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The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes.

However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus

on two different interactomes, chromatin interaction network and gene regulatory network, as a proof of principle to iden-

tify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that is in spatial contact

more frequently than expected and that is regulated by the same group of transcription factors. HIM integrates transcrip-

tion factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm,

MOCHI, to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying

MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and show distinct

functional properties. Through integrative analysis, this work shows the utility of MOCHI to identify HIMs, which may pro-

vide new perspectives on the interplay between transcriptional regulation and 3D genome organization.

[Supplemental material is available for this article.]

The cell nucleus is an organelle that contains heterogeneous com-
ponents such as chromosomes, proteins, RNAs, and subnuclear
compartments. These different constituents form complex organi-
zations that are spatially and temporally dynamic (Lanctôt et al.
2007; Bonev and Cavalli 2016). Interphase chromosomes are fold-
ed and organized in three-dimensional (3D) space by compart-
mentalizing the cell nucleus (Cremer and Cremer 2001; van
Steensel and Belmont 2017), and different chromosomal loci
also interact with each other (Bonev and Cavalli 2016). The devel-
opment of whole-genome mapping approaches such as Hi-C
(Lieberman-Aiden et al. 2009) to probing the chromatin interac-
tome has enabled comprehensive identification of genome-wide
chromatin interactions, revealing important nuclear genome fea-
tures such as loops (Rao et al. 2014; Tang et al. 2015), topologically
associating domains (TADs) (Dixon et al. 2012; Nora et al. 2012),
and A/B compartments (Lieberman-Aiden et al. 2009). Nuclear ge-
nome organization has intricate connections with gene regulation
(Cremer and Cremer 2001; Misteli 2007). In particular, correla-
tions between higher-order genome organization (including chro-
matin interactions and chromosome compartmentalization) and
transcriptional activity have been shown (Guelen et al. 2008;
Rao et al. 2014; Chen et al. 2018).

Systems-level transcriptional machinery can often be repre-
sented by gene regulatory networks (GRNs), which are dynamic
in different cellular conditions (Gerstein et al. 2012; Marbach
et al. 2016). GRN models the phenomena of selective binding of
transcription factors (TFs) to cis-regulatory elements in the ge-
nome to regulate target genes (Davidson 2006; Lambert et al.
2018). Transcription of coregulated genes inGRN can be facilitated
by long-range chromosomal interactions (Fanucchi et al. 2013),
and the chromatin interactome shows strong correlations with
GRN (Kosak et al. 2007; Neems et al. 2016; Zhang et al. 2019).
Indeed, network-based representation of both the chromatin

interactome and GRN has been suggested to analyze different
subnuclear components holistically (Rajapakse et al. 2010; Chen
et al. 2015). The paradigm of viewing the nucleus as a collection
of interacting networks among various constituents can also be ex-
tended to account for other types of interactomes in the nucleus.
However, whether these interactomes, in particular the chromatin
interactome andGRN, are organized to form functionally relevant,
global patterns remains to be explored. Insights derived from such
analysis would also be imperative to better understand the inter-
play between TFs and 3D genome organization, which has been
postulated to play important roles in the formation of nuclear ge-
nome condensates (Kim and Shendure 2019; Stadhouders et al.
2019), possibly through phase separation with the involvement
of super-enhancers and “3D cliques” (Hnisz et al. 2017; Boija
et al. 2018; Petrovic et al. 2019).

In this work, as a proof of principle, we specifically consider
two different types of global interactomes in the nucleus: (1) the
chromatin interactome, a network of chromosomal interactions
between different genomic loci, and (2) a GRN in which TFs
bind to cis-regulatory elements to regulate target genes’ transcrip-
tion. Many studies in the past have analyzed the structure and dy-
namics of chromatin interactomes and GRNs, as well as cases of
coordinated binding of transcription factors on folded chromatin
(Rao et al. 2014; Tang et al. 2015; Marbach et al. 2016; Belyaeva
et al. 2017; Cortini and Filion 2018; Ma et al. 2018; Petrovic
et al. 2019; Zhang et al. 2019). However, the global network level
patterns between chromatin interactome and GRN are still un-
clear, and algorithms that can simultaneously analyze these het-
erogeneous networks in the nucleus to discover intricate
network structures have not been developed.

Here we aim to identify network structures in which nodes
representing TFs (from GRN) and gene loci (from both chromatin
interactome and GRN) cooperatively form distinct types of
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modules (i.e., clusters).We develop a new algorithm,MOCHI (mo-
tif clustering in heterogeneous interactomes), that can effectively
uncover such network modules, which we call heterogeneous
interactome modules (HIMs), based on network motif clustering
using a four-node motif specifically designed to reveal HIMs.
HIMs integrate TF binding and 3D genome structure to reflect
global “transcriptional niches” in the nucleus. Each identified
HIM represents a collection of gene loci and TFs for which (1)
the gene loci have higher than expected chromatin interaction fre-
quencies and (2) the gene loci are regulated by the same group of
TFs. To show the utility ofMOCHI to identify HIMs based on com-
plex heterogeneous interactomes in the nucleus, we applyMOCHI
to five different human cell types, identifying patterns of HIMs
and their functional properties through integrative analysis.
HIMs have the potential to provide new insights into the nucle-
ome structure and function, in particular, the interwoven interac-
tome patterns from different components of the nucleus.

Results

Overview of the MOCHI algorithm

The overview of ourmethod is illustrated in Figure 1. Our goal is to
reveal network clusters in a heterogeneous network such that cer-
tain higher-order network structures (e.g., the network motifM in
Fig. 1A) are frequently contained within the same cluster. The in-
put heterogeneous network in this work considers two types of
interactomes: a GRN (directed) between TFs and target genes;
and a chromatin interaction network (undirected) between gene
loci on the genome. For a chromatin interactome, for each pair
of gene loci within 10 Mb, we use the “observed over expected”
(O/E) quantity in the Hi-C data (we use O/E>1 as the cutoff in
this work, but we found that ourmain results are largely consistent
with different cutoffs) (see Supplemental Results) to define the
edges in the chromatin interaction network. For GRNs, we use
the transcriptional regulatory networks from Marbach et al.

(2016), which were constructed by com-
bining the enrichment of TF bindingmo-
tifs in enhancer and promoter regions
and the coexpression between TFs and
genes. If a TF regulates a gene, we add a
directed edge from the TF to the gene.
We then merge the chromatin interac-
tion network and the GRN from the
same cell type to form a network G with
nodes that are either TFs or gene loci to-
gether with the directed and undirected
edges defined above (Fig. 1B).

We specifically consider the net-
work motif M with four nodes, namely,
two gene loci and two TFs in the hetero-
geneous network with two genes whose
genomic loci are spatially more proximal
to each other (than expected) in the nu-
cleus and that are also coregulated by
the two TFs (see the later section for the
justification of this motif) (Fig. 1A). Our
goal is to reveal higher-order network
clusters based on this particular network
motif. In other words, we want to parti-
tion the nodes in the network such that
this four-node network motif occurs
mostly within the same cluster. Based
on the motif, our MOCHI algorithm,
which extends the original algorithm
by Benson et al. (2016), constructs an un-
directed, weighted network GM (Fig. 1D)
based on the subgraph adjacencymatrix,
WM, whose elements are the number of
times that two nodes are in the same oc-
currence ofmotifM in the heterogeneous
network G (Fig. 1C). We then apply re-
cursive bipartitioning in GM to find mul-
tiple clusters (Fig. 1E). We call such
clusters HIMs, which, in this work, repre-
sent network structures containing the
same group of TFs that regulatemany tar-
get genes whose spatial contact frequen-
cies are higher than expected. Because
TFs can regulate multiple sets of genes
that may belong to different clusters,
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Figure 1. Workflow of our MOCHI algorithm and output examples of HIMs. The network has both
gene–gene spatial proximity and TF–gene regulation relationships. (A) A four-node motif M represents
the smallest HIM. Here a directed interaction represents a TF–gene regulation relationship, and an undi-
rected interaction represents that the two genes are spatially more proximal to each other than expected.
(B) Given a heterogeneous network G, we find HIMs by minimizing the motif conductance (see Equation
2). (C) We compute the subgraph adjacency matrixWM, with [WM]ij being the number of occurrences of
M that have both nodes i and j. (D) The weighted network GM is defined from adjacency matrix WM.
(E) Spectral clustering will find clusters in GM. We recursively apply the method to find multiple HIMs
and overlapping HIMs. (F,G) Two HIMs as examples in GM12878. (H) Example of two overlapping
HIMs in GM12878 sharing seven TFs (the group with pink nodes in the middle). TFs in orange and
pink nodes form one HIM with their target genes (bottom left). TFs in pink and blue nodes form another
HIM with their target genes (bottom right). Note that the directed interactions from TFs to their target
genes are bundled.
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different HIMs may overlap by sharing TFs. The algorithm details
of MOCHI are in the Methods section.

MOCHI identifies HIMs in multiple cell types

We applied MOCHI to five different human cell types: GM12878,
HeLa, HUVEC, K562, and NHEK. The input heterogeneous
network of each cell type has 591 TFs, approximately 12,000 ex-
pressed genes, and approximately 1million regulatory interactions
(Supplemental Table S1). A few examples of HIMs identified in
GM12878 are shown in Figure 1, F through H, including over-
lapping HIMs in Figure 1H (for the full list of HIMs, see
Supplemental File S1). We found that the identified HIMs in five
cell types cover a majority (62.1%–77.2%) of the genes in the het-
erogeneous networks and share several basic characteristics, in-
cluding the number of HIMs, the proportion of HIMs sharing
TFs with other HIMs, and the number of genes and TFs in HIMs
(Supplemental Tables S1, S2). In addition, we found that the iden-
tified HIMs in different cell types share similar connections to 3D
genome features (Supplemental Results; Supplemental Table S2).

Note that the four-node motif M was chosen specifically for
uncoveringHIMs derived fromTFs and genes based on 3D genome
organization. Specifically, we compared the four-node motif M
against its subgraphs bifan and triangle motifs (Supplemental
Fig. S1A). The bifan and triangle motifs do not explicitly and
simultaneously encode the spatial proximity between genes and
the coregulation between TFs. We found that the clusters based
on the four-nodemotifMhave better clustering features, including
triangle density and motif M density (see Supplemental Results;
Supplemental Figs. S1, S2; Supplemental Table S3). These advan-
tages highlight the necessity of using the four-node motif M to
identify HIMs.

To further assess that the genes in a HIM are indeed coregu-
lated by the same TFs, we used the available ChIP-seq data of 26
TFs in GM12878 and K562 cells from the ENCODE portal (Davis
et al. 2018; https://www.encodeproject.org). We found that for
all the HIMs in GM12878 or K562 with these 26 TFs, more than
half (55.85%) of them have ≥50% of their genes with correspond-
ing TF ChIP-seq peaks within 10 kb of the transcription start site,
further suggesting that the genes in HIMs identified by MOCHI
share regulatory TFs. Note that TF ChIP-seq data were not used
to infer the input GRNs. In addition, MOCHI can robustly identify
HIMs with different parameters in various cell types (Supplemen-
tal Results; Supplemental Fig. S3). These results show that MOCHI
can reliably discover HIMs across multiple cell types.

HIMs show advantages over conventional GRN clusters

in multiple aspects

Conceptually, one key difference between HIMs and clusters in
conventional GRN (usingGRNdata only) is that HIMs have spatial
constraints such that genes in HIMs are in spatial contactmore fre-
quently than expected. To investigate potential advantages of
HIMs with a fair comparison between HIMs and GRN clusters,
we modified the MOCHI framework to identify GRN clusters
from GRN data used in this study (see Supplemental Results). We
first sought to assess the connections with fundamental genome
functions, including replication timing and gene expression.
We found that, compared with genes in GRN clusters, genes in
HIMs replicate earlier and replicate with more similar timing
(Supplemental Figs. S4A,B, S5). Genes inHIMs also express at high-
er levels and atmore similar levels (Supplemental Fig. S5). These re-

sults suggest the stronger connection between HIMs and
fundamental genome functions compared with GRN clusters.

We next compared HIMs with GRN clusters in terms of the
enrichment of genes affected by eQTLs using the GEUVADIS
data set (The 1000 Genomes Project Consortium 2015). Here we
call a cluster enriched with an eQTL if (1) the cluster has more
than five genes, (2) the cluster and eQTL share at least two genes,
and (3) the number of shared genes is significantly higher than
those of randomly selected equal-sized expressed gene sets on
the same chromosome (P< 0.05, hypergeometric test). We found
that nearly half (49.44%) of GM12878 HIMs are enriched in genes
affected by eQTLs, which is significantly higher than the enrich-
ment (36.5%) based on GRN clusters (P=0.001) (Supplemental
Fig. S4C), suggesting that genes in HIMs are more likely to share
eQTLs. Similar enrichment analysis for genes affected by SNPs in
GWAS (based on the NHGRI-EBI GWAS Catalog) revealed that
HIMs have significantly higher proportions of gene clusters that
are affected by GWAS SNPs than GRN clusters (P≤7.38×10−4)
(Supplemental Figs. S4D and S6). In addition, we extracted a subset
of GWAS SNPs that is associated with blood-related disorders and
assessed their enrichment in HIMs in blood-related cell lines
GM12878 and K562.We found that HIMs have higher proportion
of genes affected by such SNPs than GRN clusters (P≤0.035)
(Supplemental Figs. S4E, S6). In particular, there are four blood-re-
lated disorders in which genes affected by their associated SNPs are
enriched inHIMs but not inGRN clusters (Supplemental Table S4).
On the other hand, there is no blood-related disorder in which
genes affected by their SNPs are enriched in GRN clusters but
not in HIMs. These results further show the greater functional rel-
evance of HIMs compared with GRN clusters.

We then assessed the level of involvement of long-range en-
hancer–gene interactions in HIMs and in conventional GRN clus-
ters (also see Supplemental Results).We specifically focused on the
clusters in which the majority (≥50%) of genes are connected to
enhancers that are located within the wide genomic region cov-
ered by the HIM through long-range enhancer–gene interactions
(example HIMs in Supplemental Fig. S4F–H). The proportion of
such HIMs is significantly higher than that of conventional GRN
clusters across cell types (Supplemental Fig. S7; Supplemental
Results). These results indicate that HIMs have stronger connec-
tion with long-range enhancers, which also reflects the advantage
of HIMs that integrate TF binding and 3D genome organization.

Taken together, the comparisonwith conventionalGRN clus-
ters highlights the importance of having 3D genome spatial con-
straints to identity HIMs. In addition, these analyses also show
that HIMs have overall stronger significance in biological func-
tions compared with GRN clusters. For the rest of this paper, we
characterize structural and functional properties of HIMs and in-
vestigate the dynamics of HIMs across different cell types.

HIMs show strong preference in spatial localization relative

to subnuclear structures

Next, we analyzed the spatial localization of HIM in the nucleus.
Recently published SON TSA-seq and lamin B1 TSA-seq data sets
quantify cytological distance of chromosome regions to nuclear
speckles and nuclear lamina, respectively (Chen et al. 2018). In
K562, which is currently the only cell type with published
TSA-seq data, 60.7% of the HIMs have a mean SON TSA-seq score
higher than 0.284 (80th percentile of the SON TSA-seq score), sug-
gesting that the genes in these HIMs, on average, are within 0.518
µm (estimated by Chen et al. 2018) of nuclear speckles (Fig. 2A).

Heterogeneous interactome modules in 3D nucleome
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Compared with the genes in the K562 heterogeneous network but
not assigned to HIMs, the genes in HIMs have a higher mean SON
TSA-seq score and a lower mean lamin B1 TSA-seq score (P<2.22×
10−16) (Supplemental Fig. S8).

We specifically looked at those HIMs that are away from the
nuclear interior. Figure 2B shows one HIM (#541) that is close to
nuclear lamina (mean lamin B1 TSA-seq score 0.593, mean SON
TSA-seq score −0.642). This HIM has nine TFs coregulating six
genes that span 6.78MbonChromosome3. TheHi-C edge density
(see Supplemental Methods) among these genes is 0.667, suggest-
ing that these six genes as a group are spatially closer to each other
than expected through chromatin interactions. The SON TSA-seq
scores of the six genes are low but tend to be the localmaxima (i.e.,
small peaks within valleys), whereas the lamin B1 TSA-seq scores
are high but tend to be the local minima (i.e., small valleys within
peaks), suggesting that these gene loci are localized more toward
the nuclear interior than their surrounding chromatin. Five out

of the six genes are expressed with FPKM≥3.4. The gene RPL15
in this HIM is a K562 essential gene (Wang et al. 2015). The TFs
CDX1, HOXA9, and HOXA10 are involved in leukemia and hema-
topoietic lineage commitment according to GeneCards (Safran
et al. 2010). This suggests that even though HIM #541 is a HIM
away from nuclear speckles, it may play relevant functional roles
in K562.

Recently, Quinodoz et al. (2018) reported that inter-chromo-
somal interactions are clustered around two distinct nuclear bod-
ies, nuclear speckles and nucleoli, as hubs. By comparing with
the genomic regions organized around the nucleolus based on
data from the SPRITE method in GM12878 (Quinodoz et al.
2018), we found that a vast majority (85.4%) of the GM12878
HIMs do not have genes close to the nucleolus. Earlier work esti-
mated that only 4% of the human genome is within nucleolus-
associated domains (Németh et al. 2010). It is therefore expected
that only a small number of HIMs would be close to the nucleolus.

A B

C

D

E

Figure 2. HIMs tend to be close to the nuclear interior, in particular, speckles. (A) Scatter plot shows the mean SON TSA-seq score and mean lamin B1
TSA-seq score of the genes in each HIM. Each dot represents a HIM. The curves on the top and on the right are cumulative density functions (CDFs). The red
vertical dotted line represents the mean SON TSA-seq at 0.284 (approximately within 0.518 µm of nuclear speckles) (Chen et al. 2018). The black arrow
points to HIM #541. (B) HIM #541with lowmean SONTSA-seq (pointed by the arrow in A). The heatmap shows the upper-triangle part of the Hi-C contact
matrix (O/E) of the 10-kb-sized bins in the chromosome region that covers the genes in this HIM. Target genes of different TFs, genemembers of HIM, SON
TSA-seq, lamin B1 TSA-seq, A/B compartments, and RNA-seq signals are shown in different tracks. (C) Barplot shows the proportion of HIMs with a varied
proportion of genes in the A compartment. (D) Venn diagram shows that the genes assigned to HIMs are enriched in the A compartment. (E) Violin and
boxplot compare the replication timing of the genes assigned to HIMs and the other genes in the heterogeneous network of K562. Here the HIMs are
identified in K562. The spatial localization features of HIMs in other cell types are in Supplemental Figure S9.
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Indeed, we found that there are only 30 (4.62%) GM12878 HIMs
with all their genes near the nucleoli. Sixteen out of these 30
HIMs have at least one TF protein located close to nucleoli accord-
ing to protein subcellular locations from the human protein atlas
(Thul et al. 2017). For example, HIM #267 has four TF regulators:
ETS1, ETV6, PPARG, and PTEN, inwhichETV6 is known to localize
to the nucleoli.

Earlier work from Hi-C data showed that at megabase resolu-
tion, the interphase chromosomes are segregated into A and B
compartments that are largely active and inactive in transcription,
respectively (Lieberman-Aiden et al. 2009). Chromosome regions
in B and A compartments have nearly identical agreements, re-
spectively, with lamina-associated domains (LADs) and inter-
LADs (i.e., more toward interior) (van Steensel and Belmont
2017). Compartment A regions also replicate earlier than compart-
ment B regions (Pope et al. 2014).We found that the genes inHIMs
are preferentially in A compartments and replicated earlier across
cell types. Specifically, 57.4% of HIMs have genes that are all
in A compartments in K562 (Fig. 2C).We also found that the genes
in HIMs as a whole are more enriched in
A compartments (P<2.22×10−16, hyper-
geometric test) (Fig. 2D). Compartment
A can be further subdivided into A1 and
A2 subcompartments in GM12878 (Rao
et al. 2014) at a finer scale. Among the
369 GM12878 HIMs with genes all in
A compartments, 198 (53.66%) HIMs
have ≥80% of their genes in A1 subcom-
partments, 60 (16.26%) HIMs are in A2
subcompartments, and the remaining
111 HIMs span both A1 and A2 com-
partments. Additionally, we found that
the genes assigned to HIMs have much
earlier replication timing than the
other genes (P<2.22×10−16) (Fig. 2E).
We also observed that the genes (on the
same chromosome) that are in HIMs
tend to have more similar replication
timing compared with the genes (on
the same chromosome) that are not in
HIMs (Supplemental Fig. S9). These pat-
terns can also be observed in other cell
types (Supplemental Fig. S9).

Taken together, these results have
revealed that HIMs have a strong pre-
ference to localize toward the nuclear
interior in active compartments,with the
majority of them being in proximity of
the nuclear speckles and replicating
earlier.

HIMs are enriched in essential genes,

super-enhancers, and PPIs

Next, we explored the functional pro-
perties of HIMs. We grouped the genes
assigned to HIMs into one set and the
genes in the heterogeneous network that
are not assigned to HIMs into another
set. For a fair comparison, we group the
gene sets by chromosome number. We
call these clusters merged-HIM clusters

and non-HIM clusters accordingly. We first looked at gene essenti-
ality (Supplemental Methods; Wang et al. 2015). We found that
genes assigned to HIMs are enriched with essential genes across
all five cell types. For example, 12.7% of the genes assigned to
HIMs in K562 are K562 essential genes, which is significantly high-
er than the proportion (7.79%) of the genes not assigned to HIMs
(P=1.13× 10−12) (Fig. 3A). This observation is also present on dif-
ferent chromosomes (Supplemental Fig. S10A). Across the cell
types, genes assigned to HIMs consistently have higher propor-
tions of essential genes than those not assigned to HIMs (P≤
2.17×10−6) (Supplemental Fig. S10B). Regarding gene expression
level, we found that genes assigned to HIMs are more highly
expressed and expressed at more similar levels (Fig. 3B; Supple-
mental Fig. S11).

Super-enhancers are known to be associated with many cell
type–specific functions (Hnisz et al. 2013). To study the connec-
tions between HIMs and super-enhancers, we computed the clus-
ter-size normalized number of super-enhancers annotated by
Hnisz et al. (2013) that (1) haveHi-C contactswith and (2) are close
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Figure 3. HIMs are enriched with essential genes, super-enhancers, and protein–protein interactions.
(A) Barplots show the proportions of genes that are K562 essential genes among the genes assigned to
HIMs and those not assigned to HIMs. (B,C ) Functional properties of the genes in the identified HIMs in
K562. To make a fair comparison, we group the genes assigned to HIMs by chromosome number and
called the resulting clusters as merged-HIM clusters. Similarly, we derive non-HIM clusters from the genes
in the heterogeneous networks but not assigned to HIMs. P-values are computed by the paired two-sam-
pleWilcoxon rank-sum test. (B) Boxplot shows the average gene expression level of the genes in a cluster.
(C) Boxplot shows the normalized number of super-enhancers related to a cluster. (D,E) TFs in HIMs are
enriched with protein–protein interactions (PPIs) among themselves. (D) One example of HIM from
GM12878 shows that nine TFs in the HIM are connected by 14 PPIs. The sub-PPI network has a density
at 0.389. The TFs NR3C1 and TFEB are master TFs in GM12878. (E) Boxplots show the distribution of the
sub-PPI network density of the HIMs and the subsets of HIMs with at least n TFs, n=5, 10. The medians
are significantly (P<2.22 ×10−16) higher than the expected density (0.158; red line) of the sub-PPI net-
works induced by randomly sampled TFs.
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to (window size = 50 kb) at least one gene in each cluster.We found
that HIMs are enriched with spatial contacts with super-enhanc-
ers. Specifically, the merged-HIMs have at least a sixfold higher
normalized number of super-enhancers than the non-HIMs across
cell types (Fig. 3C; Supplemental Fig. S12). This significant pattern
is consistent with varied window sizes from 20 kb to 1 Mb
(Supplemental Fig. S12).

Protein–protein interactions (PPIs) can further stabilize
TF-DNA binding of the interacting TFs (Lambert et al. 2018). We
asked whether TFs in the same HIM tend to have more PPIs with
each other. We computed the density of the sub-PPI network in-
duced by the TFs in a HIM, in which the PPI network is based on
591 TF proteins used in this study (Supplemental Methods). We
found that TFs within HIMs are enriched with PPIs among them-
selves compared with random cases selected from the 591 TFs.
For example, in GM12878, TFs NR3C1 and TFEB, which aremaster
regulators (Hnisz et al. 2013), coregulate eight geneswith the other
seven TFs in a HIM (Fig. 3D). The density of this particular sub-PPI
network is 0.389, which is 2.46 times higher than the average den-
sity (0.158) of the randomcases. Overall, themedian density of the
sub-PPI networks induced by TFs in the identified HIMs in
GM12878 is 0.214, much higher than the random cases (P<2.22
×10−16) (Fig. 3E). This observation also holds in other cell types

in this study (Supplemental Fig. S13). We also found that the sig-
nificance is not affected by the different number of TFs across
HIMs (Supplemental Fig. S13).

These results suggest that the genes and TFs involved in HIMs
likely perform critical roles, which are manifested by the level of
gene essentiality of target genes, engagement of super-enhancers,
and enrichment of PPI among TFs.

Genes in HIMs show stability and variability across cell types

To study how HIMs change among different cell types, we first fo-
cused on the assignment of genes to HIMs in different cell types.
Through pairwise comparison, we found that the genes assigned
to HIMs have the highest degree of overlap between GM12878
and K562 compared with the other cell types, which is consistent
with the fact that bothGM12878 andK562 are fromhumanhema-
topoietic cells (Supplemental Fig. S14A). Comparisons among all
five cell types showed that 3025 genes are consistently assigned
to HIMs, accounting for 30.91%–40.06% of genes that are in the
HIMs in each cell type (Fig. 4A). In contrast, only a small fraction
(≤5.93%) of genes are uniquely assigned to HIMs in each cell type.

The genes consistently and uniquely assigned to HIMs are en-
riched with distinct functional terms using DAVID (Supplemental
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Table S5; Huang da et al. 2009). The genes consistently assigned
to HIMs are strongly enriched with functions related to essential
cellular machinery, whereas the genes uniquely assigned to
HIMs in a particular cell type are enriched with more cell type–
specific functions. An example is NHEK HIM #107 (Fig. 4B).
Among the six genes in this HIM, DSC1, DSC3, and DSG1 are
not assigned to HIMs in the other cell types. These six genes are in-
volved in the keratinization pathway based on GeneCards (Safran
et al. 2010). We further assessed the assignment of housekeeping
genes (Eisenberg and Levanon 2013) and essential genes to
HIMs. We found that for both sets of genes, the majority (≥84%)
of them are assigned to HIMs consistently in at least three out of
the five cell types (Fig. 4C), suggesting that the genes with crucial
functions tend to form spatial clusters across multiple cell types.

We next analyzed the variability of HIMs in terms of spatial
proximity to subnuclear compartments. We found that 15 out of
the 30 HIMs close to nucleoli in GM12878 (based on the data
from Quinodoz et al. 2018) have mean SON TSA-seq score
≥0.284 in K562 (based on the data from Chen et al. 2018; Fig.
4D). In other words, these HIMs are involved in a change of spatial
position from nucleoli to speckles between GM12878 and K562.
One example is HIM #267 in GM12878, which has the highest
mean SON TSA-seq score (2.41) in K562. The 10 genes (in HIM
#267 in GM12878) together with another eight genes form a
new HIM (#628) in K562. This GM12878 HIM #267 has four TFs:
ETS1, ETV6, PPARG, and PTEN. On the other hand, the K562
HIM #628 has four different TFs: KLF4, NFKB1, STAT3, and WT1.

To compare the detailedmembership changes of HIMs across
cell types, we computed Jaccard indices, denoted by JITF and JIgene,
of the TFmembers and genemembers betweenHIMs from two dif-
ferent cell types, respectively. We found that the gene members
undergo amoderate change fromone cell type to another, whereas
the TF members change at a much higher rate. JIgene has a median
of 0.096, and it is higher than the expected JIgene between random
gene sets while controlling the set size and chromosome number
(median ratio = 14.12) (Fig. 4E). On the other hand, JITF has a me-
dian of 0.017, which is close to the expected JITF between random-
ly selected control TF sets (median ratio = 0.878) (Fig. 4E). There are
at least two factors jointly contributing to these observations. First,
the Hi-C interaction networks and GRNs are highly cell type–spe-
cific, as 66% chromatin interactions and 31.4% GRN interactions
only exist in one cell type (Supplemental Table S6). Second, given a
HIM identified in a cell type, the motif M density of the HIM (see
Supplemental Methods) has a higher fold change than the Hi-C
edge density of the HIM in another cell type (P<2.22×10−16)
(Fig. 4F). In other words, the coregulation relationships of the
TFs on the genes within HIMs change more often across cell types
than the spatial proximity relationships between the gene loci.
However, we observed that if HIMs from two different cell types
share a higher number of housekeeping genes, they tend to have
a higher JITF (Fig. 4G). We found a similar pattern for essential
genes (Supplemental Fig. S14B).

Conserved and cell type–specific HIMs have distinct properties

Motivated by the gene membership dynamics of HIMs across cell
types, we further classified HIMs into conserved and cell type–spe-
cific HIMs. ForHIMs in a given cell type, we call a HIM conserved if
it shares a significantly high proportion of genes (JIgene≥1/3, P≤
0.001, Bonferroni adjusted hypergeometric test) with at least one
HIM in other cell types (i.e., the HIM is recurrent). Note that
JIgene≥1/3 represents that two equal-sized gene sets share more

than half of their genes. The rest are called cell type–specific
HIMs. Figure 5 shows a cell type–specific HIM, HIM #712, in
K562 and its changes in other cell types. This HIM covers nine
genes on Chromosome 11. These genes spatially contact each oth-
er at higher frequencies than expected (Fig. 5A) and are coregulated
by TFs BCL6B and CPEB1 in K562 (Fig. 5B). In other cell types, at
most four out of the nine genes are assigned to HIMs (Fig. 5C).
We found that this HIMhas K562-specific chromosomal structures
and functional annotations. The genomic region covering the
genes in the HIM is in the A compartment in K562 but switches
to the B compartment in other cell types (Fig. 5D). One nearby up-
stream region is annotated as a super-enhancer only in K562 (Fig.
5E; Hnisz et al. 2013). Many genomic loci are annotated as tran-
scriptionally active states, such as enhancers, promoters, or tran-
scribed states in K562, but not in other cell types based on
ChromHMM (Fig. 5F; Ernst and Kellis 2012). The genes MRPL16,
OSBP, and PATL1 are essential genes in K562. We compared the
3D structural representations of the chromosome region centered
on genes in HIM #712. We ran Chrom3D (Paulsen et al. 2018) 100
times to construct 100 possible 3D structures in each cell type
to enable statistical comparisons. One possible 3D structure in
K562 is shown in Figure 5A. We found that the chromosome re-
gion covering the genes in the HIM has a specific 3D structure in
K562. The upstream super-enhancer is spatially closest to the
genes in HIM #712 in K562 (Supplemental Fig. S15A). The chro-
mosome region covering the super-enhancer and the genes in
HIM #712 are spatially more proximal to each other compared
with the flanking regions (±500 kb) in 3D space in K562
(Supplemental Movie S1; Supplemental Fig. S15B). This example
illustrates that the K562-specific HIM has specific chromatin orga-
nization and potential biological functions. Together, our compar-
isons reveal that in general conserved HIMs have stronger cluster
features, tend to be closer to nuclear interior, and have higher ex-
pression levels. On the other hand, cell type–specific HIMs have a
higher proportion of cell type–specific genes (Supplemental
Results; Supplemental Figs. S16, S17).

Discussion

To better understand the heterogeneous nature of different com-
ponents in the nucleus, new computational models are needed
to jointly consider different types of molecular interacting net-
works. In this work, we developed MOCHI to specifically consider
two types of different interactomes in the nucleus: (1) a network
of chromosomal interactions between different gene loci, and
(2) a GRN where TFs bind to the genomic loci with cis-regulatory
elements to regulate target genes. MOCHI is able to identify net-
work patterns in which nodes of TFs (from GRN) and gene loci
(from both chromatin interactome and GRN) cooperatively form
distinct network clusters, which we call HIMs, by using a newmo-
tif clustering framework for heterogeneous networks. To the best
of our knowledge, this is the first algorithm that can simultane-
ously analyze these heterogeneous networks within the nucleus
to discover important network structures and properties. By apply-
ing MOCHI to five different human cell types, we made new ob-
servations to show the biological relevance of HIMs in the 3D
nucleome.

Our method has multiple methodological contributions.
We further extended the motif conductance clustering method
(Benson et al. 2016) to find overlapping HIMs in heterogeneous
networks. Our work shows the utility of our new algorithm to
identify HIMs based on complex heterogeneous molecular
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interactomes. In addition, our method can be further modified to
identify other types of potential HIMs in heterogeneous networks
by replacing the four-nodemotifMwith relevantmotifs, especially
when additional types of interactomes are included. For example,
in addition to considering chromatin interactions and protein–
DNA interactions as we did in this work, it would be of interest
to incorporate other types of relevant interactomes in the nucleus,
such as the RNA–chromatin interactome (Nguyen et al. 2018).

How can we explain the formation of HIMs? In Figure 6, we
illustrate a possiblemodel of HIMswithin the nucleus. HIMs (light
pink domains) are toward the interior with a group of interacting
TFs and chromatin loci as “transcriptional niche.” The set of TFs
in aHIMcooperatively regulate target genes, which also havehigh-
er contact frequency than expected. Note that this is conceptually
consistent with recently reported colocalized TF pairs (Ma et al.
2018), condensates (Chong et al. 2018; Sabari et al. 2018; Kim
and Shendure 2019), and 3D cliques (Petrovic et al. 2019). Some
of these TF clusters may be related to the localization preferences
of TFs in nuclear compartments, such as nuclear speckles that

are enriched with various transcriptional
activities (Spector and Lamond 2011;
Chen et al. 2018). Indeed, we found
that the majority of the identified HIMs
are close to nuclear speckles. The defini-
tions of HIMs may also have intrinsic
connections with the emerging findings
on the mechanism of nuclear subcom-
partment formation, in which TFs and
their potential target genes/chromatin
are trapped by localized liquid-like cham-
bers through phase separation (Hnisz
et al. 2017; Shin and Brangwynne 2017;
Chong et al. 2018). It has been suggested
that phase separation may help explain
the formation of super-enhancer-mediat-
ed gene regulation (Hnisz et al. 2017;
Boija et al. 2018), although the exact
roles of TFs in this process remain elusive
(Kim and Shendure 2019; Stadhouders
et al. 2019). From our analysis, we found
that genes assigned to HIMs are enriched
with contacts with super-enhancers. The
genes consistently assigned to HIMs are
enriched with essential biological pro-
cesses related to chromosomal organiza-
tion and transcription. However, the
detailed formation mechanisms for
HIMs, which may involve both cis-ele-
ments and trans-factors, remain to be in-
vestigated. It would also be important to
delineate the different roles of both dif-
ferent TFs and different genes in forming
the HIMs, as some of themmay be neces-
sary and others may be redundant for
the stability of HIMs. In addition, more
experimental data are needed to further
evaluate the functional significance of
HIMs. For example, although we ob-
served connections between HIMs and
3D genome organization features, the in-
tricate functional relevance among these
different higher-order nucleome units

that jointly contribute to gene regulation in different cellular con-
ditions has yet to be revealed. Nevertheless, HIMs may become a
useful type of nuclear genome unit and an informative resource
in integrating heterogeneous nucleome mapping data, which
has the potential to provide new insights into the interplay among
different constituents in the nucleus and their roles in 3D nucle-
ome structure and function.

Methods

Brief introduction to homogeneous network clustering by motif

conductance

We first review a higher-order network clustering method that
can identify a cluster of nodes S based on motif conductance (de-
fined below). We then introduce our algorithm MOCHI in the
next subsection. Let G be an undirected graph with N nodes and
let A be the adjacency matrix of G. [A]ij∈ {0,1} represents the
connection between nodes i and j. The conductance of a cut(S, �S),

A

B

D

E

F

C

Figure 5. A K562-specific HIM with K562-specific chromatin interactome and functional annotations.
(A) The 45° rotated upper triangle part of the contact matrix between the 10-kb-sized bins in a chromo-
some region in K562. The region is segregated into four nested TADs. The 3Dmodel on top left is inferred
by Chrom3D using 10-kb resolution Hi-C data. (B) Thin bars represent the transcriptional start sites (TSSs)
of the genes that are in the heterogeneous networks. Thick bars represent the genes that are regulated by
BCL6B or CPEB1 in K562. (C) The assignment of the genes to HIMs in K562 and the other cell types.
(D) The assignment of the bins to A/B compartments. (E) The regions that are annotated as super-en-
hancers (SEs). (F ) The chromatin states inferred by ChromHMM based on multiple histone modification
marks, where red and purple colors represent promoters, orange and yellow stand for enhancers, green
represents transcribed regions, and gray represents other types of regions such as repressed regions.
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where S is a subset of the nodes and �S the complementary set of
S is defined as

wG(S) =
cutG(S, �S)

min[VolG(S), VolG(�S)]
, (1)

where cutG(S, �S) =
∑

i[S,j[�S [A]ij is the number of edges connecting
nodes in S and �S. VolG(S) =

∑
i[S

∑N
j=1 [A]ij is the sum of the node

degree in S. Moreover, the conductance of the graph G, wG, is de-
fined as minS wG(S). The S that minimizes the function is the opti-
mal solution. Finding the optimal S is NP-hard, but spectral
methods such as Fiedler partitions can obtain clusters effectively
(Chung 2007). Recently, the conductance metric has been gener-
alized to motif conductance (Benson et al. 2016; Tsourakakis
et al. 2017), in which a motif refers to an induced subgraph. The
motif conductance computes cutG(S, �S) and VolG(S) based on a
chosen n-node motif. When n=2, the motif is an interaction
that reduces the motif conductance to conductance in Equation
1. When n≥3, the motif conductance may reveal new higher-or-
der organization patterns of the network (Benson et al. 2016). A
more recent network clusteringmethod that incorporates network
higher-order structures has been developed in the setting of hyper-
graph clustering (Li and Milenkovic 2017), which includes the
motif conductance as a special case. However, one key limitation
of the aforementioned methods is that they cannot identify over-
lapping clusters, which is a crucial feature of the heterogeneous
networks that we want to achieve in this work.

MOCHI: higher-order network clustering to identify HIMs

in a heterogeneous network

We developed a higher-order network clusteringmethod based on
network motif to identify overlapping HIMs in a heterogeneous

network by extending the approach by Benson et al. (2016). We
call our method MOCHI (motif clustering in heterogeneous inter-
actomes). We illustrate the workflow of MOCHI in Figure 1. First,
we select a specific heterogeneous four-node network motif, M
(Fig. 1A). In M, two nodes are TFs, and the other two nodes are
genes. Both TFs regulate the two genes, and the two genes are spa-
tially more proximal to each other than expected. The motivation
for choosing the subgraphM is that it is the building block of HIMs
given that our goal is to discover a group of genes that have contact
with each other more frequently than expected and also share TF
regulators. Compared with simpler motifs (e.g., three-node motif
in which one node is TF), our four-node motif defined here has
the advantage of simultaneously considering a pair of genomic
loci that interact with each other and are coregulated by the
same pair of TFs.

Conceptually, our method searches for HIMs with two goals.
The TFs and genes in the same HIM should be involved in many
occurrences of M. Additionally, HIM should avoid cutting occur-
rences ofM, where a cut of occurrences ofMmeans that only a sub-
set of TFs and genes in the occurrences ofM is in the HIMnode set.
More formally, our method aims to find HIMs with the node set S
that minimizes the motif conductance:

wM (S) = cutM (S, �S)
min[VolM (S), VolM (�S)]

. (2)

We first introduce some notations before we explain wM(S)
and provide definitions of cutM (S, �S) in Equation 3 and VolM(S)
in Equation 4. Let G be the given heterogeneous network (e.g.,
Fig. 1B). Let M be the set of occurrences of the motif M in G. For
simplicity and without confusion, we also denote an occurrence
of the motif M as M. Let VM be the node set of the two TFs and
two genes inM∈M. In Equation 2, cutM (S, �S) is the number of oc-
currences of the subgraph M that are cut by S. Formally,

cutM (S,�S)=∑
M[M 1(|VM>S|[{1,3})+a

∑
M[M1(|VM>S|=2), a.1,

(3)

where 1 is an indicator function. Here, cutM (S, �S) distinguishes
the number of nodes of the four-node motif M being assigned
to S and �S. Specifically, it adds a higher penalty for the cut to the
cases in which two nodes in M are assigned to S and two nodes
are assigned to �S (i.e., 1(|VM > S| = 2) in Equation 3), compared
with the cases in which one node or three nodes are assigned to
S (i.e., 1(|VM > S| [ { 1, 3}) in Equation 3), by letting α> 1 in
Equation 3. This is because the one-versus-three split could still
keep interaction information from both the GRN and chromatin
interaction network, and the two-versus-two split will lose either
of the information. We show that when α=4/3 in Equation 3,
the clustering results would be near optimal (Supplemental
Methods). Thus, α is set to 4/3 in this work. VolM(S) is the sum
of the number of occurrences of M containing nodes in S, which
is defined as

VolM (S) = ∑
i[S

∑
M[M 1(i [ VM ). (4)

Similarly, we define the subgraph conductance of the graphG
based on themotifM, wG

M asminS wM(S). Note that the notationG is
excluded from the notations cutM, VolM, wG

M , and wM(S) that are de-
pendent on both heterogeneous network G and motif M. This is
because including G would likely confuse this set of notations
with a set of notations related to homogeneous network GM de-
rived from heterogeneous network G and network motif M later
in this section. In the following procedures of the algorithm, we
show that the motif conductance is equivalent to the normal con-
ductance in a projection of the graph by calculating the subgraph
adjacency matrix. Thus, finding the set S that achieves the

Figure 6. Illustration of the spatial organization of HIMs inside the nucle-
us. The cartoon on the left shows how chromosomes (curved lines) are in-
tertwined in 3D space. Each chromosome can be primarily partitioned into
an active A compartment (red) and an inactive B compartment (blue).
Active and inactive genomic regions are formed in 3D space through cis-
and trans-contacts, revealing shared localization relative to subnuclear
structures, such as nuclear speckles and nuclear lamina. Similarly, the spa-
tial localization of TFs within the nucleus is not randomly distributed but
shows a great level of heterogeneity, probably affected by the distribution
of binding sites on the 1D genome and the chromatin openness. As an ex-
ample, ETV6 is highlighted. The MOCHI algorithm developed in this work
is able to identify HIMs (shaded in pink), putative functional modules that
transiently or stably exist in the nucleus, in which a group of TFs show an
elevated concentration in a “transcriptional niche” and colocalize with
genes in proximity in 3D. For example, a zoom-in view on the right reveals
a potential scenario of a HIM in which the enhancer and its target genes
located far away share binding by a group of TFs and are likely to be pulled
together by TFs and cofactors. However, the exact interplay between TFs
and 3D genome features and the global formation mechanisms of HIMs
have yet to be revealed.
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minimum subgraph conductance is also NP-hard, following that it
is NP-hard to find the minimal wG(S). We describe our algorithm
MOCHI to find HIMs that approximate the solution.

1. Calculate subgraph adjacency matrix WM(G)

We first calculate the subgraph adjacency matrix WM(G) by

[WM (G)]ij =
∑

M[M 1(i [ VM , j [ VM ), (5)

where [WM(G)]ij is the number of occurrences of the subgraphM in
G that cover both i and j (for an example, see Fig. 1C). For example,
if both i and j are TFs, [WM]ij reflects the number of paired gene loci
that are spatially more proximal to each other and that are also co-
regulated by TFs i and j. If both i and j are genes, [WM]ij=0 if i and j
are not spatially more proximal to each other. Otherwise, [WM]ij is
the number of paired TFs that coregulate i and j. Generally,WM(G)
is symmetric and [WM(G)]ij≥0. Thus WM(G) can be viewed as the
adjacency matrix of an undirected weighted network. Let GM

denote the network with WM(G) as the adjacency matrix (for an
example, see Fig. 1D). It is important to note that there are genes
or TFs that may not be in any occurrence of M, which would
lead to zero vectors in the corresponding rows and columns in
WM(G). These singleton nodes in GM would be removed before
the next step.

2. Apply Fiedler partitions to find a cluster in GM
We use Fiedler partitions similar to the algorithm by Benson et al.
(2016) to find a cluster S in graph GM, where wGM

(S) is close to the
global optimal conductance of the graph: w(GM). Recall that w(GM)
is the minimum of wGM

(S1) over all possible sets S1. The method is
described as follows:

• Calculate the normalized Laplacian matrix of WM(G),

L = J −D−1/2
GM

WM G( )D−1/2
GM

, (6)

where J is an identity matrix, and where DGM with
[DGM ]ii =

∑N
j=1[WM (G)]ij is the diagonal degree matrix of GM.

• Calculate the eigenvector v of the second smallest eigenvalue
of L.

• Find the index vector (α1, …, αN), where αk is the kth smallest
value of D−1/2

GM
v.

• S = argmin
Sk

wGM
(Sk), where Sk = { a1, . . . , ak} , 1≤ k≤N.

The sets S and �S are twodisjoint clusters for the heterogeneous
network G.

3. Apply recursive bipartitioning to find multiple HIMs

We then use recursive bipartitioning to find multiple HIMs. We
use a very different strategy than the one by Benson et al. (2016)
to select which cluster to split at each iteration in order to specifi-
cally allow overlapping motif clusters (HIMs) with shared TFs. At
each iteration, we split one HIM into two child HIMs. After itera-
tion ℓ−1, there are ℓ HIMs: S1, S2, …, Sℓ.

At the next iteration ℓ, one HIM Sk is selected if the graph it
forms, Gk, has the lowest subgraph conductance value wGk

M among
w
Gj

M , 1≤ j≤ℓ. We set a threshold t1 for w
Gk
M . If wGk

M ≤ t1, Skwill be split
into two child HIMs Sk(c) and Sk(c) by treating the induced hetero-
geneous subnetwork as a new network Gk and repeating Steps 1
and 2 for graph Gk. However, if the partition of graph Gk would
lead to zero motif occurrences in either of its child graphs, we
would stop partitioning this graph, add a large enoughpenalty val-
ue to its conductance value (to make sure it would not be selected
to partition again), and move on to the next iteration. Otherwise,

when wGk
M . t1, the recursive bipartitioning process will stop as all

the HIM’s subgraph conductance values pass the threshold.

4. Find overlapping HIMs

Finally, we reconcile the HIMs from the clustering history tree to
find overlapping HIMs. This step is added because the HIMs after
Step 3 share no TFs. To resolve this, we first trace back the ancestral
HIMs up to certain generations for each HIM based on the conduc-
tance value of its ancestor w

Ganci
M , where i = { 1, 2, 3 . . . } denotes

for the timing of ancestors (e.g., “parent,” “grandparent”) of the
HIM. We trace along the tree until w

Ganci
M ≤ t2, where t2 denotes an-

other threshold. Clearly, t2 has to be smaller than t1 to make this
process practical. Next, we pool together the TFs from the HIM
and from its ancestor HIMs. We sequentially remove the pooled
TFs from the HIM. Each time, we remove the TF that contributes
the least number of occurrences of the subgraph M in the graph
that this HIM represents. We stop the process when removing a
TF would significantly decrease the number of occurrences of the
subgraph M.

Pseudocode and runtime analysis of our algorithm

The pseudocode of our MOCHI algorithm is presented in
Supplemental Methods. The runtime of MOCHI is bounded by
O(t2c2), where t and c (t≪ c) are the number of TFs and the number
of gene loci in the input heterogeneous network, respectively (for
detailed analysis, see Supplemental Methods).

Summary of the algorithm

Given a heterogeneous network from chromatin interactome net-
work and GRN, our algorithm MOCHI identifies multiple and
overlapping HIMs, which represent clusters of genes and TFs in
which the genes are interacting more frequently than expected
and are also coregulated by the same set of TFs. MOCHI has a
few key differences compared with the subgraph conductance
method of Benson et al. (2016). First, the input of our algorithm
is a heterogeneous network with different types of nodes (TFs
and gene loci), which are treated differently, whereas the input
network for the method of Benson et al. (2016) is rather homoge-
neous. Second, the algorithm of Benson et al. (2016) will not ex-
plicitly identify multiple overlapping clusters. In MOCHI, we
further developed a recursive bipartitioning method to findmulti-
ple HIMs that may overlap. Specifically, we selected a HIM to split
if it has the smallest motif conductance among the HIMs at each
iteration. In other words, we split theHIM that has the clearest pat-
tern ofmultiple clusters. HIMswith overlapping TFs will be split in
the late stage of iterations, and the overlapping information is en-
coded in the clustering history tree.

The recent method on hypergraph clustering (Li and
Milenkovic 2017) can be applied to identify nonoverlapping
HIMs in which a hyperedge is defined as the motif M. However,
similar to the method of Benson et al. (2016), it was not designed
to identify overlapping clusters; that is, the method would not be
able to findmultiple overlapping HIMs. Ourmethod also has clear
differences compared with previous works on multilayer network
clustering (for review, see Kivelä et al. 2014). First, the inputs are
different. A multilayer network typically has only one type of
nodes and different types of interactions connecting nodes within
the same layer and between layers. The heterogeneous network in
this work has different types of nodes (TFs and gene loci) and also
different types of edges. Previous multilayer network clustering
methods are therefore not directly applicable to identify HIMs.
Second, the outputs are different. The majority of multilayer net-
work clustering methods aim to find clusters that either are
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consistently observed acrossmultiple layers or are observed only in
a specific layer, which are conceptually different from HIMs.

Software availability

The source code of our MOCHI method is available as
Supplemental Code and at GitHub at https://github.com/ma-
compbio/MOCHI.
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