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Modelling groundwater quality 
of the Athabasca River Basin 
in the subarctic region using 
a modified SWAT model
Tesfa Worku Meshesha1, Junye Wang1*, Nigus Demelash Melaku1 & Cynthia N. McClain2,3

Groundwater is a vital resource for human welfare. However, due to various factors, groundwater 
pollution is a paramount environmental concern. It is challenging to simulate groundwater quality 
dynamics with the Soil and Water Assessment Tool (SWAT) because it does not adequately model 
nutrient percolation processes in the soil. The objectives of this study were to extend the SWAT 
module to simulate groundwater quality for the parameters nitrate and Total Dissolved Solids (TDS). 
The results of the SWAT model for the Athabasca River Basin in Canada revealed a linear relationship 
between observed and calculated groundwater quality. This result achieved satisfactory values 
for coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS). For 
nitrate, the model performance measures R2 ranged from 0.66–0.83 during calibration and NSE 
from 0.61–0.83. R2 is 0.71 during validation and NSE ranged from 0.69–0.75. Likewise, for TDS, the 
model performance measures R2 ranged from 0.61–0.82 during calibration and from 0.58–0.62 during 
validation. When coupled with soil zone and land surface processes, nitrate and TDS concentrations 
in groundwater can be simulated with the SWAT model. This indicated that SWAT may be helpful 
in evaluating adaptive management scenarios. Hence, the extended SWAT model could be a 
powerful tool for regional-scale modelling of nutrient loads, and to support and effective surface and 
groundwater management.

Groundwater is a vital resource for sustainable social and economic development around the world1,2. Stored 
groundwater is generally purified and filtered during infiltration through natural soils and sediments3,4. There-
fore, the quality and quantity of groundwater storage tends to be more stable than surface water. Thus, majority 
of people in the world primarily depend on groundwater for their drinking water5. It is reported that ground-
water provides drinking water for > 1.5b people and supports approximately 40% of agriculture in the form of 
irrigation6. Therefore, protecting groundwater resources, including efficient use and conservation measures, are 
an important strategy of water resources plan in both developing and developed countries.

However, natural processes, anthropogenic activities, and climate change significantly influence the quality 
and quantity of groundwater. In many world watersheds, lakes, rivers, wetlands and the associated ecosystems 
have experienced impacts and thus, the vitality, availability, quality and quantity of these water resources face 
serious threats. Elevated concentrations of chemical elements and biological constituents exist in the envi-
ronment, and depending on geo-environmental backgrounds, water pollutants may exhibit spatial and tem-
poral variations7,8. Anthropogenic processes, such as discharge of untreated sewage water to water bodies, 
fertilization, and over exploitation, have changed groundwater quantity and quality9–11, leading to soil–water 
and air pollution12. For example, excessive application of chemical fertilizer could result in groundwater 
contamination10,13,14. Nitrogen leaching, namely the downward transport and percolation of nitrate from the 
root zone to the soil layers, is one of the aggravating causes for groundwater contamination, especially in irrigated 
areas15,16. However, it is still unclear how the anthropogenic and natural factors drive the change in the fluxes and 
storages of water, and associated groundwater quality. Consequently, a linked understanding of surface water and 
groundwater quality over space and time is critical for the assessment and management of such vital resources 
and ecosystems services, particularly in arid and semi-arid regions17–20.
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Groundwater assessment is complex, involving identification of surface and groundwater quality and quan-
tity drivers and the occurrence, interaction and determination of the probability of the occurrence of such 
problems21,22. In order to simulate both saturated and unsaturated water flow from the porous media, many 
widely used physical models of Richards equations has been developed by many researchers23–25. This approach 
could capture the groundwater dynamics25 but lacks representation of land surface information like vegetation 
cover. In order to address this limitation, scientists have developed various hydrological models to simulate 
interactions among water, soil, and vegetation26 modified the SWAT model to calculate lateral and vertical flows 
through soil layers to improve representations recharge of groundwater mountain region of Germany. Vazquez-
Amábile et al.27 applied advanced redox zonation of an alluvial aquifer using data fusion and multivariate geo-
statistics. They indicated that incorrect wastewater management could cause the organic matter transfer from 
the eutrophicated surface–groundwater into to groundwater. Luo et al.28 modified SWAT model to simulate the 
change of soil moisture into groundwater and stream flow in the Muscatatuck River watershed. Baffaut et al.29 
incorporated a groundwater module in the SWAT model version 2000 to simulate groundwater evaporation in the 
Yellow River basin. Watson et al.30 modified the SWAT groundwater module version 2005 to improve infiltration 
process from sinkholes to surface waters and to evaluate aquifer recharge in karst surroundings of the USA. Mck-
eown et al.31 and Melaku et al.32 incorporated an algorithm to consider the effect of slope and aspect on incoming 
solar radiation into the SWAT model in the forested watershed in the Boreal plain. Meshesha et al.33 modified 
the evapotranspiration in the SWAT model to account for two-way groundwater-surface water movement in 
estimating the groundwater table in Lethbridge and Barons area. Meshesha et al.34 extended the hydrological 
model for cold climate regions in order to quantify bacterial fluxes and its effect on surface water quality, and 
Kim et al.35 evaluated water quality consequently effect on aquatic environment. Guzman et al.36, Nguyen et al.37 
and Ng et al.38 coupled the SWAT model with the three-dimensional groundwater flow model (MODFLOW) to 
represent groundwater flow. The main drawback of the coupled model is that the users must establish numerously 
formatted variables that properly fit39. Although these coupled SWAT–MODFLOW models enable simulation of 
groundwater recharge, aquifer evapotranspiration and groundwater levels, it is a big challenge to find a way to 
dynamically simulate water quality when coupling SWAT source code with MODFLOW code because the two 
models may have different definitions, formats and arrays of water quality variables. Therefore, such a coupled 
approach of the two different models requires modification of core codes, such as definitions of variables and 
its arrays in simulating ground water quality40. Although a plethora of models have been developed in the past 
few decades, most of the modelling experiences have focused mainly on understanding on the spatio-temporal 
groundwater storage. Appraisal of distribution and mitigation of chemical elements in the groundwater using 
SWAT model is still lacking.

Economic activity and human settlement in the Athabasca river basin (ARB) are being varied, and the basin 
is culturally vibrant and diverse as the homes for more than 150,000 residents with 13% of Aboriginal peoples40. 
However, the development of agriculture, recreation, forestry, conventional situ oil and gas, and mining can 
negatively affect the health of the river basin. Developing reliable groundwater quality model as a tool could 
provide a very useful insight on the potential mitigation of nonpoint source pollution into groundwater in river 
basins, which are especially important in assessing the pervasive high nutrients loadings from fertilization and 
manure application. The main objectives of this study are to: (i) improve representation of groundwater quality 
parameters in a groundwater nutrient module to account for nitrate (NO3

−) and total dissolved solids (TDS) in 
the SWAT model41; (ii) assess the effect to NO3

− and TDS on groundwater quality status in the Athabasca River 
Basin; and (iii) evaluate SWAT model sensitivity and uncertainty analysis to understand the possible limitations, 
and recommend forthcoming directions in model formulation efforts.

Methods and materials
The study area.  The research area is in Athabasca River Basin (ARB), which is located in the central part 
of the province of Alberta in the subarctic region (Fig. 1). Athabasca River is the second largest river in Alberta, 
and the largest undammed river. The mean annual discharges in cubic decameters (dam3 = 1000 cubic meters) at 
the points along the river are 2,790,000 dam3 at Jasper 13,600,000 dam3 at Athabasca. The river basin in general 
have substantial economic contribution in Canada by providing reliable freshwater supply to the people as well 
as for various industries, such as oil sands mining and pulp mills42. The main land cover type of the ARB is the 
boreal forest, which shares 82% of the total land; agriculture shares 9.5%, which is in the central portion of the 
watershed (i.e., Pembina, Lesse Slave, McLeod and upper parts). Overall forest, agriculture, traditional oil and 
gas extraction, oil sand mining, and coal mining are the major industries of the ARB41. Mean annual precipita-
tion of the area ranges from 300 mm in the lower portion of the river basin to > 1000 mm from the headwaters, 
while the mean temperature ranges 1.8–5.1 °C43.

The major aquifer types include near-surface sands, buried channels and valleys, Paskapoo aquifers, and bed-
rock aquifers, which characterize the basin with primary and/or secondary porosities42. In this area, groundwater 
within unconsolidated surficial deposits consist of a mixture of a preglacial and glacial sand and gravel aquifers. 
In the Athabasca River Basin, groundwater recharge is spatially variable, and groundwater contributes baseflow 
to rivers and streams44,45. This region has extensive wetlands, including groundwater-fed wetlands (fens), and 
one of the world’s most ecologically significant wetlands designated by the Ramsar Convention. The ecology 
within the watershed is diverse as a result of the different natural regions. As the major river system, the ARB is 
influenced by a variety of climate, terrain and landscape characteristics found within its basin. The seasonality 
of climatic conditions is a major influence on river flow conditions.

Soil and Water Assessment Tool (SWAT) description and application.  The SWAT model is a river 
basin scale model, which is developed in order to quantify the impact of land management practices in large, 
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complex watersheds at daily time step46,47. It could be used for simulating the hydrological process, nutrient 
concentration, runoff generation, and sediment yield in the watershed under various landuse as well as soil 
scenario46,48,49. Additionally, it is used for simulating the effects of climate change, landuse and management 
practices on the quantity and quality of water50.

The SWAT has been used for simulating the N cycle in soils and aquifer at shallow depth51,52. In the water 
and soil, the N processes is dynamic. It could be added to the soil in the form of manure, bacteriological fixation, 
residue, and rainfalls. It may be moved out from the soil through by plant uptake, volatilization, soil erosion, 
denitrification, and leaching. In the SWAT model, there are various types of N pools, including inorganic forms 
of nitrogen, and organic forms. NO3

− may transport with runoff, percolation or lateral flow and recharge into 
the aquifer to the shallow depth from the soil profile. In addition, NO3

− can move with groundwater flow to 
river channels or be carried out of the shallow aquifer into the soil zone during water deficiencies. The amount 
of nitrate carried by water is calculated by multiplying the concentration of nitrate in the mobile water fraction 
by the volume of water moving in each route. The amount of NO3

− discharge depends on NO3
− concentration in 

the soil-water domain. Nitrate uptake by plants has an inverse exponential relationship with depth47.

where NO3conc,z refers to initial nitrate concentration (mg/kg) at the depth of z (mm). Only the parts of NO3
− is 

mobile and therefore it available for the discharge through the tiles. To calculate the concentration of nitrate in 
the mobile water fraction, the following equation has been adopted from53,54.

where ConcNO3,mobile refers to NO3
− concentration in the movable water at a given layer (kg N/ha), Wmobile rep-

resent the amount of water lost by runoff, percolation or side flow in the layer (mm H2O), θe represent fraction 
of porosity from which anions are excluded, SAT1y is saturated water content in the soil layer (mm H2O). To 

(1)NO3conc,z = 7 ∗ exp

(

−z

1000

)

(2)ConcNO3,mobile
=

NO31y(1− exp
[

−Wmobile/(1− θe)SAT1y

]

)

Wmobile

Figure 1.   Geographical location of Athabasca River Basin (ARB), Canada. The DEM of the ARB shows the two 
water quality monitoring stations used for model calibration for this study. The map was generated using GIS & 
RS (https://​www.​arcgis.​com/​index.​html).

https://www.arcgis.com/index.html
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obtain the transport of nitrate with runoff, percolation, and lateral flow, the following generic equation has been 
adopted from55.

where NO3
− represents the NO3

− removed by the physical transport (i.e., lateral flow, runoff, percolation) (kg 
ha−1); βNO3 is the concentration of NO3

− in the mobile water for the top 10 mm of soil/kg ha−1 considering both 
surface and subsurface lateral flow in the top layer; and Qx is the water physical transport (i.e. Qsurf, Qlat, Qperc). 
The NO3

−, that percolates to the shallow aquifer from the soil profile may remain in the aquifer, or it may move 
with groundwater flow into the main river channel or into the deep aquifer. Organic transport of N with sedi-
ment is obtained as a concentration function proposed by56 and later applied by57 to the separated runoff events. 
Estimating the daily organic N runoff loss is on the basis of concentration of organic N in the top soil layer, 
the sediment yield and the enrichment ratio of the organic nitrogen in sediment to organic N in soil layer51 see 
Fig. 2). In the SWAT model, water quality procedures integrate essential interactions and relationships used in 
the QUAL2E model58, which includes the major interactive factors such as the nutrient cycles, benthic oxygen 
demand, and algae production.

TDS is all the dissolved chemicals in the water (mg/L). It can be obtained by adding all the concentrations 
from chemical analysis or can be measured as weight of the residue after a volume of water has been evaporated 
to dryness. Typically, the concentration of TDS increases with the sample depth that groundwater has traveled 
from the recharge area to the sample sites. High nutrient concentration in the groundwater shows contamination 
form different sources of pollution59.

Groundwater module in the SWAT model.  Existing SWAT model divides underground saturated aqui-
fer into shallow and deep aquifer. The balance of water in the shallow aquifer can be described47,60:

where, Sish and Si−1
sh  is the volume of water stored in the shallow aquifer on the day i and i − 1, respectively,  Qi

gw,sh 
is refers to the groundwater from the shallow aquifer on the day i,  Wi

rg ,sh shows the volume of recharge which is 
entering the shallow aquifer on the day i, Wi

rp  is indicates the amount of water entering to the soil for the evapo-
ration as well as transpiration on the day i, Wi

pump,sh is refers to the amount of water removed from the shallow 
aquifer in the form of pumping on the day i. Assuming that the variation in groundwater is linearly correlated 
to the water table, the flow of groundwater can be represented by the following equations:

(3)NO3 = βNO3concNO3,mobile
Qx

(4)S
i
sh = S

i−1
sh +W

i
rg ,sh −Qi

gw,sh −W
i
rp −W

i
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Figure 2.   The conceptual framework demonstrating nitrate occurrence in the groundwater (adopted from 
Almasri9).
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where, αgw,sh refers to the groundwater recession constant of the shallow aquifer. Groundwater from the shallow 
aquifer contributed to the river on day i is obtained as:

where Sshthr,q is a threshold value above which the stored groundwater flows to river channels, αgw is the base flow 
recession constant, Wrg ,sh is the amount of recharge entering the shallow aquifer on day i, and  �t is the time step.

The volume of recharge entering the shallow aquifer on day i is obtained using the following equations:

where Wi
seep is the total amount of water exiting the bottom of the soil profile on day i, and δgw is the drainage time 

of the overlying geologic formations. Wi
rg and Wi−1

rg  are the amount of recharge entering the aquifers on day i and 
i-1, respectively. δgw is estimated against observed data in water table level through simulating aquifer recharge.

Likewise, from the deep aquifer groundwater, which is contributed to the stream on the day, i is obtained by:

where Qi
gw,dp and Qi−1

gw,dp refer to flow of groundwater from the deep aquifer into the stream on day i and i-1, 
respectively, and αgw,dp is the groundwater recession constant of the deep aquifer.

Due to complexity of groundwater, we separate the shallow aquifer into a lower aquifer and an upper aquifer 
in the groundwater module of SWAT model to improve the model accuracy, similar to Shao et al.58. Thus, the 
groundwater flow in Eq. (6) can be replaced using upper and lower aquifers as follows

where, Qi
gw,l and Qi

gw,u refers to flow of groundwater from lower and upper aquifer into the stream on the day i 
respectively; where as −αgw,u and −αgw,l shows groundwater recession constant of the lower and upper aquifer 
respectively;  Wi

rg ,l and Wi
rg ,u shows the volume of recharge entering into the lower and upper aquifer in the day 

i respectively.

SWAT model setup.  Delineation processes were done in ArcGIS. Based on soil types and landuse classes, 
the hydrological response unit (HRU) was defined, based on similar soil, similar landuse, and slope types. About 
1370 HRUs were identified for the basins. Weather data, such as, temperature, rainfall, wind speed, humidity, 
and radiation observation were obtained from Alberta Environment and Parks. Groundwater well and water 
quality data (nitrogen species and TDS) at 1,300 different monitoring stations was obtained from Alberta Envi-
ronment and Parks as shown in Fig. 1. Data availability is one of the most prominent factors which affect the 
model accuracy. Therefore, there were two monitoring stations with > 15 samples for the selected parameters 
between 2004 and 2016 namely IOR-KRL-03 (ss) and IOR-KRL-04 (ss) monitoring stations. Both groundwater 
monitoring wells are completed in surficial sand aquifers at 3 m and 11 m respectively.

Model performance metrics and uncertainty analysis.  Measured groundwater quality data for NO3
− 

and TDS were used for model calibration and validation. To evaluate model performance, coefficient of deter-
mination (R2), Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) were used61. The descriptions of NSE, 
R2, and PBIAS can be found in62 as follows:

(5)Qi
gw,sh = αgw,sh s

i
sh

(6a)Qi
gw = Qi−1

gw · e−αgw ·�t
+Wrg ,sh · (1− e−αgw ·�t) if Ssh > Sshthr,q

(6b)Qi
gw = 0 if Ssh < Sshthr,q

(7)W
i
rg ,dp = (βdp)W

i
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i
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where Oi refers to the ith observed value; Oavr is the average observed value; Pi is the ith simulated value; Pavr is 
average simulated value; n is the number of time step (days in our case).

To examine the model performance, NO3
− and TDS of groundwater quality have been compared with the 

observed data during calibration (2009-2012) and validation (2013-2015). In order to perform parameter sensi-
tivity and uncertainty analysis, we used Sequential Uncertainty Fitting2 (SUFI-2) algorithm in the SWAT-CUP63. 
The program generated various parameter sets for these selected parameters from a specified range of values 
using the Latin-Hypercube sampling technique (Table 1). To identify the total predictive uncertainty band of 
the simulated results, the SWATCUP was run several times, each one identifying a narrow parameter range for 
each parameter listed in Table 1, up to the point where reasonable goodness-of-fit statistics values were attained.

Results
Sensitivity and uncertainty analysis.  Sensitivity test analysis is to identify the most sensitive parameters 
that govern NO3

− and TDS in groundwater (Table 1). The range of selected sensitive parameters are presented 
in Table 1. Some parameters are basin scale and others are basin-based parameters. The analysis of model sen-
sitivity can be processed to find out the relative response of the SWAT model to the changes in relative value of 
specific model parameters. Hence, some parameters are sensitive to control the whole system processes as the 
most significant parameters. Here, the most sensitive parameters governing the groundwater parameters were 
assessed on the basis of the values obtained during primary model calibration. The CDN.bs, r__GWNO3.gw, 
HLIFE_NGW.gw, and NPERCO.bsn were ranked as the most sensitive parameters among the NO3

− parameters. 
While NSETLR1.1wq and N_UPDIS.bsn were the sensitive parameters from the N parameters, that influenced 
the concentration. On the other hand, the parameters listed in Table 1 were the most sensitive for TDS, ground-
water conditions, and surface runoff. The results of the sensitive analysis confirmed that measured input param-
eters have a substantial influence on the model prediction.

Model Calibration and Validation performance.  Model calibration and validation are done after the 
sensitivity analysis. To compare the model performance, the simulated outputs were compared with observed 
value. Therefore, the daily NO3

− and TDS from the groundwater monitoring stations IOR-KRL-03 (ss) and 

(14)NSE = 1−


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n
�
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2
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n
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n
�
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
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

Table 1.   The ranges of parameters included prior and after model calibration.

Parameters input Description Unit Range Fitted value

Denitrification CDN.bs Denitrification exponential rate coefficient NA 0 to 3 2.5

Ground W. Nitrn r__GWNO3.gw Concentration of NO3 in groundwater − 1 to 1 0.5

Nitrate Percoln. co NPERCO.bsn Nitrate percolation coefficient 0 to 1 0.223

Transport of nitrogen growth with sediment ERORGN.hru Organic nitrogen enrichment ratio NA 0 to 5 2.75

Shallow aquifer nitrate HLIFE_NGW.gw Half-life of nitrate-nitrogen in the shallow aquifer Day−1 0 to 200 116

Mineralization CMN.bsn Rate factor for humus mineralization of active organic nitrogen NA 0.0001 to 0.0003 0.000131

Nitrogen percolation NPERCO.bsn Percolation of nitrogen coefficient NA 0 to 1 0.5

Nitrogen settling rate NSETLR1.1wq Settling nitrogen rate m/year 1 to 150 30

N2 uptake N_UPDIS.bsn Distribution of nitrogen uptake parameter NA 1 to 31 28

Base flow RCHRG_DP.gw Groundwater recharge to deep aquifer fr 0 to 1 0.09

Base flow REVAPMN.gw Water depth in the shallow aquifer mm 0 to 500 196

Base flow GW_DELAY.gw Groundwater delay d 0 to 500 41

Base flow GWQMN.gw Threshold depth of water in the shallow aquifer required fir return 
flow to occur mm 0 to 1000 618

Base flow GW_REVAP.gw Groundwater revap coefficient NA 0.02 to 2 0.06

Lateral flow/infiltration SOL_K.sol hydraulic conductivity (Saturated) Mmh−1 − 25 to + 25 16

Lateral flow/infiltration SOL_AWC.sol water capacity of the soil layer (Availability) ft − 25 to + 25 10

Runoff CN2.mgt1 curve number for moisture condition II NA − 15 to + 15 10

Runoff CH_N1.sub Manning’s rate for tributary channel NA 0.025 to 0.30 0.096

Base flow ALPHA_BF.gw Base flow alpha factor d 0 to 1 073
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IOR-KRL-04 (ss) from ARB were employed for the model calibration and validation to evaluate the model 
performance using SWATCUP which was recommended by Arnold et al.41. Based on the criteria of model per-
formances rating, the value of PBIAS, NSE and R2 during model calibration and validation were employed for 
evaluating the model performance. To calibrate the modified SWAT module, Latin-Hypercube One-factor At a 
Time (LH-OAT) was employed.

Table 2 summarizes the performance statistics of the model for the daily nutrient concentration simulations 
for two groundwater monitoring stations. Table 2 shows satisfactory to very good for both stations with an aver-
aged R2 of 0.74 for nitrate during calibration and 0.71 during validation. This confirmed that the model was able 
to capture the concentration of nutrients after model modification (Table 2 and Fig. 3). Therefore, the overall 
model performance of the new SWAT module for the daily nutrient concentration simulations was in acceptable 
range of model calibration and validation in the ARB. In contrast, a lower model performance for TDS simula-
tion was observed at both monitoring stations, for which the value of NSE is found to be 0.58 during validation 
at IOR-KRL-03 (ss) and 0.48 during calibration at IOR-KRL-04 (ss).

Nitrate (NO3
−).  Nitrate calibration processes happened in a nitrogen percolation coefficient of 0.5, with 

a denitrification threshold of water content and exponential rate of denitrification coefficient of 2.5 (Table 1). 

Table 2.   Model performance assessment for the daily observed data.

Monitoring stations ID Performance measure

NO3
− TDS

Calibration Validation Calibration Validation

IOR-KRL-03 (ss)

NSE 0.61 0.69 0.72 0.58

PBIAS 7.32 6.31 9.34 −6.72

R2 0.66 0.71 0.82 0.69

IOR-KRL-04 (ss)

NSE 0.83 0.75 0.48 0.62

PBIAS 11.32 6.19 10.04 6.06

R2 0.83 0.71 0.61 0.67
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Figure 3.   Comparison of daily observed and simulated groundwater quality parameter (NO3/mg/L) at IOR-
KRL-03 (SS) (A) and IOR-KRL-04 (SS) (B) monitoring stations.
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Nitrate percolation coefficient (0.223) and half-life parameter of nitrate in the shallow aquifer (116) were cali-
brated for each sub-basin for the values in the range of 0–1 and 0–200 day−1 respectively, resulting in 0.223 and 
with the mean value of 116 day−1 respectively for the whole selected ARB. The annual mean groundwater nitrate 
concentration is 0.31 mg/L at station IOR-KRL-03(ss) and 0.03 mg/L at station IOR-KRL-04(ss) (Fig. 3). Min-
eralization was adjusted by minimizing the default values of the rate factor for CMN to 0.000131. To control the 
depth distribution of nitrogen uptake, and to slow down simulated kinetics, the N-UPDIS was increased from 
the default value of 20 to 28 and therefore a large mass of NO3

− was removed from the upper layers as per the 
report by64,65. The range of nitrogen settling in reservoirs was kept constant during the year as per66, the range 
was set greater than the default values from the Sava River Basin, to efficiently simulate the substantial retention 
in major wetlands because wetland specific retention is not applied in the extended SWAT model.

The nitrification rate decreased from the upper to lower Athabasca River Basin, which mirrors the rainfall 
distribution, with lower rainfall leading to lower soil saturation and lower nitrification rates. The maximum 
values of nitrate in groundwater of the ARB were 0.62 mg/L at IOR-KRL-03(ss) and 0.1 mg/L at IOR-KRL-04(ss) 
stations respectively, whereas the minimum values were 0.02 mg/L at the IOR-KRL-03(ss) station and 0.01 mg/L 
at the IOR-KRL-04(ss) station. The nitrification calibration resulted to satisfactory predictions of NO3

− daily 
concentration in the two observation stations in the calibration and validation dataset. Ae per the comparison 
of NO3

− between simulated and observed, better model performances were obtained in the model evaluation 
dataset. The simulated daily NO3

− concentration agreed with the observed data and were acceptable range (Fig. 3). 
The percentage BIAS obtained from the observed and calculated daily loads also was ranked as acceptable to 
very good for all the selected stations (Fig. 3 and Table 2).

Total dissolved solids (TDS).  The TDS module for groundwater quality used the TDS concentrations 
from the selected groundwater monitoring stations in the ARB. The calibrated TDS parameters with specific 
ranges were presented in Table 1. Daily TDS concentrations were calibrated by adjusting the parameters related 
to groundwater. The model performance evaluation criteria reported by62 were used for the daily nutrient simu-
lation as a guideline in evaluating the model performance for the daily TDS concentrations. Figure 4 shows 
that for the whole period of simulation, R2, NSE and PBIAS values were found to be good to very good during 
calibration while they were satisfactory to good during the validation (Table 2). Generally, the overall model per-
formance for the daily TDS concentration simulations in groundwater of the ARB shows that the model could 
capture the observed concentrations. When comparing the calculated and observed concentrations (Fig.  4), 
the simulated TDS concentrations were also acceptable as both show similar trends. Yet, local inconsistencies 
were noticed in the river basin. The highest percentage of overestimation and underestimation of TDS in the 
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Figure 4.   Comparison of daily observed and simulated groundwater quality parameter (TDS/mg/L) at IOR-
KRL-03 (SS) (A) and IOR-KRL-04 (SS) (B) monitoring stations.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13574  | https://doi.org/10.1038/s41598-021-92920-7

www.nature.com/scientificreports/

calibration dataset occurs for high concentration observations and probably reflects the SWAT model’s repre-
sentation of high level concentrations67, which may cause errors in the process of calculating TDS in the SWAT 
model68. The other possible sources of overestimation and underestimation of the model simulations originate 
from uncertainties in the input data and observed data. For example, the frequency of data collection varied 
from once or twice per month to once every few years. In contrast, the simulations used a daily time step. The 
low frequency of sampling might miss the peak or valley of nutrient concentrations.

Total Dissolved Solids is an indicator of the availability of total dissolved salt and other constituents that 
affect groundwater quality. High TDS concentrations in groundwater can occur naturally, and may also indicate 
a downward movement of leachate into groundwater65,69–71. The average TDS concentrations in groundwater in 
the study area are 143 mg/L and 1421 mg/L at IOR-KRL-03(ss) and IOR-KRL-03(ss) stations, respectively. The 
TDS of groundwater samples ranges from 120-182 mg/L at the IOR-KRL-03(ss) station, while the TDS ranges 
from 1380-1500 mg/L at the IOR-KRL-04(ss) station (Fig. 4). High concentrations of TDS in groundwater reduce 
the palpability of water for drinking and may cause gastrointestinal pain and emetic effects in humans67. TDS 
is an important indicator for evaluating the quality of groundwater. High levels of TDS typically occur for hard 
water and might require groundwater treatment to decrease concentrations below 500 mg/L67.

The performance of model results were investigated by using the analysis of scatter plot between observed 
and simulated estimates at each groundwater monitoring stations (Fig. 5). The slope at the selected stations were 
considerably far from zero. This showed that the model prediction accuracy was enhanced by extended ground-
water model. Thus, the results of the 1:1 fitting line confirmed that the extended groundwater SWAT module 
was effective prediction of nutrient concentration in the groundwater. The scatters are closer to the 1:1 line for 
the entire study time at two monitoring stations, albeit at some points relatively far from the fitting line probably 
due to limited availability of observed data. In general, it is worth to conclude the extended SWAT groundwater 
module shows better efficiency for simulating nutrient concentrations in the groundwater.

Groundwater quality analysis and nutrient concentrations.  Analysis of observed against simulated 
nitrate and TDS concentrations in ARB groundwater helps to identify sources of errors across two groundwater 
monitoring stations within the river basin. Observed nitrate concentrations vary significantly across the area 
(Fig. 3). Concentrations of NO3

− in groundwater have been highly affected by emissions of both point and non-
point sources in different watersheds across the world71. To assess pollution sources and quantify the loads of 
NO3

− entering the whole river basin, NO3
− load to groundwater has been simulated at various hydrogeological 
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response units. The simulation periods were chosen based on the availability of point-source information. The 
long-term daily average concentrations of nitrate in groundwater attained maximum values of 0.59 mg/L at 
the IOR-KRL-03(ss) station during 2013. The long-term daily average concentrations of nitrate in groundwater 
reached a minimum of 0.025 mg/L in the year 2014. On the other hand, at station at IORKRL-04(ss) the long-
term daily average NO3

− concentrations recorded a maximum value of 0.1 mg/L during the year 2015, and a 
minimum value of 0.013 mg/L in most observation years. Generally, the concentrations of nitrate were well cap-
tured in all the groundwater monitoring stations, although some overestimations were observed at some points 
at IOR-KRL-04(ss) monitoring station (Fig. 3) and some underestimations were found at IOR-KRL-03(ss) and 
IOR-KRL-04(ss) monitoring stations. The probable reason for model overestimation is the data uncertainty such 
rainfall and snow distribution, in which the rainfall and snow distribution caused in nutrient concentrations. The 
Underestimation was probably subjected to the uncertainty of the input data and measured data. Furthermore, 
the observed NO3

− data is not sufficient for continuous daily NO3
− concentration for the entirely considered 

period for this study. Therefore, observed data could be sources for the errors. The simulation of NO3
− removal 

by soil denitrification could be improved by varying the river basin parameters. However, the existing SWAT 
model could not represent perfectly the seasonal difference in nitrate concentrations. After carefully extending 
the model, the findings of this study highlight the need to improve spatial representation of nitrate concentra-
tions in groundwater and in the parameters that influence nitrate concentrations at the watershed scale.

Concluding remarks
Groundwater is a precious natural resource supporting the existence of life on earth. However, various factors, 
such as soil properties, crop growth, industrial wastes, and agricultural management, can influence its quality. 
Development of industries and agriculture increase water use, which puts pressure on groundwater quality and 
may, in turn, influence the ecosystem of the Athabasca River Basin. Particularly, the use of fertilizers, manure, 
and industrial wastes may contribute to the pollution of groundwater and connected surface water environments. 
It is necessary to perform optimal management of groundwater resources in the basin.

State-of-the-art groundwater quality modelling at the ARB is recognized as a vital component of groundwater 
management, where further in-depth studies may be required to offer valuable insights related to groundwater 
condition and nutrient processes at the various spatio-temporal scales (i.e. site and region, and daily, monthly 
and annually). This can better support nutrient monitoring networks for river basin management, and enhance 
understanding of changing nutrient concentrations in the ARB. The SWAT model results could support the 
development of indicators for groundwater quality parameters, and also support integrated surface water and 
groundwater management. However, the accuracy of SWAT predictions is limited by data availability and struc-
ture of the model. This may result in errors while modeling processes in the river basin. For example, the highest 
percentage of overestimation and underestimation for TDS in the calibration dataset probably reflected the poor 
representation of SWAT model to high concentrations, as well as uncertainties of the input data and observed 
data, which in turn may cause errors in estimating groundwater TDS in the SWAT model. With continued 
monitoring of the groundwater network at regular frequencies, high quality input data would be available for 
better calibration and validation of the model. Furthermore, additional data would improve the representation 
of processes and pathways controlling groundwater pollution and therefore allow evaluation of the effect of land 
and water management practices to support the implementation of the best management practices.

In this study, we extended the existing SWAT model to improve modelling of groundwater quality (i.e. 
NO3

− and TDS). A systematic calibration and validation of the SWAT model has been performed to compare the 
observed groundwater NO3

− and TDS concentrations in the ARB. The results revealed that the new groundwater 
quality model in the SWAT is able to capture the daily nutrient concentrations in groundwater. The simulated 
results agree with the observed data with satisfactory and good performance for both groundwater monitoring 
stations as per the model performance measures. Thus, the process-based hydrologic groundwater quality model 
is an effective tool in simulating the groundwater quality dynamics (NO3

− and TDS) for sustainable groundwater 
and surface water management in the river basin.
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