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Abstract: In silico antibody discovery is emerging as a viable alternative to traditional in vivo and in
vitro approaches. Many challenges, however, remain open to enabling the properties of designed
antibodies to match those produced by the immune system. A major question concerns the structural
features of computer-designed complementarity determining regions (CDRs), including the role of
conformational entropy in determining the stability and binding affinity of the designed antibodies.
To address this problem, we used enhanced-sampling molecular dynamics simulations to compare
the free energy landscapes of single-domain antibodies (sdAbs) designed using structure-based
(DesAb-HSA-D3) and sequence-based approaches (DesAbO), with that of a nanobody derived from
llama immunization (Nb10). Our results indicate that the CDR3 of DesAbO is more conformationally
heterogeneous than those of both DesAb-HSA-D3 and Nb10, and the CDR3 of DesAb-HSA-D3
is slightly more dynamic than that of Nb10, which is the original scaffold used for the design of
DesAb-HSA-D3. These differences underline the challenges in the rational design of antibodies by
revealing the presence of conformational substates likely to have different binding properties and to
generate a high entropic cost upon binding.

Keywords: antibody design; antibody engineering; protein design; metadynamics; molecular
dynamics

1. Introduction

Antibodies have become essential tools in the fields of biological chemistry, medical
diagnostics and therapeutics [1–3]. The technologies available to discover novel antibodies
for a target of interest can be grouped into three broad categories. In vivo approaches
utilize the immune system for raising antibodies against antigens of interest, in particular
using transgenic animals to generate human antibodies [4,5] or the screening of B-cells
isolated from patients [6]. In vitro techniques rely on the screening, for example, by phage
display [7], of laboratory-constructed libraries to identify antibodies binding the desired
target. We note, however, that the biophysical properties of in vitro-isolated antibodies are
often inferior to those of antibodies obtained with in vivo methods [8–14].

In silico approaches to antibody and antibody-mimic design have recently started
to provide an attractive alternative [9,15–19] and circumvent some of the limitations of
laboratory-based approaches. Moving the costly and time-consuming work of isolating
antibody sequences with desired characteristics to in silico can significantly accelerate
the development time, and allow a more efficient search of sequence space. Moreover,
computational approaches readily enable the targeting of predetermined epitopes of choice,
which remains a challenge for laboratory-based methods [15,19].

We recently developed one such method, with the general idea of enabling the identi-
fication of peptides complementary to chosen epitopes on the target antigens [20]. These
peptides can then be grafted onto a suitable antibody scaffold such as CDRs. In this ap-
proach, the complementarity is designed by mining the Protein Data Bank [21] for β-strand
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conformations, and by identifying suitable fragments paired with parts of an epitope
sequence. By cascading along the sequence and identifying further fragments, the comple-
mentary peptide sequence can be constructed. We note that this method does not require
the structure of the target epitope, but only its sequence and, therefore, we consider it
a sequence-based approach. This approach has been successfully used to design single-
domain antibodies (sdAbs) targeting the elusive and mostly disordered oligomers of the
amyloid-β peptide found in Alzheimer’s disease [22,23]. Since this rational design method
is limited to targeting unstructured epitopes ideally within amyloidogenic antigens, we
recently extended this approach to target any structured epitopes on protein surfaces [24].
This approach also relies on fragment-based design but, rather than looking at β-strands
only, it looks more generally at any fragment whose backbone structure is compatible with
that of an antibody CDR. Since this approach is structure-based, it can also predict a model
of the designed CDR bound to its epitope, for which a structure or an accurate model is
required. This approach was experimentally validated by designing six sdAbs targeting
different epitopes on three antigens [24].

Despite these advances, the structural and dynamical features of designed sdAbs are
still largely unknown. Gaining a deeper insight into the behavior of the CDRs in solution
could enable further improvements in the computational design stage, yielding higher
affinities and improved biophysical properties. In particular, it is unknown what role
the conformational entropy plays in the ability of the sdAbs to bind their targets with
high affinity.

Previous molecular simulation studies suggest diverse kinetic and thermodynamic
behavior in sdAbs from various sources [25], but did not investigate in silico designs. To
better understand the dynamics of the CDRs, we performed molecular dynamics sim-
ulations with enhanced sampling of two designed sdAbs and one sdAb isolated from
a camelid immune system. More specifically, we investigated the conformational dy-
namics of DesAbO [23], which targets amyloid-β oligomers and was generated using the
sequence-based cascade method outlined above [20]. Similarly, we performed simulations
of DesAb-HSA-D3, which was designed to target human serum albumin (HSA) using the
aforementioned structure-based strategy [24]. Knowledge of the conformational flexibility
could inform further optimizations to these in silico design techniques to further improve
binding affinities.

Besides the different antigens, the key difference between these two designed sdAbs
is in the way in which the designed CDRs are grafted onto the sdAb scaffold. The CDR
of DesAbO was designed with a sequence-based approach, and the designed sequence
was grafted in the CDR3 of an sdAb scaffold known to be highly tolerant to CDR3 replace-
ment [20]. By contrast, DesAb-HSA-D3 was obtained with a structure-based design strategy.
Models of CDR1 and CDR3 fragments bound to HSA were obtained and then structurally
matched to an sdAb scaffold whose original CDRs were structurally compatible with the
designed ones in their bound conformation, where the structural compatibility was defined
based on backbone RMSD and lack of side-chain clashes [24]. Therefore, DesAbO has only
a rationally designed CDR3, while DesAb-HSA-D3 has both designed CDR1 and CDR3,
which were grafted on a structurally compatible scaffold. For comparison, we also ran
simulations of the unmodified scaffold, called Nb10, used to generate DesAb-HSA-D3,
which was developed using a llama immunization technique [26]. These sdAbs thus repre-
sent examples of different design approaches, with potentially different conformational
properties (Table 1).
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Table 1. Amino acid sequences of the 3 sdAbs studied in this work.

sdAb Sequence

DesAbO MEVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIGWVRRAPGKGEEWVASIYPTNGYTRYADSV
KGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAAGSESAFGRAEEEAAAWGQGTLVTVSS

DesAb-HSA-D3 QVQLQESGGGLVQAGGSLRLSCAASGELYALISMGWFRQAPGKEREFVAAISRNGANTYYTDSVK
GRFTISRDNAKNTVELQMNSLKPEDTAVYYCAADKFASPDGVVTIMTNEYDYWGQGTQVTVSS

Nb10 QVQLQESGGGLVQAGGSLRLSCAASGRTSSLYSMGWFRQAPGKEREFVAAISRNGANTYYTDSVK
GRFTISRDNAKNTVELQMNSLKPEDTAVYYCAADRFPTMEVVTIMTNEYDYWGQGTQVTVSS

2. Materials and Methods
2.1. Simulation Details

All simulations were performed using GROMACS 2019.3 [27] and a development
version of PLUMED 2.6 [28,29] (git commit 8859093). We chose CHARMM36m [30] as the
force field, together with the TIP3P [31] water model. Starting conformations for DesAbO
and DesAb-HSA-D3 were created using MODELLER [32], Nb10 was retrieved from the
PDB structure 4DKA. The structures were solvated in a rhombic dodecahedron box with a
volume of 214 nm3 (DesAb-HSA-D3: 197 nm3, Nb10: 227 nm3) using 6726 (DesAb-HSA-D3:
6103, Nb10: 6779) water molecules. Each system was energy minimized using the steepest
descent algorithm to a target force of 1000 kJ/(mol/nm) and equilibrated over a period
of 500 ps in the NVT ensemble with the Bussi thermostat [33], and over 5 ns in the NPT
ensemble using Berendsen pressure coupling [34], while applying a position restraint on
all heavy atoms, at a temperature of 300 K. The systems were then each simulated at
400 K for 5 ns in the NVT ensemble and 32 new starting structures were then sampled
from the respective trajectories at random, to produce a set of diverse CDR conformations.
Each conformation was then equilibrated using the same procedure outlined above, at a
temperature of 300 K. Production simulations were performed at 300 K in the NPT ensemble
using Parrinello–Rahman pressure coupling [35] with a time step of 2 fs. Constraints were
applied using the LINCS algorithm [36] with a matrix expansion on the order of 4 and
1 iteration per time step. Modeling of electrostatic interactions was performed using the
particle mesh Ewald [37] approach with a cut-off for short-range interactions at 1.2 nm.
All simulations were performed using parallel-bias metadynamics [38], using the well-
tempered [39] and multiple-walkers [40] protocols with 32 replicas (see Supplementary
Information for details).

2.2. Analysis

The individual replica trajectories were concatenated and the time-independent bias
calculated using PLUMED driver as described in [41]. The statistical weight for each

frame i was calculated as wi = exp(VPB
kBT )

[
∑i exp(VPB

kBT )
]−1

, where VPB is the parallel-bias
metadynamics potential, kB is the Boltzmann constant and T is the temperature [38]. All
observables were calculated as weighted ensemble averages. Convergence was assessed by
clustering 20 bootstrap samples of each trajectory and comparing the populations of each
cluster in the case of the first and second halves of the respective simulations (Figure S1).
We chose the GROMOS clustering algorithm [42] based on Cα RMSDs, as implemented in
GROMACS 2019.3 with a cut-off of 0.15 nm based on the evaluation of several different
values (Figure 1C). Convergence was assessed by clustering the whole trajectory using the
same method, discarding the first 10% of frames and comparing the cluster populations
between the remaining first and second halves of the simulation (Figure S1). We additionally
performed clustering using a hierarchical algorithm with average linkage, using cut-offs
between 0.01 nm and 0.4 nm, as implemented in scikit-learn [43]. Contacts between groups
were defined as any inter-residue heavy-atom distance below 0.45 nm. Scaffold and CDR
were defined as detailed in Tables 1 and 2. Information entropies S over clusters were
calculated using the relative population of each cluster pi as S = −∑i pi log pi as described
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in [44]. Dihedral entropies were calculated using normalized 2D histograms of 100 bins for
all φ and ψ backbone dihedrals as S = −∑ij pij log pij where pij represents each bin.

Table 2. Definition of the complementarity-determining regions of the 3 sdAbs studied in this work.

sdAb CDR1 CDR2 CDR3 HV4

DesAbO GFNIKDTYIG (27–36) SIYPTNGYTR (51–60) SESAFGRAEEEA (101–113) TSKNT (75–80)
DesAb-HSA-D3 GELYALISMG (27–36) AISRNGANTY (51–60) DKFASPDGVVTIMTNEYDY (99–118) NAKNT (74–79)

Nb10 GRTSSLYSMG (27–36) AISRNGANTY (51–60) RFPTMEVVTIMTNEYDYW (99–118) NAKNT (74–79)

3. Results
3.1. Metadynamics Simulations of the sdAbs

We performed all-atom, explicit water, parallel-bias metadynamics [38] simulations
of DesAbO, designed using a sequence-based method [20], DesAb-HSA-D3, built using a
structure-based approach [24], and Nb10, developed using llama immunization (Table 2).
After 9.3 µs, all simulations were found to be largely converged for cluster populations
larger than 10 (out of 10,000) frames (Figure S1).

3.2. The Designed Antibodies Exhibit High Conformational Entropy

To evaluate conformational heterogeneity of the CDRs, we performed a clustering
analysis using the GROMOS algorithm [42] (Figure 1). We evaluated several different
cut-off values for the Cα root mean square deviation (RMSD) and found that the number of
identified clusters varied strongly between the conformational ensembles (Figure 1b). To
facilitate the comparison between clusters we chose a cut-off of 0.15 nm for all systems. The
per-cluster population decays fastest for the Nb10 ensemble (Figure 1a), indicating lower
structural heterogeneity and a more compact conformational landscape in this antibody.
The second-fastest decay is found for DesAb-HSA-D3, while DesAbO features a more
heterogeneous distribution. Based on the normalized cluster populations we calculated the
information entropy over all clusters (Figure 1a), again indicating highest conformational
flexibility in the DesAbO ensemble, followed by the ensembles of DesAb-HSA-D3 and
lastly Nb10. We also note that, while the results in Figure 1b–d depend on the chosen
cluster cut-off value, the trends in Figure 1a confirm that the resulting conformational
flexibility ranking is robust with respect to this choice. To circumvent possible bias by the
choice of the clustering algorithm, we repeated this process using a hierarchical approach
(Figure S2). We again find a consistent ranking in terms of cluster population decay, albeit
with a higher number of total clusters with high similarities among each other. The relative
increase in flexibility is limited to the CDR3, with the CDR1 exhibiting coil-like behavior,
and the CDR2 showing a stable fold across all ensembles (Figure S3). We note, however,
that these two regions were not subject to a metadynamics bias potential, and thus may
not have been sampled exhaustively. We further looked at the Ramachandran entropy for
each peptide bond for all three sdAbs as a further metric for loop flexibility (Figure S4),
analogous to the approach described in [45]. We find similar entropy patterns over all three
ensembles, with the sequence- and structure-based designs (DesAbO and DesAb-HSA-D3)
showing the highest flexibility in the CDR3 loop. On the other hand, both DesAb-HSA-D3
and Nb10 exhibit higher entropies in the CDR1 region.
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Figure 1. Comparison of the clustering of the conformational space of the CDRs of the 3 sdAbs studied
in this work using the GROMOS [42] algorithm. (a) Number of clusters for varying cut-off values for
all conformational ensembles. (b–d) Populations for the top 8 clusters for DesAbO (b), DesAb-HSA-
D3 (c) and Nb10 (d); the mean information entropy (S) over the normalized populations is indicated.
Error bars indicate the 95th percentile of the bootstrap sample-of-the-mean over all 20 samples
consisting of 10,000 frames sampled from the ensemble based on the metadynamics weights.

3.3. Conformational Flexibility in the Complementarity-Determining Regions

To better understand the conformational properties of the sdAbs obtained by sequence-
based design (DesAbO), structure-based design (DesAb-HSA-D3) and in vivo immuniza-
tion (Nb10), we projected the free energy on to collective variables encoding the number of
intra-CDR3 and CDR3–scaffold contacts (Figure 2). While the DesAb-HSA-D3 ensemble is
relatively compact and maintains a large number of CDR–scaffold contacts, the DesAbO
ensemble shows far fewer contacts not only with the scaffold, but also internally within
the CDR3. Even in the lowest free energy state, the DesAbO system forms relatively fewer
contacts with the scaffold than DesAb-HSA-D3 and its parent scaffold Nb10. The origin of
this higher flexibility in the sequence-based design can be seen, for example, by the absence
of contacts with residues 45–60 of the scaffold (Figure 3). We further see a reduction in the
contact probability between the first part of the CDR and residues 30–35 in the scaffold,
thus allowing for higher conformational heterogeneity. We note that while it may appear
that DesAbO occupies two distinct minima, the population of this higher energy state is
extremely low (0.1%), despite being sampled exhaustively by multiple replicas. Compared
with Nb10, both in silico designs lack strong contacts of the CDR3 with residues 50–55
in the scaffold (Figure 3c), this is also reflected in a further narrowing of the free energy
landscape (Figure 2). While only the CDR3 loop was biased during the simulation to
enhance sampling, we also evaluated the flexibility and contacts of the other CDRs and the
scaffold in general. While contacts formed by the CDR1 are similar across all three sdAbs
(Figure S5), the CDR2 in DesAbO exhibits very few contacts with the CDR3 (Figure S6A).
We further investigated the adjacent HV4 loop (Table 2), which has previously been shown
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to have a significant effect on antigen-binding affinity and often exhibits interactions with
the CDR2 and CDR3 [46,47]. Contact maps (Figure S7) and free energy surfaces (Figure S8)
show increased contact formation for the D3 scaffold (DesAb-HSA-D3 and Nb10) compared
to DesAbO. Nb10 notably exhibits two-state behavior, however, we would like to note that
this region of the protein was not explicitly biased using metadynamics. In terms of overall
flexibility, the root mean square fluctuation across residues is significantly increased in
DesAbO (Figure S9) compared to both DesAb-HSA-D3 and Nb10. The CDR2 flexibility is
on par with CDR1 and CDR3 in DesAbO, but lower in DesAb-HSA-D3 and Nb10.
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Figure 2. Comparison of the free energy landscapes of the 3 sdAbs studied in this work. The x and
y axes represent the relative proportion of intra-CDR3 (CDR–CDR) and CDR3–scaffold (CDR–NB)
contacts, respectively. Twenty randomly sampled structures are shown from each ensemble, with the
CDR3 loop colored.
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4. Discussion

The molecular dynamics simulations that we reported in this work indicate clear struc-
tural differences between all three antibodies at a conformational ensemble level. Notably,
despite the increased length of the CDR3 of DesAb-HSA-D3, theoretically allowing more
flexibility, this CDR is in fact more structured, with stronger CDR–scaffold contacts. As
the design process for this sdAb specifically optimizes for structural stability, this is not
surprising. Nb10 and DesAb-HSA-D3 share the same sdAb scaffold and exhibit many
of the same CDR contacts (Figure 3), although those of Nb10 have a higher probability,
consequently exhibiting a free energy minimum characteristic of a more structured confor-
mation. In contrast, the rationally designed DesAbO is missing many interactions between
the first half of the CDR3 and residues 50 to 60 in the scaffold. The lack of these particular
contacts may be sufficient to decrease the rigidity of the CDR, and potentially impact
binding affinities. Previous studies have emphasized the positive effect on binding affinity
of more rigid CDRs [48]. On the other hand, higher conformational entropy in the loop
might be beneficial in binding more disordered targets such as misfolded protein oligomers.
In that case, the necessary structural rearrangements to form a β-sheet structure with the
epitope may present a significant entropic barrier. Verifying these behaviors is difficult, as
the structures of these oligomers remain elusive [49].

These results underscore the importance of taking into account the effects of the
CDR–scaffold interactions in the sequence-based antibody design procedure. We thus
suggest that an avenue to further optimize the binding affinity of computationally designed
antibodies may be to tune these interactions. For example, mutations may be designed to
make the formation of β-sheets easier, by selecting the residues of the CDR appropriately,
or by engineering its stems to create anchor points on either side of the CDR to force a
particular arrangement. However, the general role of rigidity in antibody–antigen binding
remains unclear, with some results indicating only a slight reduction in dynamics in
antibodies produced through affinity maturation compared to naïve antibodies [50], and
others suggesting an increase in rigidity together with an increase in affinity [51]. Other
studies hint at the role of water in the binding process and the entropically favorable
formation of salt bridges [52,53]. The CDRs of a diverse range of antibodies have been
studied using molecular dynamics simulations and Markov state models [25], revealing
multiple CDR substates with microsecond-timescale transitions, and indicating potentially
beneficial effects of conformational heterogeneity.

Taken together, the results that we reported indicate that the conformational entropy
is a property that needs to be specifically optimized in the design of antibodies using
computational methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12050718/s1, Figure S1: Simulation convergence for both
sdAbs.; Figure S2: Agglomerative clustering algorithm with different cut-off values.; Figure S3:
Comparison of the contact maps of CDR1 and CDR2.; Figure S4: Ramachandran entropy per residue.;
Figure S5: Comparison of the contact maps of CDR1 with the scaffold.; Figure S6: Comparison of
the contact maps of CDR2 with the scaffold.; Figure S7: Comparison of the contact maps of the HV4
loop with the scaffold.; Figure S8: Free energy surfaces of the HV4 loop region.; Figure S9: RMSF
per residue. Reference [54] is cited in the supplementary materials.
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