
Published online 2 March 2022 Nucleic Acids Research, 2022, Vol. 50, No. 6 3115–3127
https://doi.org/10.1093/nar/gkac141

Summarizing internal dynamics boosts differential
analysis and functional interpretation of super
enhancers
Xiang Liu 1, Bo Zhao2, Timothy I. Shaw1, Brooke L. Fridley 1, Derek R. Duckett3,
Aik Choon Tan 1 and Mingxiang Teng 1,*

1Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
33612, USA, 2Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA 02115, USA and 3Department of Drug Discovery, H. Lee Moffitt Cancer Center and
Research Institute, Tampa, FL 33612, USA

Received November 01, 2021; Revised January 14, 2022; Editorial Decision February 08, 2022; Accepted February 14, 2022

ABSTRACT

Super enhancers (SEs) are broad enhancer domains
usually containing multiple constituent enhancers
that hold elevated activities in gene regulation. Dis-
ruption in one or more constituent enhancers causes
aberrant SE activities that lead to gene dysregulation
in diseases. To quantify SE aberrations, differential
analysis is performed to compare SE activities be-
tween cell conditions. The state-of-art strategy in es-
timating differential SEs relies on overall activities
and neglect the changes in length and structure of
SEs. Here, we propose a novel computational method
to identify differential SEs by weighting the combina-
torial effects of constituent-enhancer activities and
locations (i.e. internal dynamics). In addition to over-
all activity changes, our method identified four novel
classes of differential SEs with distinct enhancer
structural alterations. We demonstrate that these
structure alterations hold distinct regulatory impact,
such as regulating different number of genes and
modulating gene expression with different strengths,
highlighting the differentiated regulatory roles of
these unexplored SE features. When compared to
the existing method, our method showed improved
identification of differential SEs that were linked to
better discernment of cell-type-specific SE activity
and functional interpretation.

INTRODUCTION

Super enhancers (SEs) were proposed as broad regulatory
domains on genome, usually spanning a minimum of thou-
sands of base pairs and consisting of multiple constituent
enhancers (CEs) (1). The CEs work together as a unit, in-

stead of separately, to facilitate high enhancer activity, ob-
served as dense enrichment of cell master regulators, coac-
tivators, mediators and chromatin factors at SEs (2). These
characteristics were further demonstrated by the fact that,
distinct from regular enhancers, SE is specifically linked
to gene regulation associated with cell identity and disease
mechanisms (3,4).

Recent studies further showed that, beyond the elevated
activity, the internal mechanics of SEs also paly critical roles
in defining their prominent roles in gene regulation, known
as multi-promoter targeting and long-range interactions (5–
8). Some SEs form a clear hierarchical structure where hub
CEs are responsible for the functional and structural orga-
nization of the whole SEs (6,9). Other SEs, in contrary, re-
ceive relative balanced contribution from the CEs. In ad-
dition, CEs could establish an open chromatin interaction
network within individual SEs (7), indicating the internal
crosstalk across CEs in orchestrating SEs’ unique functions.

The activity and relations of individual CEs were well ap-
preciated during computational identification of SEs. Exist-
ing algorithms usually contain two processing steps (2,10).
First, the activity and locations of genome-wide enhancers
are inferred through peak detection using chromatin im-
munoprecipitation sequencing (ChIP-seq) data (11), par-
ticularly that measuring the binding of mediators, master
regulators, or active histone mark H3K27Ac. Second, the
inferred activity and locations are summarized linearly to
prioritize broad enhancer regions (2,3), i.e. SEs, that con-
tain densely enriched enhancers with high activities, i.e. the
CEs.

However, the organization of CEs were not considered
by current approaches in differential analysis of SEs, a key
aspect of research interest when comparing across biolog-
ical conditions (12–16). The alteration of SEs has been
found to be highly associated with disease dysregulation
and could be used for drug target identification (14–16).
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These approaches, in which SEs are treated as individual en-
tities, usually identify differential SEs based on binary strat-
egy, which compares the presence and absence of SEs be-
tween biological conditions, neglecting the constituent en-
hancer statuses. Consequently, differential SEs are gener-
ated largely depending on the parameters that algorithms
utilized to detect super enhancers (2,3). In addition, the sen-
sitivity to detect changes in the local enhancer organization
are downplayed within the broad genomic regions occupied
by SEs.

Here, we propose a novel computational method to iden-
tify differential SEs by summarizing the combinatorial ef-
fects of constituent-enhancer activities and locations. In ad-
dition to overall activity changes, our method detects four
extra differential categories specifically pointing to the in-
ternal structural alterations of SEs. We demonstrate the
unique characteristics of these differential SE categories us-
ing public datasets by linking their altered activity to tran-
scription factor (TF) binding and gene expression with 3D
chromatin interactions (17–19). The results indicate that
each SE category regulates distinct sets of gene targets
and their expression. Further, we show that our method
maximizes the discernment of cell identities when compar-
ing SE profiles of cell lines from the same cancer type.
Our method provides sensitive and biologically meaningful
identification of differential SEs, which complements exist-
ing understanding of SE dynamics. We implemented an R
package, DASE (Differential Analysis of Super Enhancers:
https://github.com/tenglab/DASE), to facilitate the use of
our method.

MATERIALS AND METHODS

Data acquisition

H3K27ac enrichment, gene expression and 3D interaction
data were downloaded from ENCODE data portal (20)
and GEO repositories (21). Specifically, quality-controlled
alignment files of H3K27Ac ChIP-seq and RNA-seq, and
chromatin contacts files of POLR2A ChIA-PET were
downloaded from ENCODE for six selected cancer cell
lines (A549––Lung Cancer, HCT116––Colorectal Cancer,
HepG2––Liver Cancer, K562––Leukemia, MCF7––Breast
Cancer and SK-N-SH––Neuroblastoma) (accession ID
documented in Supplementary Table S1). Raw sequenc-
ing files of H3K27ac ChIP-seq, RNA-seq and H3K27ac
HiChIP for BC1 and BC3 cell lines were downloaded from
GEO with accession IDs GSE136090 (16) & GSE114791
(22) (Supplementary Table S1).

H3K27Ac ChIP-seq data pre-processing

Raw ChIP-seq data from GEO was first aligned to hu-
man genome using Bowtie2 (23). Then, all alignment files
were processed for peak calling using MACS2 (11), followed
by SE detection using ROSE (2). All tools were applied
with default parameters. ChIP-seq blacklist regions were ex-
cluded for downstream analysis (24).

RNA-seq data analysis

RNA-seq alignment files downloaded from ENCODE were
quantified for gene expression using featureCount (25)

based on GENCODE annotations. Raw FASTQ files from
GEO were processed with semi-alignment and quantifica-
tion tool Salmon (26) to generate gene expression count ta-
ble based on GENCODE transcriptome. Then, differential
analysis of gene expression was estimated using DESeq2
(27) for all two-condition comparisons. The shrunk fold-
changes were extracted to represent gene expression differ-
ences (28).

3D chromatin contacts analysis

The chromatin contacts generated by ENCODE project
from POLR2A ChIA-PET data were directly adapted to
link genes and super enhancers for ENCODE cancer cell
lines. Basically, ENCODE project applied strict quality con-
trols, and filtered confident chromatin contacts with at least
three normalized interactions (29). H3K27Ac HiChIP data
of BC1 and BC3 cell lines are analyzed the same as previ-
ously described (16). In brief, reads were aligned to human
genome using HiC-Pro (30). Sequencing replicates were
merged to call chromatin contacts using hichipper (31) with
confident interactions defined as at least three normalized
interactions.

Differential analysis of CEs and binary SE differences

For each comparison between two cell lines that both have
two ChIP-seq replicates, a uniform peak list was first created
by merging overlapped peaks across the compared samples.
ChIP-seq reads were then quantified using featureCount
(25) to generate a read count table for the peak list. Differen-
tial peak analysis was performed by adapting DESeq2 (27)
(with parameter type = ‘mean’) to account for the varied dis-
persion between peaks with low and high read counts. The
differential statuses of CEs (H3K27Ac peaks within SEs)
were extracted based on their estimated log2 fold-changes
and corresponding q-values. We also extracted the normal-
ized coverage for CEs as the weight inputs for SE differential
analysis.

Binary SE differences were estimated based on the pres-
ence and absence of SEs between compared conditions. Ba-
sically, if a SE presents in both compared conditions at the
same given location regardless size or activity changes, it
will be identified as non-differential. In contrast, if a SE only
presents in one condition at a given location, it will be iden-
tified as differential.

Modeling differential SEs with SE internal dynamics by
DASE

DASE identifies differential SEs by accounting for the com-
binatorial effects of CEs weighted with their activities and
locations. In detail, the methods include the following steps
(Supplementary Figure S1).

Input preparation. A uniform list of SEs is generated by
merging overlapped SEs between compared conditions. The
differential statuses (log2 fold-change) of all CEs located
within SEs are extracted as well as their activities (ChIP-
seq coverage) and locations (genomic coordinates), as cal-
culated above. In practice, we select the maximum ChIP-seq

https://github.com/tenglab/DASE
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coverage between compared conditions for each CE to pro-
vide better weights in the spline model below.

Weighted spline model. For each SE, the log2 fold-change
values of CEs stratified by their genomic locations are fit-
ted using b-spline model, where the importance of CEs is
weighted by their relative activities. As a result, CEs show
less impacts on the spline fitting if they have low activi-
ties and stay close to other CEs. We implement the spline
model using R package splines. In addition, to ensure the
robustness of b-splines in the case of too many low- or
mild-activity CEs, we pre-estimate the polynomial degree
for each fitting based on the number of top ranked CEs in
each SEs. We choose top ranked CEs as the minimum num-
ber of enhancers that build up at least 95% of total SE ac-
tivity. In detail, we set the polynomial degree of b-spline as
2, 3 and 4 if this number of top ranked CEs is <4, between
4 and 6, and >6, respectively.

Significance estimation. We use permutations to define
significant fitted values by b-spline. In brief, we randomly
shuffle enhancer activities in each compared sample, re-
estimate the differential statuses of all CEs and re-fit splines
for all SEs. As a result, we generate a null distribution of
fitted b-spline values for all CEs. We repeat the processes 10
times for a stable null distribution. Significant fitted values
are defined as those having greater or smaller values than
the upper or lower inflection points (significant thresholds)
of the null distribution (Supplementary Figure S1).

Status summarization for SE sub-regions. We divide each
SE into multiple sub-regions using the intersects of b-spline
curves and the significant thresholds (Supplementary Fig-
ure S1). For instance, the curve located above the upper
threshold indicates an up-altered partial region within the
SE, while the curve located below the lower threshold indi-
cates a down-altered partial region. The curves in between
indicate non-altered SE sub-regions. To decrease potential
noises in SE segmentation, we ignore sub-regions in which
CEs account for <1% of the SE activities.

Overall differential status. We further summarize the over-
all differential statuses for SEs with heuristic approaches
based on the altering directions, locations, and activity oc-
cupancies (i.e. the percentage of the contained CE activ-
ity over the total activity of SEs) of the segmented sub-
regions from the previous step. Specifically, if only one re-
gion is resulted from segmentation of b-spline curve of a
SE, the SE will be identified as either overall-change or non-
differential depending on the altering directions of that seg-
ment: up/down-altered or non-altered. If two segments are
resulted (i.e. one segment is altered and the other is non-
altered), we determine differential SEs based on the activity
occupancy of the altered segment. In detail, two-segment
SEs are identified as non-differential, shortened or overall-
change if the altered segment occupies less than 10%, be-
tween 10 and 90%, and >90% of total SE activities. For a
three-segment SE, we first check if it is hollowed based on
whether the middle segment is up/down-altered. If not, we
check if it is shifted based on whether the three segments
cover three different altering directions consecutively (i.e.

up-altered, non-altered and down-altered). Otherwise, the
remaining three-segment SEs fall into the following situa-
tion: the middle segment is non-altered while the left and
right segments are both altered with the same altering di-
rection. We then identify the overall SE statues as non-
differential, shortened and overall-change based on the to-
tal activity occupancies of the left and right segments as
<10%, between 10 and 50%, and >50%. It is noted that
the overall-change are filtered with different criteria (break
points at 90% versus 50%) between two-segment and three-
segment SEs, to account for the total size impacts from the
altered segments. For a SE with more than three segments,
it is identified as other complex scenario except that a four-
segment SE holding all three statuses is defined as hollowed.
Finally, we rank the significance of differential SEs using
the activity occupancies of the altered segments separately
for overall-change, shortened, hollowed and shifted SEs. In
summary, overall-change SEs are resulted from one-, two-
or three-segment splines; shortened SEs are resulted from
two- or three-segment splines; shifted can only be estimated
from three-segment splines; hollowed can be estimated from
three- or four-segment splines; and all other altering situa-
tions are assigned as other complex scenario.

Transcription factor enrichment analysis

ChIP-seq bam files for 78 documented TFs in both K562
and MCF7 cell lines were downloaded from ENCODE with
accession ID provided in Supplementary Table S1. TF oc-
cupancies are normalized between the two cell lines using
RLE algorithm (27) based on TF peaks. After calling dif-
ferential SEs between MCF7 and K562 with DASE, we ex-
tracted TF occupancy from ChIP-seq data for significant
differential (fold-change > 4 & q-value < 0.05) CEs that lo-
cate within differential SE categories: overall-change, short-
ened, hollowed, and shifted. The occupancy heatmap for TFs
were generated with Deeptools v3.5.1 (32).

SE-gene targeting

We identify SE-gene targeting relationship using 3D chro-
matin contacts generated from POLR2A ChIA-PET or
H3K27Ac HiChIP. Basically, a valid targeting is defined if
one end of chromatin contacts is overlapped with SEs, while
the other end is overlapped with gene promoters (selected
as −3–1 kb from genes’ transcription start sites). Targeting
relations are ignored if the SE-promoter distances are less
than 20 kb or greater than 500 kb.

Pathway enrichment analysis

For pathway enrichment in genes linked by different SE
categories, gene sets were first identified for each SE cate-
gories based on SE-gene targeting relations in both com-
pared conditions. Then, only uniquely linked genes by
each SE category were selected for pathway enrichment us-
ing DAVID Bioinformatics Resources v6.8 (33) based on
KEGG database (34). For pathway enrichment in genes
linked by cell-type-specific SEs, genes were selected as those
only identified by DASE compared to the binary strategy.
Significant pathways were selected to have P-value <0.05.
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RESULTS

Internal dynamics underlie genome-wide SE differences

SEs usually contain multiple constituent enhancers (CEs)
located in close genomic proximity along the genome (2,35).
It is important to understand the roles of CEs in contribut-
ing to the SE lineage-specificity. We explored the SE profiles
for six cancer cell types (Figure 1 and Methods) using ChIP-
seq data of H3K27Ac histone modification from ENCODE
project (36). We found that CEs within the same SEs could
alter differently across cell types. For example, the CEs, lo-
cated at two previous reported SE loci responsible for MYC
regulation in multiple cancers (37–40), showed divergent ac-
tivity patterns across the six cell types (Figure 1A). We term
such divergent alterations between CEs as the internal dy-
namics of SEs, which underline the individual CE effects on
determining the cell-type-specific SE activity.

We then performed pair-wise comparisons of SE profiles
across the six cancer cell types. On average, over 40% of CEs
showed significant differential activity (fold-change > 4 and
q-value < 0.05) that accounts for over 80% of total SEs in
these cell types (Figure 1B). This indicates that SEs undergo
frequent internal alterations across cell types. We further es-
timated how the alteration of CEs contributed to the overall
differences of SEs. Here, we identified differential SEs be-
tween cancer cell types using the presence/absence (binary)
strategy. A small portion of SEs (∼10%) with significantly
altered CEs did not show overall differences, while the ma-
jority of SEs changed in the same directions as their al-
tered CEs (Figure 1B). This implies the divergent influences
of CEs on the overall differential statuses of SEs genome-
widely.

Next, we examined the characteristics of CEs that might
affect their contribution to the overall SE differences. Not
surprisingly, the spanning width and regulatory activity of
CEs, indicated by H3K27Ac ChIP-seq coverage, showed
significant associations with overall SE differences (Figure
1C and D). It is noted that the values of spanning width and
regulatory activity are correlated since wider CEs tend to
have higher sequencing coverage. Nevertheless, we demon-
strated both metrics here as individual CEs can have quite
discrepant values for the two metrics (Supplementary Fig-
ure S2). In brief, differential CEs with smaller width or
lower activity presented less impacts on the overall statuses
of their corresponding SEs. Therefore, we built a model to
summarize SE internal dynamics by accounting for these
characteristics.

Modeling internal dynamics leads to distinct patterns of dif-
ferential SEs

We developed a weighted spline model, implemented as an
R package DASE, to summarize the internal dynamics into
the overall differential statuses of SEs (Figure 2 and Ma-
terials and Methods). In brief, differential CEs were first
evaluated using existing strategies on detecting differential
ChIP-seq peaks (41). Then, a spline was fitted, stratified by
enhancer positions, to smooth the differential signals for
consecutive CEs. In the smoothing, the activities and width
of CEs were taken as fitting weights. Finally, the spline
curves were evaluated with permutations to determine re-

liable differential sub-regions within the SEs, which were
further summarized towards the overall differential statuses
of SEs.

To illustrate the utility of DASE, we compared SE pro-
files between two cancer cell lines, K562 and MCF7. These
two cell lines have high-quality annotation datasets on EN-
CODE data portal, including TF binding, 3D chromatin
interactions and gene expression, to help evaluate the iden-
tified differential SEs. DASE detected an overall-change as
well as four novel patterns of differential SEs highlighting
the structural alterations within SEs, denoted as shortened,
shifted, hollowed and other complex scenarios, separately
(Figure 2). Overall-change SEs represent significant over-
all activity alterations (as captured by the binary strategy)
as well as consistent altering behavior among CEs. (Figure
2A). Shortened SEs have significant changes in their sizes
by gaining or dismissing CEs on one or both ends of the
SEs (Figure 2B). Shifted SEs have migrated genomic loca-
tions without significant size changes (i.e. CEs gained on
one end of the SEs and dismissed on the other end) (Figure
2C). Hollowed SEs represent those with altered CEs in the
middle while the two ends remain intact (Figure 2D). Other
complex scenario SEs represent all other complicated or rare
cases (Supplementary Figure S3). The quantitative defini-
tion of SE categories is detailed in the Methods. Examples
of SE structural alterations reveal that structural differences
do not necessarily accompany overall activity differences
(Figure 2A–D). Together, they provide novel insights to un-
derstand SE dynamics between cell conditions. In addition,
we note that marginal activity differences that were over-
claimed as differential SEs by the binary strategy could be
properly corrected by DASE (Figure 2E).

In total, about 47% of SEs showed overall-change between
K562 and MCF7, reflecting the distinct chromatin struc-
ture underlying each cancer type (Supplementary Figure
S4). Shortened SEs dominated among all types of structural
differences (65%), indicating the wide spreading of SE size
changes. The other types of structural differences, although
not prevailing, represent the diverse dynamics of SE profiles
responsible for cell-type-specific gene regulation. We show
that those structural differences consistently present in com-
parisons across more cancer cell types in later sections.

Diverse differential SEs synergistically build up gene regula-
tion

We further characterized the functional roles of the differen-
tial SE patterns in gene regulation. SEs are usually enriched
with various transcriptional regulators and cofactors (8),
which play critical roles in supporting SE interactions with
gene targets (Figure 3A). We examined the protein binding
profiles across the differential SE patterns. In total, we an-
alyzed 78 TFs that have ChIP-seq data available for K562
and MCF7 cell lines by ENCODE project. TFs showed a
high correlation with CE activities (Figure 3B and Supple-
mentary Figure S5), regardless of the differential patterns of
the corresponding SEs (Supplementary Figure S6), suggest-
ing different patterns of SE alterations share similar mecha-
nisms in recruiting TFs. Among these TFs, two clear modes
of enrichment were identified (Figure 3B and Supplemen-
tary Figure S5): (i) those enriched at active CEs in both
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Figure 1. Internal dynamics of super enhancers. (A) CEs show frequent alterations across cancer cell types at two reported SE loci associated to MYC
regulation. ChIP-seq coverage of H3K27Ac are shown. SEs and CEs are labeled at the top as red and grey bars, separately. (B) Frequencies of differential
CEs (fold-change > 4 & q-value < 0.05) and SEs (based on binary strategy). (C) Relative width of differential CEs from non-differential and differential
SEs (Student’s t-test P < 2.2e–16). Relative width is defined as the percentage of CE width over the summed width from all CEs within a SE. (D) Relative
coverage of differential CEs from non-differential and differential SEs (Student’s t-test P < 2.2e–16). Relative coverage is defined as the percentage of CE
coverage over the summed coverage from all CEs within a SE.

K562 and MCF7 cell lines (e.g. MBD2), suggesting that
these TFs are involved in maintaining key cell functions;
(ii) those enriched at active CEs in only one cell type but
not the other (e.g. YBX1 and ZKSCAN1), indicating their
roles in cell-type-specific gene regulation. This suggests dif-
ferent types of SE alterations are involved in both cell-type-
specific and housekeeping-related regulation.

Beyond TF binding, we examined the downstream effects
of SE alterations on gene expression. We identified SE tar-
get genes in each cell type using 3D chromatin interactions
based on POLR2A targeted ChIA-PET data. As expected,
the gained CEs usually establish new gene targets, while the
dismissed CEs remove existing targets (Figure 3C). Con-
sequently, SEs with increased activity (e.g. strengthened or
lengthened with gained CEs) in one cell type usually target
more genes compared to their altered forms (e.g. weakened
or shortened with dismissed CEs) in the other cell type (Fig-
ure 3D). Interestingly, we observed that such effects differed
across the differential SE patterns, with heavier effects pre-

sented by overall-change, shortened and hollowed SEs, and
nearly no effects by shifted SEs (Figure 3D). The marginal
effects by shifted SEs are expected as they provide no signs
of the altering directions of SE activities. Here, to minimize
the sequencing coverage effects on gene target counting with
ChIA-PET data, we normalized the count differences by
subtracting the median count difference (i.e. 1) of the con-
trol SE group (i.e. the non-differential SEs).

Differential analysis of gene expression between K562
and MCF7 cell lines indicated that the gained CEs between
the two cell types were significantly associated with upreg-
ulated gene expression (Figure 3E). A similar association
was also observed at the SE level, with increased SE activity
presenting higher amplification on gene expression (Figure
3F). Again, overall-change and shortened SEs showed higher
regulatory effects, while shifted SEs presented nearly no ef-
fects. Here, hollowed SEs showed no impact on gene expres-
sion, indicating their functions might be limited to main-
taining the proper number of gene targets (Figure 3D). As



3120 Nucleic Acids Research, 2022, Vol. 50, No. 6

A B

C

E

D

Figure 2. Differential SEs modeled with DASE. SE examples are listed with overall-change (A), shortened (B), shifted (C), hollowed (D) and non-differential
(E). In each sub-figure, the upper panel lists in order the SE regions, CEs, H3K27Ac ChIP-seq coverage in two cell types with two replicates. The lower
panel shows the fitted b-splines in addition to the original log2 fold-change values for CEs (points). Dashed lines indicate the estimated thresholds from
permutation to define differential segments within SE regions. In (E), red text indicates the cell line where SE was detected at this locus by the binary
strategy.
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Figure 3. Differential SE categories linked to distinct regulatory features. (A) An example shows TF in aiding SE-gene regulation. (B) Differential CEs
enriched with cell-type-specific (YBX1 & ZKSCAN1) and key-function (MBD2) related TFs. Top panels are TF signals at CEs active in K562. Bottom
panels are TF signals at CEs enriched in MCF7. Middle panels are the aggregated binding signals from the top and bottom panels with blue and orange
lines indicating signals in K562 and MCF7, separately. The signs of y-axises in the middle panels represent enrichment directions. (C) Differences on the
linked gene numbers between MCF7 and K562 by differential CEs, which are grouped by their altering statuses. Gene targets are identified based on
chromatin contacts from POLR2A ChIA-PET Data. (D) Differences on the linked gene numbers between MCF7 and K562 by differential SEs, which
are grouped by their differential patterns. For each differential SE category, SEs are separated into two sub-groups based on their enrichment directions.
(E) log2 fold-change of the linked genes between MCF7 and K562 by differential CEs. (F) log2 fold-change of the linked genes between MCF7 and K562
by differential SEs. For each differential SE category, genes are separated into two groups by the enrichment directions of their linked SEs. P-values were
calculated with Wilcoxon rank-sum test (C, D) and Student’s t-test (E, F) with notations as *P < 0.05, ***P < 0.001 and n.s. = not significant. (G) Overlaps
of the linked genes by four differential SE categories between MCF7 and K562. (H) KEGG signaling pathways (P < 0.05) uniquely associated to each
differential SE category.
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a control, we observed no significant effects on gene expres-
sion by the non-differential SEs (Figure 3F).

We then performed pathway enrichment analysis on
genes linked by different types of SE alterations. The major-
ity of genes (∼75%) are linked by only one type of differen-
tial SEs (Figure 3G), with the overall-change and shortened
SEs linked with the most and comparable number of genes.
We focused on these genes linked by only one type of SEs
and identified distinct sets of signaling pathways uniquely
associated with each type of differential SEs (Figure 3H).
For instance, FoxO Signaling Pathway (42–44), cAMP Sig-
naling Pathway (45), and AMPK signaling pathway (46) are
enriched with genes linked to overall-change, shortened and
hollowed SEs, respectively. To further understand SE func-
tions in the context of the compared cell lines, we sepa-
rated each differential SE category into two sub-groups: up-
altered in K562 and up-altered in MCF7. We repeated path-
way enrichment analysis on these two sub-groups. Interest-
ingly, overall-increased SEs drive the signaling pathway en-
richment in K562, while lengthened SEs drive the signal-
ing pathway enrichment in MCF7 (Supplementary Figure
S7). This highlights the divergent regulatory mechanisms by
different SE categories in different cell lines. Pathway en-
richment was also performed between other cell lines, with
different SE categories showing varied importance in differ-
ent comparisons (Supplementary Figure S8). In summary,
different patterns of SE alterations synergistically build up
gene regulation by playing distinct roles in modulating gene
expression and cellular functions.

Accounting for internal dynamics improves identification and
interpretation of differential SEs

Besides the characterization of SE structural alterations,
DASE presents an overall improvement on differential SE
identification over the existing binary strategy (12–16). We
summarized the improvements based on pair-wise com-
parisons across the six cancer cell types. These cells have
H3K27Ac ChIP-seq, 3D chromatin interaction and gene
expression data available which enable the functional as-
sessment on targeting gene expression. On average, the
discrepant identification between DASE and the binary
strategy accounts for ∼18% of the total SEs and covers
all patterns of SE alterations (Figure 4A). For example,
overall-change SEs by DASE might be identified as non-
differentials by the binary strategy if SEs were detected at
the same region in both MCF7 and K562 cell lines (Figure
4B). Most newly identified differential SEs by DASE have
structural alterations (∼91%). The H3K27Ac and TF bind-
ing show stronger signal differences at the differential SEs
newly identified by DASE compared to those only identi-
fied by binary strategy (Figure 4C and Supplementary Fig-
ure S9). Among all discrepant differential SEs, the overall-
change SEs newly identified by DASE showed the strongest
impact on altering the numbers and expression of the gene
targets (Figure 4D), suggesting they were falsely identified
as non-differential by the binary strategy. The other newly
identified SEs by DASE presented relatively higher gene ef-
fects compared to the differential SEs only identified by
the binary strategy (Figure 4D), suggesting the overall im-
proved sensitivity and specificity by the DASE identifica-

tion. Here, we didn’t assess the shifted and other complex
scenario SEs in this analysis as they provided no signs of the
altering direction for gene expression. To avoid confound-
ing effects from genes targeted by multiple SEs, we left out
genes that were also linked by the common differential or
non-differential SEs in the analysis.

We further evaluated DASE by gene functions linked to
the differential SEs. We identified cell-type-specific regu-
lated genes that were linked to the SEs with increased activ-
ity (i.e. overall increased, lengthened, or hollowed with in-
creased CEs) in one cancer cell type compared to the other
five cell types. We then compared the obtained gene list be-
tween DASE and the binary strategy. Surprisingly, DASE
recovered nearly all the cell-type-specific regulated genes
by the binary strategy and found additional genes mainly
linked to the SE structural alterations (Figure 4E). We ex-
amined the pathways enriched in these additionally identi-
fied genes and found a number of cancer-associated path-
ways, indicating the critical roles of the novel structural al-
terations (Figure 4F). For example, Insulin Signaling Path-
way (47), ErbB Signaling Pathway (48), Thyroid Hormone
Signaling Pathway (49), TGF-beta Signaling Pathway (50),
NF-kappa B signaling pathway (51) and Neurotrophin Sig-
naling Pathway (52), linked to SEs that DASE uniquely
identified in A549, HCT116, HepG2, K562, MCF7 and
SK-N-SH, respectively. In addition, eight DASE-detected
differential SEs, that showed cell-specific enriched activity
in one of these cancer cell lines, were previously reported
by ENdb database (53) as disease enhancers in the corre-
sponding cancers. This highlights the capability of DASE
to prioritize functional SEs. In summary, DASE showed
improved sensitivity in linking differential SEs to cell-type-
specific regulation, particularly through the consideration
of internal structural alterations.

Accounting for internal dynamics maximize the discerning of
cell identity

Given the improved sensitivity in the cross-cancer analysis
above, we further evaluate DASE by within-cancer compar-
ison. We applied DASE to compare SE profiles between two
similar cancer cell lines, BC1 and BC3, that are B lympho-
cyte cells derived from Lymphoma under different viral in-
fections. We previously demonstrated that different viral in-
fections led to a distinct enhancer connectome on these cell
lines (16).

Overall, the two similar cell lines presented much higher
similarity of SE profiles (Figure 5A). We linked the differ-
ential SEs to their target genes using chromatin interactions
identified by H3K27Ac HiChIP datasets. Similar gene ef-
fect patterns were observed across differential SE patterns,
as we found previously (Figure 3C–F). The linked genes
were enriched in both frequency and expression in the same
direction as CEs/SEs altering between BC1 and BC3 cell
lines (Figure 5B–E). Specifically, such effects are stronger
by overall-change SEs, followed by shortened SEs, consistent
with the findings in cross-cancer analysis (Figure 3C–F). Fi-
nally, we extracted the uniquely linked genes by the differ-
ential SE patterns (Figure 5F) and performed pathway en-
richment analysis. We found unique pathways such as Vi-
ral Carcinogenesis particularly linked to the shortened SEs
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Figure 4. Comparisons between DASE and the binary strategy. (A) Average discrepancies between DASE and the binary strategy across pair-wise com-
parisons of the six cancer cell types. Light grey: common non-differentials by DASE and the binary strategy; Dark grey: common differentials; purple:
differential only by the binary strategy; blue: differential only by DASE. X-axis is labels with SE categories based on DASE. (B) An example region showing
overall-change SE by DASE but no change by the binary strategy. (C) H3K27Ac and TF binding signals at the CEs of the discrepant differential SEs. Lines
indicate the differences of binding signals between cell lines. (D) Impact on gene expression and linked gene numbers by the discrepant differential SEs
between DASE and the binary strategy. Bars indicate the mean of log2 fold-change of gene expression or changes of linked gene numbers in each pair-wise
comparison and error bars represent the standard error of the means. Results from the two altering directions of the gene effects are merged based on
absolute values. (E) Genes uniquely linked to SEs with increased activity (overall increased, lengthened or hollowed with increased CEs) in one cancer
cell type compared to the other five cells. Green: genes uniquely found by binary strategy; red: genes uniquely found by DASE; grey: genes found by both
methods. (F) KEGG pathways (P < 0.05) enriched in the uniquely linked genes by DASE.
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Figure 5. Identifying SE differences between similar cancer cell lines. (A) Proportions of differential SE categories identified from within-cancer (BC1
versus BC3) and cross-cancer comparisons (pairwise between six cancer cell types from ENCODE). Count differences (B, C) and log2 fold-changes (D, E)
of linked genes by differential CEs (B, D) and SEs (C, E) between BC1 and BC3 cell lines. Gene targets are identified based on chromatin contacts from
H3K27Ac HiChIP data. P-values were calculated with Wilcoxon rank-sum test (B, C) and Student’s t-test (D, E) with notations as *P < 0.05, **P < 0.01,
*** P < 0.001 and n.s. = not significant. (F) Overlaps of SE-linked genes across four differential SE categories between BC1 and BC3. (G) KEGG pathways
(P < 0.05) that uniquely associated to each differential SE category. Pathways enriched in shortened SEs are highlighted separately for two sub-groups:
those lengthened in BC1 and those lengthened in BC3.
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(Figure 5G). This suggests shortened SEs play key roles in
gene dysregulation in response to the different viral carcino-
genesis between BC1 and BC3 cell lines (54,55). We then
split shortened SEs into those lengthened in BC1 and those
lengthened in BC3 and performed pathway enrichment on
the two groups. We found that Viral Carcinogenesis path-
way only enriched in genes linked to lengthened SEs in BC1
(Figure 5G), indicating the complexity of viral infection by
two virus settings in BC1 as compared to single viral infec-
tion in BC3. Therefore, by accounting for the SE internal
dynamics, we found that cell-line-specific gene regulation
linked to differential SEs, particularly those with structural
alterations, highlighting the differentiated roles of SE cate-
gories and the importance of featuring internal dynamics in
SE differential analysis.

DISCUSSION

In this manuscript, we proposed a novel computational
method DASE to identify differential SEs by summariz-
ing the internal dynamics. We categorized differential SEs
into five major groups based on their overall activity and
structural alterations: overall-change, shortened, hollowed,
shifted and others. By assessing differential SEs with the en-
riched TFs and linked target genes, we found distinct char-
acteristics associated with different groups of SEs, such as
linking with different numbers of genes and affecting gene
expression at divergent impact. When compared with the
widely adapted binary approach, DASE found an improved
list of differential SEs which are linked to cell-type-specific
gene function. This highlighted the elevated performance by
DASE identification. It further demonstrated the increased
power in identifying cell-line-specific SE regulation when
applied to similar cell lines.

Specifically, our improved performance is powered by the
consideration of SE internal dynamics. For instance, SEs
might show frequent internal alterations yet with no over-
all activity changes, as shown in our study. These differ-
ences, however, if not accounted for, could under-estimate
the genome-wide variation of SE profiles and consequen-
tially bias the evaluation of SE effects on gene regulation.
On the other side, significant activity changes of SEs are
usually combined with structural alterations, either glob-
ally or partially, indicating modeling structural differences
won’t lose specificity in detecting true SE differences. How-
ever, we did notice that some SEs hold marginal activity
changes which were weighted differently as discrepant calls
between the binary strategy and our methods. Nevertheless,
these SEs usually showed lower effects on gene expression
compared to other differential SEs. Especially, those dis-
crepant differential SEs could regulate genes in alternative
way by altering the number of linked gene targets if they
present significant structural alterations.

One limitation of our methods is that we cannot identify
structural differences when a SE contains only one CE. We
proposed a weighted spline model to account for the contri-
bution of CEs by their width and activities. Thus, the model
requires at least two CEs within a SE to generate a confident
estimation. In practice, we identified SEs with only one CE
as either non-differentials or overall-change if their activities
are significantly altered. In addition, we identified differen-

tial SEs as other complex scenarios if their internal patterns
cannot be attributed to all other categories. We detailed this
in the Materials and Methods section. In practice, we found
this category only accounts for a small portion of SEs (Fig-
ure 5A). We leave a closer interpretation of such complexity
to future work.

It is noted that the differential analysis by DASE is per-
formed based on the merged CEs and SEs between con-
ditions, a widely adapted strategy in differential analysis
of ChIP-seq (41). However, if the width and coverage of
the merged CEs/SEs increase dramatically from the orig-
inal regions, it might indicate unreasonable merging that
causes unfair comparisons between mismatched CEs/SEs.
We thus compared the width and coverage between merged
CEs/SEs and CEs/SEs detected in individual samples (Sup-
plementary Figure S10) and found that the values of the two
metrics were maintained reasonably. This might be partially
explained by (i) enhancers usually show sharp peaks based
on H3K27Ac signals; (ii) the locations of enhancer and SE
regions (regardless inactive and active) are relatively stable
across different cells (partially encoded by the underneath
DNA sequence motifs) (56,57).

SEs were conceptionally defined based on the intensity
and enrichment of consecutive enhancers (2,3). As a result,
significant changes of SEs may correspond to two scenarios:
activity changing between two SEs or status transitions be-
tween SEs and regular enhancers. These scenarios may asso-
ciate with different functional interpretations since regular
enhancers tend to regulate less and closer genes compared
to SEs. Although we did not provide approaches to discrim-
inate the two scenarios as that goes beyond the scope of our
proposed study, feasible strategies could be implemented in
future work to improve the downstream interpretation. For
instance, scanning the distances between SEs and gene pro-
moters could help filter regular enhancers as they are usu-
ally close to their gene targets (58,59). Also, SE alterations
can be linked to the status changes of local chromatin, such
as phase separation (60), to help determine if transitions oc-
cur between SE and regular enhancers. These require the
integration of additional datasets to define chromatin sta-
tuses.
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