LGG) lacks instructions on the application timing and order of radiotherapy (RT) and 
chemotherapy. We, therefore, aimed to develop indicators to distinguish between 
the different beneficiaries of RT and chemotherapy, which would provide more ac-
curate guidance for combined chemoradiotherapy. By analysing 942 primary LGG 
samples from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome 
Atlas (CGGA) databases, we trained and validated two gene signatures (Rscore and 
Cscore) that independently predicted the responsiveness to RT and chemotherapy 
(Rscore AUC = 0.84, Cscore AUC = 0.79) and performed better than a previous sig-
nature. When the two scores were combined, we divided patients into four groups 
with different prognosis after adjuvant chemoradiotherapy: RSCS (RT-sensitive and 
chemotherapy-sensitive), RSCR (RT-sensitive and chemotherapy-resistant), RRCS 
(RT-resistant and chemotherapy-sensitive) and RRCR (RT-resistant and chemother-
apy-resistant). The order and dose of RT and chemotherapy can be adjusted more 
precisely based on this patient stratification. We further found that the RRCR group 
exhibited a microenvironment with significantly increased T cell inflammation. In 
silico analyses predicted that patients in the RRCR group would show a stronger re-
sponse to checkpoint blockade immunotherapy than other patients.
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of the long-term toxic side effects,2 especially in the treatment of che-
mo-sensitive tumour types such as 1p19q-codeleted oligodendro-
gliomas.3-6 As the importance of chemotherapy in glioma treatment 
increases,7,8 RT alone has not been an option for adjuvant treatment 
since the 2015 version of the NCCN Guidelines of Central Nervous 
System Cancers.9 However, pre-RT chemotherapy with delayed RT 
leads to worse event-free survival compared with immediate applica-
tion of RT during the early stage of treatment.10,11 Weighting the risk 
of RT against the risk of tumour progression has become the key to 
the patient-specific decision-making. In this situation, if we can pre-
dict the patient's response to different treatments separately, we can 
distinguish between those who would benefit from RT and those who 
would benefit from chemotherapy. This will not only lead to a more ac-
curate patient selection but also guide the application timing and order 
of RT and chemotherapy in cases treated with combination therapy.

With the development of radiomics and genomics technology, new 
progress has been made in the typing and prediction of gliomas. Based 
on the computerized tomography (CT) and magnetic resonance imag-
ing (MRI), various image analysis techniques have been used to pre-
dict the classification, molecular status and prognosis of LGG.12-15 As 
a non-invasive method, those techniques have promising application 
prospects. In recent years, several predictive signatures based on gene 
expression profiling have also been developed and performed well in 
predicting treatment response.16-19 Different from clinical performance 
and molecular typing used in the NCCN Guidelines, a treatment-related 
gene signature is developed to directly predict the responsiveness to 
a specific treatment. Due to the overlapping mechanisms of RT and 
chemotherapy resistance,20-23 previous signatures centred on a single 
treatment are not dedicated to distinguishing between the different 
beneficiaries of RT and chemotherapy. Faced with this situation, we 
hope to establish new indicators to guide patient stratification and pro-
vide guidance for the use of RT and chemotherapy. For patients who 
are resistant to both RT and chemotherapy, we aim to study the mech-
anism of resistance and determine suitable treatments.

2  | MATERIAL S AND METHODS

2.1 | Lower grade glioma data sets

The The Cancer Genome Atlas (TCGA) LGG data set (containing 516 
primary LGGs) was selected as the discovery cohort. The normalized 
level three RNA-seq data (FPKM) were downloaded from TCGA GDC 
(https://portal.gdc.cancer.gov/). The clinical information of TCGA LGGs 
was obtained from the University of California at Santa Cruz (UCSC) 
Xena (https://xena.ucsc.edu/), and the IDH status, 1p/19q codeletion, 
MGMT and TERT promoter status were provided by Pierre Bady.24 The 
Chinese Glioma Genome Atlas (CGGA) is the largest glioma genome 
database in China, which provides multiple omics data and matched 
clinical data of over 2000 primary and recurrent samples from Chinese 
cohorts. The CGGA mRNAseq_693 (containing 282 primary LGGs) and 

mRNAseq_325 (containing 144 primary LGGs) data sets were selected 
as the validation cohort for the Rscore. RSEM-normalized gene expres-
sion and clinical data were downloaded from the CGGA (http://www.
cgga.org.cn/index.jsp). Batch effects were removed using an Empirical 
Bayes-based approach (ComBat) implemented in the R package “SVA”. 
As RNAseq_693 lacks the information for the CPA3 gene (part of the 
Cscore formula), we only used RNAseq_325 when validating Cscore.

2.2 | Immune cell composition

To determine the abundance of different immune cell types, we 
performed MCP counter experiment 25 to all primary LGGs. A 
Wilcoxon's test was used to compare the difference in cell types be-
tween the RRCR group and the others. The R package “vioplot” was 
used to generate the violin plot, and the R package “survival” was 
used for the survival analysis.

2.3 | Weighted gene coexpression network 
construction

The 1047 DEGs (fold change > 2 and FDR < 0.01) between the RRCR 
group and the other groups was calculated by “EdgeR” and were then 
used to construct a weighted gene coexpression network by the 
“WGCNA” package 26 in the 154 RRCR samples. We determined 7 as 
the soft power threshold, which generated a high connectivity net-
work with scale-free topology. The network was constructed with the 
same parameters mentioned in our previous study.27 Five modules 
were detected and then related to the Rscore and Cscore through an 
eigengene-based Pearson correlation analysis. Hub genes of the blue 
module were defined as the genes with top 25% connectivity.

2.4 | Tumour mutational burden and tumour 
inflammation signature score calculation

The Cancer Genome Atlas LGG simple nucleotide variation data 
(VarScan) were used to calculate the tumour mutational burden 
(TMB), which was defined as the number of mutations per megabase.

To calculate the tumour inflammation signature (TIS) scores, we 
renormalized the FPKM RNAseq data using 11 housekeeping genes.18 
The log2(FPKM+1) of each gene was normalized by subtracting the 
arithmetic mean of the log2(FPKM+1) of the 11 reference genes. 
According to Ayers et al,18 the TIS score was computed as the weighted 
sum of the housekeeping-normalized expression of the 18 genes.

2.5 | Statistical analysis

The differentially expressed genes (DEGs) between the non-respond-
ers and responders were determined using the R package “edgeR” 
with a fold change > 2 and FDR < 0.05. A univariate Cox analysis was 
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performed by the R package “survival”. A panel of genes was deter-
mined by LASSO analysis using the optimal λ value, which was selected 
through 1000 cross-validations. The multivariate Cox analysis used the 
LASSO panel and tr-DFS to generate the Rscore (Cscore), which was 
defined as a linear combination of the regression model coefficients 
(β) multiplied by the mRNA expression level. Kaplan-Meier survival 
analysis was performed using the R package “survival”. The receiver 
operating characteristic (ROC) curve and area under the ROC curve 
(AUC) at three years were calculated using the R package “survival-
ROC” with a Kaplan-Meier method. The Pearson method was used for 
the correlation analysis. Significant P values were calculated using the 
Log-Rank method. The Gene Ontology biological process (GO_BP) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analy-
ses were performed using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID 6.7 https://david -d.ncifc rf.gov/). All 
statistical analyses were performed with R software (v3.6.0).

3  | RESULTS

3.1 | Determination of “responders” and “non-
responders” for RT and chemotherapy

Clinical characteristics of patients in TCGA and CGGA data sets are 
summarized in Table 1. We used the method of Panja et al28 to de-
termine the “responders” and “non-responders” to a particular treat-
ment. For RT, the “new tumor events” and “death” after the start of 

adjuvant RT were defined as “treatment-related events” and the time 
from the start of adjuvant RT to treatment-related events was defined 
as “treatment-related disease-free survival time (tr-DFS)”. If the patient 
did not experience a treatment-related event, the tr-DFS was defined 
as the time from the start of RT to the last follow-up. We included the 
samples used in this portion according to the following criteria:

1. The patient had undergone RT but did not receive chemotherapy,
2. The primary tumour with specific RT starts time records.

A total of 53 primary LGGs were selected according to the crite-
ria and include 12 treatment-related events and 41 follow-ups. We 
ranked the 53 patients based on their tr-DFS, and the patients who fell 
into the most left (10%) and right (10%) distribution tails were defined 
as “non-responders” and “responders”, respectively (Figure 1A).

The “non-responders” and “responders” to chemotherapy were 
determined using a similar method. Among the 51 samples that satis-
fied the criteria, five were defined as “non-responders” and another 
five were defined as “responders” (Figure 1A).

3.2 | Establishment and external validation of the 
Rscore and Cscore

We used a set of modelling processes to construct the Rscore and 
Cscore, which represent the degree of resistance to RT and chemo-
therapy, respectively (Figure 1B). A total of 255 patients in the TCGA 

Characteristics
TCGA LGG 
(n = 516)

CGGA mRNAseq 693 
(n = 282)

CGGA mRNAseq 
325 (n = 144)

Age (y) 42.94 ± 13.36 39.98 ± 10.59 40.67 ± 11.16

Histologic type

Astrocytoma 194 (37.60%) 72 (25.53%) 47 (32.64%)

Oligoastrocytoma 130 (25.19%) 159 (56.38%) 62 (43.06%)

Oligodendroglioma 191 (37.02%) 51 (18.09%) 35 (24.31%)

Unknown 1 (0.19%) 0 (0.00%) 0 (0.00%)

Histologic grade

G2 249 (48.26%) 138 (48.94%) 94 (65.28%)

G3 265 (51.36%) 144 (51.06%) 50 (34.72%)

Unknown 2 (0.39%) 0 (0.00%) 0 (0.00%)

Adjuvant therapy

RT and chemotherapy 196 (37.98%) 146 (51.77%) 58 (40.28%)

RT without 
chemotherapy

96 (18.60%) 59 (20.92%) 62 (43.06%)

Chemotherapy without 
RT

54 (10.47%) 25 (8.87%) 4 (2.78%)

Non-RT and 
non-chemotherapy

127 (24.61%) 35 (12.41%) 6 (4.17%)

Unknown 43 (8.33%) 17 (6.03%) 14 (9.72%)

Abbreviations: CGGA, Chinese Glioma Genome Atlas; TCGA LGG, The Cancer Genome Atlas lower 
grade glioma.

TA B L E  1   Clinical characteristics of 
patients in TCGA and CGGA data sets

https://david-d.ncifcrf.gov/
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LGG data set received radiotherapy with clear records of starting 
time and were included in the Rscore construction using treatment-
related disease-free survival time (tr-DFS). Similarly, 245 patients 
with clear records of starting time for chemotherapy were included in 
the construction of Cscore using tr-DFS. Because the RT resistance 
and chemotherapy resistance share similarities in their mechanisms, 
we need to avoid strong collinearity between the Rscore and the 
Cscore to distinguish between the different beneficiaries of RT and 
chemotherapy. Therefore, we selected the differentially expressed 
genes (DEGs) between the non-responders and responders with a P-
value <.01 in the RT (chemotherapy) group, and at the same time, a P-
value >.1 in the non-RT (non-chemotherapy) group in the univariate 
Cox analysis for tr-DFS. These genes were called prognostic DEGs 
for the specific therapy and then put into a least absolute shrink-
age and selection operator (LASSO)-based multivariate Cox analysis. 
The LASSO selected five candidate genes from the 141 prognostic 
DEGs for radiotherapy through 1000 cross-validations of the param-
eter λ (Figure 2A). Thirteen candidate genes for chemotherapy were 
selected from 39 prognostic DEGs (Figure 2B). The candidate genes 
were then put into a stepwise multivariate Cox analysis to build 
an optimal prediction model using tr-DFS (Figure 2C,D). According 
to the regression model, we obtained the Rscore containing the 

expression of 4 genes and the Cscore containing the expression of 6 
genes with the following formulas:

Rcore = 0.03330365 × expression level of C21orf62 + 0.07308094  
× expression level of CDCA7L + 0.11414216 × expression level of 
CHST6 + 0.00303856 × expression level of AEBP1
Cscore = −1.25569210 × expression level of CPA3 − 0.07888934 
× expression level of CUX2 + 0.04030749 × expression level of 
IGSF3 + 0.01055746 × expression level of ITGB4 + 0.00775530 
× expression level of SDC4 + 0.21961659 × expression level of 
HOXA11
According to the meaning of the risk model, the higher the two 

scores, the stronger the resistance to the relevant treatment. We 
then tested the collinearity between the Rscore and the Cscore in all 
primary tumours, and the Pearson correlation coefficient was only 
0.25 (P < .0001).

We next tested the two scores in the discovery and validation 
sets. A total of 328 patients in the CGGA data sets received radio-
therapy were used to validate Rscore and 60 patients with che-
motherapy were used to validate Cscore. We divided patients into 
low- and high-risk group based on the median Rscore (Cscore), and 
the patients who received the relevant therapy (RT or chemotherapy) 

F I G U R E  1   Method and process. A, Determination of responders and non-responders to RT and chemotherapy. B, The construction 
process of the LASSO-based Cox model
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F I G U R E  2   Results of LASSO and Cox analyses. A, B, Candidate genes selection by LASSO through 1000 cross-validations of the 
parameter λ. C, D, Forest plot showing the prediction model constructed by the Stepwise Cox regression analysis using the LASSO candidate 
genes

F I G U R E  3   Validation of the Rscore and Cscore
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were selected for the survival analysis with tr-DFS. Significant sur-
vival differences were shown for high and low Rscores in the TCGA 
(P = 3.621e−08, AUC = 0.84) and CGGA (P = 1.133e−03, AUC = 0.72) 
data sets (Figure 3A-D). The Cscore also showed similar predictive 
power in both the TCGA (P = 7.965e−09, AUC = 0.79) and the CGGA 
(P = 6.207e−03, AUC = 0.73) data sets (Figure 3E-H).

To remove the effect of other confounding factors such as his-
tologic grade, patient age, whether RT or chemotherapy was given, 
Karnofsky performance score, IDH status, 1p/19q codeletion, 
MGMT and TERT promoter status,1,29-32 we performed a multivar-
iate Cox regression analysis using tr-DFS to test the independence 
of our models after controlling all these confounding factors. The re-
sults showed that both the Rscore and the Cscore were independent 
prognostic factors (Rscore P = .03, Cscore P = .01, Figure S1A,B).

Prior to this study, a radiosensitivity predictive assay (RSI)16 was 
widely used to predict tumour response to RT; this score was then 
compared with the Rscore. The results showed that RSI could not 
predict the RT-related DFS or overall survival (OS) of patients in the 
TCGA LGG data set who received RT (Figure S1C,D). However, RSI 
could predict the OS of patients in CGGA LGG data set who received 
RT (P = 2.589e−03), and the AUC was less than the Rscore (0.62 vs 
0.72) (Figure S1E,F).

3.3 | Patient stratification based on the 
Rcore and Cscore

According to the Rcore and Cscore levels, we divided the TCGA pri-
mary LGGs into four groups (6 patients without FPKM data were 
ignored): RSCS (RT-sensitive and chemotherapy-sensitive, 169 
samples), RSCR (RT-sensitive and chemotherapy-resistant, 99 sam-
ples), RRCS (RT-resistant and chemotherapy-sensitive, 88 samples) 
and RRCR (RT-resistant and chemotherapy-resistant, 154 samples) 
(Figure 1B). The median scores were used as the cut-off values. The 
clinical information of the four groups is shown in Table 2.

Although the predictive power of the two scores in relevant pa-
tients has been independently verified in the previous section, we 
needed to further validate the predictive ability of the stratification 
based on the combination of the two scores. We selected the 194 
patients in the TCGA data set who received both RT and chemother-
apy for the OS analysis. The results showed that the 4 groups had 
significantly different survival rates and that the RRCR and RSCS 
groups exhibited significantly lower and higher survival rates, re-
spectively, than the other groups (Figure 4). Similar results were also 
observed in the CGGA cohort (Figure S1G-I).

3.4 | A higher proportion of CD8+ T cells and B cells 
correlated with therapy resistance in the RRCR group

To further investigate the mechanism of therapy resistance in the 
RRCR group, we performed a weighted gene coexpression net-
work analysis in the 154 RRCR patients using the 1047 DEGs (fold 

change > 2, FDR < 0.01) between the RRCR and the other groups. A 
blue module containing 180 genes was detected to show the high-
est correlation to Rscore (Pearson cor = .76, P = 5E-27) and Cscore 
(Pearson cor = .39, P = 2E−06) (Figure 5A). A gene enrichment analy-
sis showed that the hub genes (top 25% connectivity) in this module 
were associated with immune response, T cell receptor signalling 
and B cell lineage–mediated immunity.

The results of the WGCNA indicated that the immune micro-
environment of the RRCR group might differ from that of the other 
groups, and the immune infiltration positively correlated to therapy 
resistance. To examine the immune cell differences between the 
RRCR and other groups, we applied an MCP counter to all primary 
LGG samples. Compared with other groups, the RRCR group showed 
a significantly higher proportion of CD8+ T cells and B lineage cells 
(Figure 5B), which was consistent with the results obtained by the 
WGCNA.

We further found that the proportions of CD8 T cells and B lin-
eage cells were correlated with histologic grade, age and IDH status. 
In IDH-wild-type gliomas and patients >40 years of age, the propor-
tions of CD8 T cells and B lineage cells were significantly increased. 
A higher CD8 T cell proportion was also correlated with higher his-
tologic grade (Figure 5C), which was demonstrated in a previous 
study.33

It should be noted that the TCGA and CGGA gene expression 
profiles were derived from tissue sequencing experiments prior to 
treatment. Therefore, the cell type proportions that were simulated 
based on gene expression profiles were pre-treatment profiles and 
were not affected by subsequent treatment.

3.5 | The RRCR group was more suited for 
checkpoint blockade immunotherapy than 
other groups

The T cell–inflamed tumour microenvironment has become a bio-
marker for checkpoint blockade immunotherapy response.34 As the 
RRCR group had a significantly higher infiltration of CD8 T cells, we 
wondered whether this group of patients would be more suited for 
checkpoint blockade immunotherapy than other groups.

Two categories of biomarkers predict the response to checkpoint 
blockade immunotherapies: biomarkers related to tumour neoepi-
tope burden and biomarkers indicative of a T cell–inflamed tumour 
microenvironment.34 The former includes microsatellite instability 
(MSI) and tumour mutational burden (TMB), while the latter includes 
the tumour inflammation signature (TIS)18 and the expression of 
multiple inhibitory receptors (IRs) such as programmed cell death 
ligand-1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 
(CTLA4).

The expression of PD-L1 and CTLA4 was up-regulated in the 
RRCR group compared with the other groups (Figure 6A,B), which 
suggests that both anti-PD1 and anti-CTLA4 treatments in the RRCR 
group might lead to response. We then calculated the TMB and TIS 
of the RRCR group and the other groups. As shown in Figure 6C,D, 
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Characteristics RSCS (n = 169) RSCR (n = 99) RRCS (n = 88) RRCR (n = 154)

Age (y) 41.06 ± 12.80 40.16 ± 12.64 44.75 ± 13.00 45.56 ± 13.98

Histologic type

Astrocytoma 52 (30.77%) 40 (40.40%) 25 (28.41%) 75 (48.70%)

Oligoastrocytoma 36 (21.30%) 28 (28.28%) 20 (22.73%) 44 (28.57%)

Oligodendroglioma 80 (47.34%) 31 (31.31%) 43 (48.86%) 35 (22.73%)

Unknown 1 (0.59%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Histologic grade

G2 86 (50.89%) 58 (58.59%) 39 (44.32%) 64 (41.56%)

G3 82 (48.52%) 40 (40.40%) 49 (55.68%) 90 (58.44%)

Unknown 1 (0.59%) 1 (1.01%) 0 (0.00%) 0 (0.00%)

IDH status

Mutant 161 (95.27%) 89 (89.90%) 78 (88.64%) 85 (55.19%)

WT 8 (4.73%) 9 (9.09%) 10 (11.36%) 67 (43.51%)

Unknown 0 (0.00%) 1 (1.01%) 0 (0.00%) 2 (1.30%)

1p/19q codeletion

Non-codeletion 96 (56.80%) 80 (80.81%) 38 (43.18%) 129 (83.77%)

Codeletion 73 (43.20%) 19 (19.19%) 50 (56.82%) 25 (16.23%)

Unknown 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

MGMT promoter

Unmethylated 17 (10.06%) 17 (17.17%) 8 (9.09%) 48 (31.17%)

Methylated 152 (89.94%) 82 (82.83%) 80 (90.91%) 106 (68.83%)

Unknown 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

TERT promoter

Mutant 39 (23.08%) 13 (13.13%) 31 (35.23%) 47 (30.52%)

WT 54 (31.95%) 47 (47.47%) 23 (26.14%) 34 (22.08%)

Unknown 76 (44.97%) 39 (39.39%) 34 (38.64%) 73 (47.40%)

Abbreviations: RRCR, RT-resistant and chemotherapy-resistant; RRCS, RT-resistant and 
chemotherapy-sensitive; RSCR, RT-sensitive and chemotherapy-resistant; RSCS, RT-sensitive and 
chemotherapy-sensitive.

TA B L E  2   Clinical characteristics of 
patients in the four groups defined by 
Rscore and Cscore

F I G U R E  4   Stratification based on the Rscore and Cscore was validated to predict treatment response
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both TMB (P = .001) and TIS (P < .0001) were significantly higher in 
the RRCR group than in the other groups. These results indicated 
that the patients in the RRCR group would exhibit a stronger re-
sponse to checkpoint blockade immunotherapy than patient in the 
other groups.

4  | DISCUSSION

To distinguish between those who would benefit from RT and 
chemotherapy and to provide more accurate guidance for patient 
selection and treatment timing, we developed and tested the Rscore 

F I G U R E  5   The immune microenvironment of the RRCR group. A, WGCNA determined a coexpression module highly correlated to 
the Rscore and Cscore. Enrichment analysis showed that the module was related to immune response. B, Comparison of immune cell 
proportions between the RRCR and other groups. C, CD8 T cell and B lineage cell proportions were related to histologic grade, patient age 
and IDH status
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and Cscore using 942 LGGs. Considering the convenience of clinical 
application, we chose the Cox proportional hazard model, a semi-
parametric model which generates a comparable risk score with a 
concise formula, to predict the risk. Due to the high dimensionality 
of transcriptome data, we added LASSO for feature selection. The 
LASSO is a popular method for regression of high-dimensional fea-
tures, which has been widely applied to the Cox model for survival 
analysis of high-dimensional data.35-37 During the process of model 
construction, we used treatment-related DEGs and treatment-spe-
cific risk genes to control the therapeutic specificity of the model. 
The two scores have been demonstrated to be independent predic-
tors of treatment response. Prior to this, a radiotherapy sensitivity 
indicator called RSI has been validated in a variety of cancers 16,38-41 
and has recently been further developed.42,43 However, the predic-
tive power of RSI is lower than Rscore in TCGA or CGGA LGG data 
sets. The result of this comparison suggests that RSI, as a cross-tu-
mour indicator, is still tumour type-dependent and does not ideally 
predict RT response in patient with LGG. Tumour-specific and treat-
ment-related signatures such as the Rscore and Cscore may perform 
better in this situation. As the formula shows, to calculate Rscore 
and Cscore we only need to detect the expression of 4 and 6 genes, 
respectively, which is convenient for clinical application.

The low collinearity of the two indicators allowed us to combine 
them for patient stratification. Patients in the RSCS group are sensi-
tive to both RT and chemotherapy and may benefit from combined 
chemoradiotherapy with high survival rates. However, patients in 
the RRCS group and RSCR group are sensitive to one of the two 
adjuvant treatments and are resistant to the other one. We believe 
that the response differences to RT and chemotherapy would pro-
vide guidance for more precise adjuvant chemoradiotherapy, includ-
ing adjustments to the application timing, order, intensity and period 
of RT and chemotherapy. Further clinical trials are needed to verify 
whether the treatment design based on this stratification can im-
prove the efficacy of the adjuvant chemoradiotherapy and reduce 
the side effects.

We found that the resistance in the RRCR group was significantly 
correlated with the infiltration of CD8 T cells and B lineage cells. 
Patients in the RRCR group presented a microenvironment highly 
infiltrated by T cells. An in silico analysis based on tumour mutational 
burden (TMB), tumour inflammation signature (TIS) and expression 
of inhibitory receptors (IRs) predicted that patients in the RRCR 
group would show a stronger response to checkpoint blockade im-
munotherapy than patients in the other groups. This result suggests 
that in addition to traditional postoperative RT and chemotherapy, 
checkpoint blockade immunotherapy may be added to the regimen 
of the RRCR group, which requires further verification by clinical 
studies. For each single patient, anti-PD1 or anti-CTLA4 therapy can 
be chosen according to the expression of PDL-1 and CTLA4.

It should be noted that this study still has some limitations. 
Although the resistance mechanisms of different chemotherapeutic 
drugs are highly overlapping, as a universal drug resistance index, 
the Cscore may not perform as well when predicting the response 
to a specific drug. In addition, 78% of the patients in the TCGA data 

set who received chemotherapy were treated with temozolomide 
(TMZ), while PCV and other drugs were much less frequently used 
in this data set, which suggests that the Cscore is less representative 
of other drugs.

5  | CONCLUSIONS

Patient stratification based on the Rscore and Cscore can be used to 
guide the clinical application of RT and chemotherapy in patients with 
LGG. For the patients who show resistance to both RT and chemother-
apy, additional checkpoint blockade immunotherapy is recommended.
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