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PERSPECTIVES

Computational approaches towards the discovery  
and optimisation of cruzain inhibitors
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The need to develop safer and more efficacious drugs to treat Chagas disease has motivated the search for cruzain inhibitors. 
Cruzain is the recombinant, truncated version of cruzipain, a cysteine protease from Trypanosoma cruzi with important roles 
during the parasite life cycle. Several computational techniques have been applied to discover and optimise cruzain inhibitors, 
providing a molecular basis to guide this process. Here, we review some of the most recent computational studies that provided 
important information for the design of cruzain inhibitors. Moreover, we highlight the diversity of applications of in silico 
techniques and their impact.
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One of the most employed approaches to find novel 
drugs to treat Chagas disease (CD) is the development of 
cruzain inhibitors. Cruzipains are a multigenic family of 
cysteine proteases from Trypanosoma cruzi, with var-
ied roles during the parasite life cycle, associated with 
nutrition, metacyclogenesis, invasion of host cells, and 
modulation of macrophage response to infection.(1) The 
term cruzain refers to the recombinant form of the most 
studied member of this family and is a truncated version 
at the C-terminal. Most of the medicinal chemistry lit-
erature, and all crystallographic complexes with inhibi-
tors, have been determined with cruzain.

Cruzain’s active site is subdivided into seven sub-
pockets able to accommodate the residues of the sub-
strates. The pockets that accommodate the substrate 
amino acids (aas) from the acyl side are named S1 to 
S4, while the pockets accommodating the aas from the 
amino side are named S1’ to S3’. The catalytic triad 
Cys25, His162, and Asn182 locates in the interface 
between the S1 and S1’ pockets (Figure). Analysis of 
cruzain crystal structures reveals that the S3 to S1’ 
sub-pockets usually interact with inhibitors, being the 
most relevant for drug development.(2) Among these 
pockets, only S2 is well defined, whilst the S1’, S1, and 
S3 pockets are shallow. Studies of cruzain’s substrate 
specificity indicate that S3 accommodates better posi-
tively charged residues and bulky aromatic groups; S2 
accommodates hydrophobic aas, favoring the aromatic 
ones, and also accepting basic aas; S1 accommodates 
better positively charged residues and small aromatic 
groups; S1’ lacks an amino acid (aa) preference.(3)
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Throughout decades, several classes of cruzain in-
hibitors have been described (reviewed by da Silva et 
al.(1) and Nascimento et al.(4)). Most times, computational 
techniques were employed to aid the drug discovery pro-
cess. Here, we highlight key studies performed in the last 
four years. Even in this limited timeframe, we cannot 
provide a comprehensive summary in this perspective. 
Instead, we discuss a subset of studies that highlight the 
wide range of applications of computational techniques, 
exemplifying their power to aid the rational design of 
cruzain inhibitors (Table).

Structure-based discovery and optimisation of 
cruzain inhibitors

A common strategy to search for drug candidates is 
to test millions of molecules against the target evaluating 
the biological outcomes; in the case of cruzain, research-
ers look for inhibitors. Experimental screening of a mas-
sive quantity of molecules is time-consuming, expensive, 
and requires intensive laboratory work in confirmatory 
assays. Thus, virtual screening techniques have been used 
to accelerate the hit discovery process and diminish the 
costs in the last decades. Virtual screening hits are mol-
ecules predicted to be active against the target, and they 
must be assayed to confirm the predictions. One method 
widely applied in virtual screening campaigns is molec-
ular docking. It predicts the binding mode between two 
molecules, the biological target and the small molecule 
under investigation. These calculations require the 3D 
structural data from the target and the molecules. To date, 
28 crystal structures of cruzain complexed with small 
molecules, and one apo structure, have been experimen-
tally determined. This type of information had been used 
in docking-based virtual screening campaigns. Silva et 
al.(5) screened a library of 120 small natural and nature-
based compounds with docking and selected 14 naphtho-
quinone-based molecules for the enzymatic assays. They 
found three cruzain inhibitors, one with a potency in the 
low micromolar range (IC50 6.3 µM). De Souza et al.(6) 
used three different docking algorithms to screen almost 
4,000,000 molecules from the lead-like and fragment-like 
subsets of the ZINC database. The ZINC database con-
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tains over 750 million purchasable compounds for vir-
tual screening and is broadly used in the community. The 
compounds are divided into subsets organised according 
to the molecules’ molecular properties. Based on this 
screening, the authors selected 14 lead-like and four frag-
ment-like compounds for the assays. They found one cru-
zain inhibitor between the fragment-like molecules, with 
an IC50 of 1.0 µM (Compound 1). The subsequent design 
of analogs for compound 1 yielded optimised inhibitors, 
with an IC50 of 120 nM for compound 45. The superpo-
sition of the predicted binding mode of both compounds 
suggests a conservative binding mode between them. In 
another study, Ferreira et al.(7) used molecular docking to 
predict the binding mode between cruzain and compound 
3a (IC50 of 2.2 µM), a previously reported competitive 
inhibitor. The compound hydrogen bonds with Gly66, 
Asp161, and Gln19, as commonly observed in crystallo-
graphic complexes of cruzain bound to inhibitors. Based 
on these results, they synthesised analogs that were tested 
against cruzain, resulting in a nanomolar range inhibitor 
10j (IC50 of 0.6 µM). The predicted binding mode for 10j 
maintains the hydrogen bond pattern of 3a, conserving 
the same binding mode. Once hits are known, docking-
based virtual screening can also aid in prioritising analogs 
for synthesis. Starting with a micromolar-range cruzain 
inhibitor (compound 1a, IC50 of 7.5µM), Barbosa da Silva 
et al.(8) screened 3,365 analogs and selected 22 for synthe-
sis and biological assays, resulting in an optimised com-
pound 1s with an IC50 of 2.5 µM.

Molecular docking studies can also be very useful 
in proposing the binding mode of known cruzain com-
petitive inhibitors, helping to generate hypotheses about 
the importance of different compound moieties for bind-
ing. Pereira et al.(9) have predicted binding modes of two 
competitive non-covalent cruzain inhibitors, and one 
of them was later optimised through a Structure-Based 
Drug Discovery (SBDD) approach.(8) More sophisticated 
pipelines have also been described toward ligand bind-
ing mode prediction. Martins et al.(10) combined docking 
with molecular dynamics (MD) simulations and molecu-
lar mechanics-generalised Born/surface area (MM-GB/
SA) calculations to compare possible binding modes of a 
quinoline derivative. Considering evidence from multi-
ple techniques, they selected one of the major MD ligand 
clusters as the most likely binding mode of the inhibitor, 
based on its higher stability in simulations, lower inter-
nal ligand strain, and predicted binding affinity.
Understanding structure-activity relationships 
(SAR) and mechanism of inhibition

SAR studies frequent follows the description of an 
inhibitor series. Knowing the SAR for a compound se-
ries can be useful in ligand optimisation, especially if 
rationalised in terms of protein-ligand binding interac-
tions. Santos et al.(11) performed MD simulations and 
thermodynamic integration (TI) calculations to under-
stand the SAR of a benzimidazole series of cruzain 
inhibitors. TI recapitulated relative binding affinity 

Cruzain’s active site residues and its division into sub-pockets. Residues from pockets involved in recognition of inhibitors are shown as sticks 
and colored according to the sub-pocket they belong to: pink (S3); green (S2); blue (S1); and brown (S1’). Cruzain structure (PDB 3KKU) is 
represented as cartoon and surface.
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with high accuracy, while the interactions observed in 
the simulations indicate an important role of the bro-
mophenyl ring and the linker region, bound at the S2 
subsite, to anchor the compounds. More specifically, 
they frequently observed hydrogen bonds to Gly66 and 
Asp161, besides van der Waals interactions with several 
residues in the S2 pocket.(11) In another study, Luchi et 
al.(12) combined quantum theory, MD simulations, and 
machine learning to analyse a series of 17 vinyl sulfone 
cruzain inhibitors, divided into two groups according to 
their binding affinity. Their analysis indicates that po-
tent inhibitors induce conformation changes in S3, S2, 
and S1’ subsites, favoring positioning of the warhead and 
cruzain conformations expected for substrate recogni-
tion. Compared to the less potent compounds, the most 
actives interact more frequently with Gly66, Asp161, 
Gly163, and Leu67. Lameiro et al.(13) studied the bind-
ing of peptidomimetic nitriles by covalent docking and 
MD. By simulating three inhibitors, they investigated 
two SAR trends observed for the series: the impact of 
stereochemistry and a substitution in P2. As reported 
by other studies, the authors highlight the importance of 
hydrogen bonds to Gly66 and Asp161 and hydrophobic 
interactions to Leu67 for affinity to cruzain.

Computational studies have also provided insight for 
understanding differences in the mechanism of cruzain 
binding to different classes of covalent inhibitors. To do 
so, Silva et al.(14) studied a pair of inhibitors that differed 
only in the warhead, representing two classic classes of 
cruzain inhibitors: vinyl sulfones and nitriles. Quantum 
Mechanics/Molecular Mechanics (QM/MM) and MD 

simulations were used to explore the reaction mecha-
nism between cruzain and the two compounds. In agree-
ment with experimental data, the ΔG of the reaction with 
the vinyl sulfone was much more negative, as expected 
for an irreversible inhibitor. The study also indicated a 
difference in the reaction mechanism: while the Cys25 
nucleophilic attack and His162 proton transfer occur in a 
single step for a reversible inhibitor, these events occur 
in two steps for an irreversible covalent inhibitor.(14)

Another computational technique applied to under-
stand SAR trends is the quantitative structure-activity 
relationship (QSAR), a ligand-based approach in which 
models are built to correlate mathematically the chemi-
cal features of molecules with their biological activity. 
These models are built based on sets of molecules with 
activity described against the target of interest. QSAR 
can predict whether a molecule will be active or to com-
prehend which modifications improve the activity in a 
compound series. Thus, QSAR models have been used 
in virtual screening for hit identification and ligand op-
timisation steps. For example, Rosas-Jimenez et al.(15) 
searched in the ChEMBL database for molecules with 
reported IC50 against cruzain. With a 344 inhibitors da-
taset, they built predictive QSAR predictive models to 
find chemical diverse cruzain inhibitors. These models 
are available in a Python script.

Getting biological insights relevant for drug discovery

Most of the studies to find cruzain inhibitors search 
for molecules able to bind to the orthosteric site. How-
ever, cruzain belongs to the papain family of cysteine 

TABLE
Recent applications of computational techniques toward drug discovery targeting cruzain

Application Computational techniques employed Reference

Hit discovery Docking-based virtual screening (5)

Hit discovery and optimisation Docking-based virtual screening (6)

Ligand optimisation
Docking of analogs (7)

Construction of virtual libraries of analogs,  
docking-based virtual screening

(8)

Binding mode prediction
Docking (9)

Docking, molecular dynamics simulations, MM-GB/SA calculations (10)

Docking (13)

Prediction of binding affinity Thermodynamic integration (11)

Understanding SAR
Molecular dynamics simulations, analysis of contact profiles (11)

Molecular dynamics simulations, machine learning (12)

Thermodynamic fingerprints from molecular dynamics simulations (13)

Understanding mechanism of inhibition QM/MM simulations (14)

Generation of models for affinity prediction QSAR models (15)

Predicting allosteric sites Molecular dynamics simulations, docking-based virtual screening, 
and MM-GB/SA

(16)

Description of cruzipain sub-types Genomic analysis, phylogenetics, transcriptomic analysis,  
comparative modeling

(2)

MM-GB/SA: molecular mechanics-generalised born/surface area; SAR: structure-activity relationships; QM/MM: quantum 
mechanics/molecular mechanics; QSAR: quantitative structure-activity relationship.
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proteases, sharing high structural similarity with the oth-
er family members, such as human cathepsins L and B, 
leading to selectivity problems. Thus, developing inhibi-
tors able to bind to allosteric sites is a way to overcome 
these challenges. In that sense, Álvarez et al.(16) employed 
computational structural techniques to identify and char-
acterise a putative allosteric site in cruzain. They started 
mapping the human cathepsin K (hCatK) allosteric sites 
in the cruzain structure and, aided by MD simulations, 
identified two novel allosteric sites with at least 200 Å3 
volume calculated with POVME (POcket Volume Mea-
surer). These sites were validated with a docking-based 
virtual screening, MD simulations, and MM-GB/SA. 
The authors also analysed the cruzain residues interact-
ing with the ligands and compared them with the hCatK 
ones to discuss a possible selectivity mechanism.

Another challenge in working with cruzain as a drug 
target is that it belongs to the cruzipain gene family. De-
spite most of the drug studies focusing on cruzain, there 
are other cruzipain sub-types expressed by T. cruzi. San-
tos et al.(2) identified two cruzipain families organised 
in two clusters in the parasite genome and subdivided 
the sequences into four sub-types. Family I embraces the 
czp1 sub-type, the target of drug design projects, repre-
sented by cruzain. Family II embraces the czp2, czp3, 
and czp4 sub-types. These divisions were made based 
on alterations observed on the cruzipains’ active sites 
and are predicted to affect the interaction of the enzymes 
with their substrates and small molecules. The authors 
modeled the tertiary structure of Family II members us-
ing a cruzain structure as a template and compared the 
residues in the active site of each cruzipain sub-type. 
They also analysed RNAseq data and described that 
Family I sequences are expressed through all the parasite 
life stages. However, this expression is more pronounced 
in the epimastigote forms. On the other hand, Family II 
sequences are more expressed in the trypomastigotes, 
which, together with amastigotes, are more relevant in 
the drug design context.(2) These findings raise a red 
flag to groups working with cruzain as a drug target. 
Researchers have known the existence of over one cruz-
ipain for a long time. However, it has been neglected by 
the community. This work suggests the need to under-
stand the role and specificity of the four sub-types and 
potentially consider all of them in the drug discovery 
pipeline targeting cruzipains. Alterations observed in 
different cruzipain subsites might cause selectivity be-
tween them and could explain inconsistencies between 
enzymatic and cell-based assays reported in the litera-
ture. On the other hand, there are enough similarities in 
the sites that can also be explored to design inhibitors 
active against all the four sub-types.

Final remarks

Cruzain is an important target in developing new 
treatments for CD. In this perspective, we exemplify 
several applications of computational techniques toward 
this goal. In recent years, computational approaches 
have been critical to discovering and optimising new 
classes of cruzain inhibitors, proposing binding modes 
of known compounds, and understanding SAR trends 

from compounds series in qualitative and quantitative 
terms. Additionally, we have learned about the biology 
of this target with the proposal of allosteric sites and the 
identification of several cruzipain sub-types. Altogether, 
these studies demonstrate the potential of computational 
techniques to optimise drug discovery efforts, potential-
ly reducing the time and costs involved in this process. 
These benefits are particularly welcome in efforts to de-
velop drugs for neglected diseases.
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