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Abstract: A novel highly water-soluble 1,8-naphthalimide with pH and viscosity-sensing fluorescence
was synthesized and investigated. The synthesized compound was designed as a molecular device in
which a molecular rotor and molecular “off-on” switcher were integrated. In order to obtain a TICT
driven molecular motion at C-4 position of the 1,8-naphthalimide fluorophore, a 4-methylpiperazinyl
fragment was introduced. The molecular motion was confirmed after photophysical investigation in
solvents with different viscosity; furthermore, the fluorescence-sensing properties of the examined
compound were investigated in 100% aqueous medium and it was found that it could be used
as an efficient fluorescent probe for pH. Due to the non-emissive deexcitation nature of the TICT
fluorophore, the novel system showed low yellow–green emission, which represented “power-
on”/“rotor-on” state. The protonation of the methylpiperazine amine destabilized the TICT process,
which was accompanied by fluorescence enhancement indicating a “power-on”/“rotor-off” state of
the system. The results obtained clearly illustrated the great potential of the synthesized compound
to serve as pH- and viscosity-sensing material in aqueous solution.

Keywords: 1,8-naphthalimide; twisted intramolecular charge transfer (TICT); fluorescence; pH;
viscosity

1. Introduction

Due to the rapid progress in the fields of chemosensing materials and nanotechnology,
the design and synthesis of molecular switches have received considerable attention in
recent years [1–4]. A wide range of different architectures applied as various molecular
devices [5–10], object-coding [11], chemical-sensing [12,13], data-storage [14,15], drug-
delivery [16,17], and drug-activation [18,19] systems have been obtained. Among them,
major attention has been paid to fluorescence sensors and probes due to the several advan-
tages, such as cheap equipment, high sensitivity, immediate response, and great spectral
resolution. In addition, they have a small, safe, and indestructible signaling nature which
allows their practical application even in real-time imagining of living organisms [20–24].

The lack of water-solubility is the main disadvantage of fluorescent probes, which
seriously restricts their usage. Currently, chemical analysis in water solutions, in the
absence of organic solvents, was preferable due to the use of environmentally friendly
media with lower cytotoxicity and higher biocompatibility, which is, especially, suitable
for bioimagining purposes; therefore, the design and synthesis of highly water-soluble
fluorescent probes has increasingly attracted considerable interest [25–29]. This encouraged
us to prepare and investigate the chemosensing properties of a novel fluorescent probe with
high solubility in 100% water media. The compound presented in Scheme 1 under study is
a TICT (twisted intramolecular charge transfer) molecular rotor with fluorescence-sensing
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properties focusing on pH and viscosity. The rapid analysis of pH and viscosity plays a
critical role in large areas of industrial production, food processing, and environmental
monitoring [30–37]; also, the abnormal values of intracellular pH and viscosity could be
associated with several diseases, such as atherosclerosis, Alzheimer’s disease, diabetes, and
cancer [38–42]; hence, the synthesis of fluorescent probes for both pH and viscosity currently
could be of significant importance. In order to simultaneously achieve pH- and viscosity-
switchable fluorescence, the novel probe was based on a TICT molecular rotor platform. It is
well known that deexcitation from the TICT state is non-radiative or shows batochromically
shifted (lower energy) emission than normal fluorescence which was successfully utilized
for the imaging of viscosity in biological objects [43,44]; furthermore, the TICT process is
microenvironmentally dependable and can be easily switched at different pHs [45].
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Scheme 1. Chemical structure of 1,8-naphthalimide-based probe 3.

2. Results and Discussion
2.1. Design and Synthesis

The compound under study (3) was designed as a fluorescence-sensing TICT rotor
based on a 4-piperazinyl-1,8-naphthalimide architecture. The 1,8-naphthalimide fluo-
rophore was chosen as a fluorogenic unit due to its bright fluorescence, large stokes shift,
and high photo and chemical stabilities [46–48]. The N-methylpiperazine fragment was
bound to the C-4 position of the 1,8-naphthalimide unit in probe 3 to achieve TICT molecular
motion. It is well known that the presence of dialkylamines such as N-methylbuthylamine,
morpholine, piperidine, and piperazine at C-4 position resulted in a TICT process in the
fluorophore-excited state and they could be used as fluorescent probes for viscosity [49–52];
additionally, the protonation of N-methylpiperazine amine destabilized the irradiative
TICT process, thus preventing rotation and allowing significant emission increase which
was widely utilized in the pH-probe design [9,53,54]. Furthermore, the presence of different
amines at N-position of the 1,8-naphthaimides resulted in a significant increase in their
water solubility [25,55,56]. This was our motive to introduce a primary amino group in
position N of the novel probe.

The examined compound 3 was easily synthesized from available sources in two steps
according Scheme 2.
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First, hydrazine monohydrate was condensed with 4-cloro-1,8-naphthalic anhydride
using equimolar amounts in methanol solution under reflux; then, the chlorine in interme-
diate 2 was, subsequently, substituted with N-methylpiperazine in boiling DMF solution
for 5 h to afford final probe 3 as yellow crystals.
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2.2. Chemosensing Properties of Probe 3
2.2.1. pH-Sensing Properties

The synthesized compound 3 was designed as a fluorescent probe with high water
solubility. This was the reason to study its photophysical properties in 100% water solution
(in the absence of organic solvents). It was found that in acid and neutral media probe 3
showed an absorption band in a range of 300–500 nm with maximum at 394 nm that was
slightly red, shifting under alkaline conditions to 406 nm (Figure 1). Such behavior is com-
mon for 4-amino-1,8-naphthalimides containing aminoalkylamines at position C-4 and easy
could be rationalized according to the internal charge transfer (ICT) occurring in the excited
state of these chromophoric systems. The light absorption of 1,8-naphthaimides results in a
charge transfer from the C-4 electron-donating group to the electron-accepting carbonyls,
which efficiency determines the basic photophysical properties of the molecule [57–59]. For
a difference, in neutral and acid media the methylpiperazine nitrogen is in its protonated
form and exerts a weak charge repulsion on the 4-amino moiety directly attached to the
ICT cromophoric system in probe 3. This decreased the ICT efficiency and slightly shifted
the observed absorption band towards higher energy wavelengths.
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Figure 1. Absorption spectra of probe 3 in aqueous solution at different pHs.

In alkaline media probe 3 showed a very low fluorescence emission in the range
of 450–650 nm, with maximal value at 550 nm (Figure 2A); however, the protonation of
the methylpiperazine amine after addition of hydrochloric acid gradually increased the
fluorescence output of 3 and blue shifted its maximum to 530 nm. The calculated quantum
yield of fluorescence was ΦF = 0.001 at pH 12 and ΦF = 0.14 at pH 4.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
 

 

 

Figure 2. (A) Fluorescent spectra of probe 3 in 100% aqueous solution in a pH interval of 4–12 (λex = 

400 nm) and (B) pH titration plot of probe 3 fluorescence intensity at 530 nm. 

It was found that the reversible pH-switching process appeared in pH window 6–9, 

giving a pKa value of 7.69 ± 0.05 according to the Hendersen-Hasselbalch Equation (1), 

which matches the previous reported pKa value of 4-methylpiperzinyl-1,8-naphthalimide 

derivatives [51]. 

pH = p𝐾a +  log
(𝐼max −   𝐼)

(𝐼 −  𝐼min )
  

 
(1) 

where Imax and Imin are the maximum and minimum fluorescence intensity, respectively, 

and I is the fluorescence intensity at the corresponding pH value. 

Furthermore, the difference in the TICT and normal states showed that the deexci-

tation of 3 could be used as a molecular rotor with power indicator at molecular level 

giving us information about the presence or lack of motion in the TICT system. The 

non-emissive TICT deexcitation nature of 3 shows very low yellow-green emission, 

which represents the “power-on”/“rotor-on” state of the system. The protonation of the 

methylpiperazine amine destabilizes the TICT process, thus enhancing the fluorescence 

intensity of probe 3, indicating a “power-on”/“rotor-off” state of the system (Scheme 3). 

 

Scheme 3. Switching mechanism of probe 3 as a function of pH. 

The effects of the most common cations and anions (Co2+, Cu2+, Fe3+, Ni2+, Pb2+, Cd2+, 

Zn2+, Hg2+, Cl−, NO3−, SO42−, HSO4−, CO32−, CH3COO−, Br−, NO2−, SO32−, PO43−, and F−) on the 

fluorescent emission of 3 were tested as potential analytes or interferents. The study was 

performed in aqueous media at pH 7.2 (10 µM HEPES) and pH 8 (10 µM Tris-HCl). In 

both cases, the tested ions (10−5 mol/L and 10−4 mol/L) caused only a minor quenching 

Figure 2. (A) Fluorescent spectra of probe 3 in 100% aqueous solution in a pH interval of 4–12
(λex = 400 nm) and (B) pH titration plot of probe 3 fluorescence intensity at 530 nm.



Molecules 2022, 27, 7556 4 of 10

The observed fluorescent enhancement in acid media was expectable and, in recent
works, it was attributed to the fact that the ICT in 4-methylpiperzinyl-1,8-naphthalimides
undergoes a twisting process (TICT) with nonradiative deexcitation nature [51]. The
protonated methylpiperazine nitrogen generates a positively charged cation that leads to
electrostatic destabilization of the TICT state, thus reducing its deexcitation channel. As a
result, a bright fluorescence was observed. From the fluorescent changes at 530 nm as a
function of pH, a well pronounced S-shaped (sigmoidal Boltzmann fit, R2 = 0.9977) titration
plot was observed, suggesting a simple thermodynamic equilibrium (Figure 2B).

It was found that the reversible pH-switching process appeared in pH window 6–9,
giving a pKa value of 7.69 ± 0.05 according to the Hendersen-Hasselbalch Equation (1),
which matches the previous reported pKa value of 4-methylpiperzinyl-1,8-naphthalimide
derivatives [51].

pH = pKa + log
(Imax − I)
(I − Imin)

(1)

where Imax and Imin are the maximum and minimum fluorescence intensity, respectively,
and I is the fluorescence intensity at the corresponding pH value.

Furthermore, the difference in the TICT and normal states showed that the deexcitation
of 3 could be used as a molecular rotor with power indicator at molecular level giving us
information about the presence or lack of motion in the TICT system. The non-emissive
TICT deexcitation nature of 3 shows very low yellow-green emission, which represents
the “power-on”/“rotor-on” state of the system. The protonation of the methylpiperazine
amine destabilizes the TICT process, thus enhancing the fluorescence intensity of probe 3,
indicating a “power-on”/“rotor-off” state of the system (Scheme 3).
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The effects of the most common cations and anions (Co2+, Cu2+, Fe3+, Ni2+, Pb2+, Cd2+,
Zn2+, Hg2+, Cl−, NO3

−, SO4
2−, HSO4

−, CO3
2−, CH3COO−, Br−, NO2

−, SO3
2−, PO4

3−,
and F−) on the fluorescent emission of 3 were tested as potential analytes or interferents.
The study was performed in aqueous media at pH 7.2 (10 µM HEPES) and pH 8 (10 µM
Tris-HCl). In both cases, the tested ions (10−5 mol/L and 10−4 mol/L) caused only a minor
quenching (below 10%) of the probes’ (10−5 mol/L) fluorescence intensity; also, it was
found that the studied probe 3 could be transferred between “off” and “on” states reversibly
at least nine times without changes in the fluorescence intensity in both acid and alkaline
media (Figure 3). These results clearly showed that compound 3 is stable in a wide pH
range and could be used as a selective and efficient platform for rapid determination of pH
values in aqueous solutions.
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2.2.2. Viscosity-Sensing Properties

The fluorescence properties of 3 were investigated in solvents with different viscosities
in order to confirm the existence of TICT molecular motion in the examined compound.
The higher viscosity seriously restricts the intramolecular bond rotation and prevents the
TICT process. The influence of viscosity on the fluorescence spectra of 3 was defined after
measurements in glycol, glycerol, and glycol/glycerol mixtures (Figure 4). As can be seen
from Figure 3, the probe 3 showed viscosity-sensing fluorescence intensity increasing in a
high viscous solution. A double logarithmic scale of the fluorescent intensity at 530 nm
of compound 3 and solvent viscosity (Figure 4, Inset) showed a relationship with good
linearity (R2 = 0.9843) which is typical for TICT rotors [36,37].
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Glycerol has lower pKa value than glycol and the acidity of the glycerol/glycol mixture
could be a major reason for the observed fluorescence changes. In order to reject this theory,
the fluorescent spectra of 3 were measured in glycol, buffered glycol containing 10 µM
Tris-HCl (pH 8), glycerol, and buffered glycerol containing Tris-HCl (pH 8). The results
presented in Figure 4B show that the presence of buffer solution did not lead to a significant
result which clearly illustrated that the changes in fluorescence intensity of 3 mainly were
induced due to the different viscosity. The results suggested the existence of fluorescence
quenching in 3 with the nature of the TICT deexcitation path making it a promising
fluorescent probe for viscosity.
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2.2.3. Molecular Logic

As a whole, the above fluorescence-sensing properties of probe 3 logically could be
summarized in an OR molecular logic gate (Figure 5). In low-viscosity solution (glycol,
coded in binary as 0) and in the absence of protons (HCl, coded in binary as 0), 3 showed a
very low fluorescence output which was coded in binary as 0; however, in solution with
high viscosity (glycerol, coded in binary as 1) and in the absence of protons (hydrochloric
acid, coded in binary as 0), probe 3 fluorescence was higher (coded in binary as 1) due to
the hindered TICT quenching effect. In the presence of protons (HCl 10−6 mol/L, coded in
binary as 1), due to the destabilization of the TICT excited state, probe 3 showed viscosity
independent of high fluorescence output (coded in binary as 1). In other words, the novel
probe shows high fluorescence at high viscosity or high acidity, or both high viscosity and
high acidity. This behavior correlated very well with an OR logic gate. Obviously, the novel
probe 3 could be used as OR molecular logic gate, using viscosity and protons as inputs
and fluorescence emission as output.
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In addition, it should be pointed out that in the presence of protons in glycerol the
observed emission was higher than in glycerol without acid. This could have been the
result of a possible photoinduced electron transfer (PET) from tertiary piperazine amine
to the excited fluorophore, which quenched the fluorescence in glycerol. The protonation
of the tertiary amine disallowed the PET quenching, thus, the addition of acid in glycerol
solution resulted in a brighter fluorescence [51].

3. Materials and Methods
3.1. Materials

The starting reagents 4-chloro-1,8-naphthalic anhydride, hydrazine monohydrate, and
N-methylpiperazine were used as commercial products (Sigma-Aldrich Co., St. Louis, MO,
USA and Fisher Scientific, Waltham, MA, USA) without purification. All solvents used in
the synthetic procedures and in the photophysical investigation (Sigma-Aldrich Co., St.
Louis, MO, USA and Fisher Scientific, Waltham, MA, USA) were pure or of spectroscopy
grade. As sources of metal cations, Zn(NO3)2, Cu(NO3)2, Ni(NO3)2, Co(NO3)2, Pb(NO3)2,
Fe(NO3)3, Hg(NO3)2, and Cd(NO3)2 were used (all Aldrich salts at p.a. grade). KCl,
NaNO3, Na2SO4, NaHSO4, Na2CO3, CH3COONa, KBr, NaNO2, Na2SO3, K3PO4, and NaF
were the sources of anions (all salts at p.a. grade).

3.2. Methods

FT-IR spectra were recorded on a Thermo Scientific Nicolet iS20 FTIR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The 1H NMR analysis was performed on a
Bruker AV-600 spectrometer (BRUKER AVANCE II+ 600 MHz, Bruker, Billerica, MA, USA)
with operating frequency at 600 MHz. Electrospray ionization mass spectra (ESI-MS) were
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obtained on a Bruker MicrOTOF-Q system (Compass, Bruker Billerica, MA, USA). The TLC
monitoring was performed on silica gel, ALUGRAM®SIL G/UV254, 40 × 80 mm, 0.2 mm
silica gel 60. A Hewlett-Packard 8452A spectrophotometer (Agilent Technologies, Inc., Santa
Clara, CA, USA) was used for the UV-Vis absorption measurements. The photophysical
study was performed at room temperature (25.0 ◦C) in 1 × 1 cm quartz cuvettes. The
fluorescence spectra were recorded using a Scinco FS-2 spectrofluorimeter (Scinco, Seoul,
Korea). The quantum yields of fluorescence (ΦF) were calculated relatively to Coumarin 6
(ΦF = 0.78 in ethanol) [60]. Very small volumes of hydrochloric acid and sodium hydroxide
were used to adjust the pH which was monitored by HANNA® Instruments HI-2211
benchtop pH meter (HANNA Instruments, Woonsocket, RI, USA). The influence of metal
cations and anions on the fluorescence emission was studied by adding portions of ion
stock solution to a 10 mL of the fluorophore solution. The addition was limited to 100 µL so
that dilution remained insignificant. The ions were added gradually up to 10 equivalents
(10−4 mol/L) to a fluorophore solution (10−5 mol/L). The effect of ions was studied at
constant pH in the presence of 10 µM HEPES (pH 7.2) or 10 µM Tris-HCl (pH 8) buffer
solutions. The viscosity measurements were performed in binary mixtures of ethylene
glycol/glycerol using an Ubbelohde capillary viscometer (Sigma-Aldrich Co., St. Louis,
MO, USA).

3.3. Synthetic Procedures
3.3.1. Synthesis N-Amino-4-chloro-1,8-naphthalimide 2

A hydrazine monohydrate (0.2 mL, 400 mmol) was added to a solution of 4-chloro-
1,8-naphthalic anhydride 1 (1 g, 400 mmol) in 20 mL of methanol. The resulting mix-
ture was heated under reflux for 3 h. After cooling, the precipitate was filtered off,
washed with methanol, and dried to produce pale yellow crystals of N-amino-4-chloro-1,8-
naphthalimide 2 (0.77 g, 78%). FT-IR (KBr) cm−1: 3314 and 3236 (ν NH2); 1702 (νas N-C=O);
1652(νs N-C=O).

3.3.2. Synthesis of Probe 3

To a solution of N-amino-4-chloro-1,8-naphthalimide 2 (0.5 g, 2 mmol) in 5 mL of DMF,
0.4 mL of methylpiperazine (8 mmol) was added; then, the resulting solution was heated
under reflux for 5 h. The precipitated solid after cooling was filtered off and dried. The
final 1,8-naphthalimide 3 was obtained as yellow crystals (0.62 g, 99%) after azeotropic
distillation of the solvent (DMF) in the presence of n-heptane. FT-IR (KBr) cm−1: 3331 and
3335 (νNH2); 1693 (νasN-C=O); and 1633 (νsN-C=O). 1H NMR (CHCl3-d, 600.13 MHz)
ppm: 8.53 (dd, 1H, J = 7.3 Hz, J = 1.1 Hz, naphthalimide H-5); 8.46 (d, 1H, J = 8.1 Hz,
naphthalimide H-2); 8.36 (dd, 1H, J = 8.4 Hz, J = 1.1 Hz, naphthalimide H-7); 7.63 (dd, 1H,
J = 8.4 Hz, J = 7.3 Hz, naphthalimide H-6); 7.15 (d, 1H, J = 8.1 Hz, naphthalimide H-3);
5.44 (br.s, 2H, NH2); 3.26 (m, 4H, 2 × NCH2); 2.69 (m, 4H, 2 × CH3NCH2); and 2.38 (s,
3H, CH3). Elemental analysis: Calculated for C17H18N4O2 (MW 310.35) C 65.79, H 5.85, N
18.05%; Found C 66.01, H 5.79, N 17.88%. Positive-ion ESI-MS at m/z: 311.0145 [M + H]+.

4. Conclusions

In conclusion, a novel highly water-soluble 1,8-naphthalimide with pH- and viscosity-
sensing fluorescence was designed using TICT molecular motion. The photophysical
investigation of the synthesized compound was performed in an aqueous solution and
in solvents with different viscosities. The results obtained revealed its potential to serve
as a fluorescent probe for rapid detection of pH and viscosity, which was attributed to
the destabilization of the TICT excited state in acid media and hindered rotation at high
viscosity. The results presented here could be seen as a contribution to the development of
the applied sensory chemistry using environmentally friendly aqueous media.
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