
Journal of Pathology Informatics 15 (2024) 100359

Contents lists available at ScienceDirect

Journal of Pathology Informatics

j ourna l homepage: www.e lsev ie r .com/ locate / jp i
Multimodal Gated Mixture of Experts Using Whole Slide Image and Flow
Cytometry for Multiple Instance Learning Classification of Lymphoma
Noriaki Hashimoto a,⁎, Hiroyuki Hanada a, Hiroaki Miyoshi b, Miharu Nagaishi b, Kensaku Sato b,
Hidekata Hontani c, Koichi Ohshima b, Ichiro Takeuchi a,d,⁎

a RIKEN Center for Advanced Intelligence Project, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
b Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
c Department of Computer Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 4668555, Japan
d Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 4648603, Japan
⁎ Corresponding authors.
E-mail addresses: noriaki.hashimoto.jv@riken.jp (N. Has

http://dx.doi.org/10.1016/j.jpi.2023.100359
Received 2 August 2023; Received in revised form 7
Available online 29 December 2023
2153-3539/©2023TheAuthor(s). Published by Elsev
(http://creativecommons.org/licenses/by-nc-nd/4.0/
A B S T R A C T
A R T I C L E I N F O
Keywords:
Digital pathology
Mixture of experts
Multiple instance learning
Whole slide image
Flow cytometry
In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital
pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as
auxiliary information. In pathological diagnosis ofmalignant lymphoma, FCM serves as valuable auxiliary information
during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incor-
porating both images and FCMdata into the classification process, we can develop amethod thatmimics the diagnostic
process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between super-
classes and their subclasses, the proposedmethod utilizes a network structure that effectively combines the mixture of
experts (MoE) andmultiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in
handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for super-
class classification and multiple expert networks for (sub)class classification, specialized for each superclass. To eval-
uate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600
lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained
through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using
only images.Moreover, the combination ofmultiple weights in theMoE andMIL allows for the visualization of specific
cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional
methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks,
the proposed method could be effectively applied to the real problem of lymphoma diagnosis.
1. Introduction

The development of machine learning algorithms and the availability of
whole slide images (WSIs) have greatly accelerated studies in digital
pathology.1–16 These advancements have particularly focused on class (sub-
type) prediction from hematoxylin-and-eosin (H&E)-stained tissue speci-
mens, which are commonly used in pathological diagnosis. This approach
provides a quantitative second opinion during the diagnostic process,
aiming to reduce costs for pathologists and ensuremore consistent diagnos-
tic results. While current machine learning methods for digital pathology
primarily utilize WSIs, the observation of H&E-stained tissue specimens
alone is often insufficient for definitive diagnosis.In practical diagnosis, pa-
thologists consider various factors, including basic clinical information, in-
terview results such as performance status, and other test outcomes, in
addition to the examination of tissue specimens. Furthermore, most cases
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require additional information such as immunohistochemically stained tis-
sue specimens and genetic tests for making final decisions. To enhance the
accuracy of diagnostic support tasks and provide explanations that closely
mimic pathologists’ decisionmaking processes, a combination of digital im-
ages and auxiliary data is desired. In this paper, we propose a multimodal
classification method that incorporates both WSIs and flow cytometry
(FCM) for lymphoma pathology.

Conventional multimodal analysis methods typically treat auxiliary
data as input features. For instance, previous studies such as17–19 simply
combine image feature and auxiliary data, while20,21 encode the relation-
ship between images and auxiliary data using transformer architecture.22

However, the contribution of auxiliary data to the classification greatly
depends on its characteristics. Some auxiliary data may be useful for classi-
fying major categories, while others may only be useful for specific types of
diseases. Therefore it is crucial to consider which information among the
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images and auxiliary data was considered and how it influenced the
decision. From an explainability standpoint, it is desirable to be able to
mimic the diagnostic process of pathologists and consider how images
and auxiliary information contribute to the decision-making process of
the diagnostic task. In practical lymphoma diagnosis, FCM is a commonly
used auxiliary data that provides valuable information for classifying
groups of subtypes (superclasses) such as B-cell or T-cell lymphoma.
Hence, to replicate a pathologist’s lymphoma diagnosis, a model is required
that distinctly delineates the role of inputs, mimicking the actual diagnostic
process. This may involve utilizing FCM solely for superclass classification,
with final classification performed based on image data. We hypothesize
that optimal integration of FCM and images would empower the model to
yield highly explanatory classification results that are acceptable to the
pathologist. Therefore, we develop a novel classification model that
effectively combines multimodal inputs.

The mixture-of-experts (MoE) framework,23 which employs hierarchies
as a network structure, is particularly effective for classification problems
with hierarchical superclasses and classes. In the MoE framework, the
final output of the model is obtained by applying weights from a gating
network to the outputs of multiple weak classifiers, known as experts. For
instance, in lymphoma classification, each expert corresponds to a different
superclass (B-cell lymphoma, T-cell lymphoma, or Others). The expert for
B-cell lymphoma well classifies diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma (FL), while the expert for T-cell lymphoma well
classifies angioimmunoblastic T-cell lymphoma (AITL) and adult T-cell
leukemia/lymphoma (ATLL). Moreover, the expert for Others effectively
classifies classical Hodgkin lymphoma (CHL) and reactive lymphoid hyper-
plasia (RL). Cases of CHL exhibit low detectability in FCM, and RL is indic-
ative of suspected lymphoma but not cancer. Both have been categorized as
Others, constituting a superclass in which FCM does not identify abnormal
cells. By utilizing the FCM data, which is informative for superclass classifi-
cation, as input for the gating process, the model’s final output can focus on
the output of the expert corresponding to the superclass indicated by the
FCM data. The MoE framework is effective not only for lymphoma classifi-
cation but also for any problem with hierarchical class structures. In this
paper, our objective is to achieve high classification accuracy by pre-
training experts that have knowledge of a hierarchical class structure,
encompassing both superclasses and classes. Fig. 1 provides an overview
of the MoEmodel, which incorporates multimodal input for a classification
problem with a hierarchical class structure.

Since WSIs are large digital images (e.g., 100,000 100,000 pixels),
they cannot be directly fed into the classification model. Typically, image
patches extracted from small regions of the tissue slide are used as inputs
Fig. 1. An overview of the multimodal classification performed by the model utilizing th
and classes, as depicted in the table. The multimodal MoE architecture, equipped with
diagnoses and provide accurate predictions for each class.
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instead. Additionally, in most pathological image datasets, labels are
assigned to WSIs rather than individual image patches due to the high
cost of pathologists’ annotations. This problem setting of WSI analysis can
be addressed using multiple instance learning (MIL),14–16,24,25 a weakly su-
pervised learningmethod. It iswidely acknowledged thatMIL is valuable in
digital pathology and MIL techniques are applied not only to classification
task but also to segmentation26 and survival analysis tasks.27 In our pro-
posed method, we incorporate the MIL mechanism into the MoE
architecture to create a multimodal classification model. To validate the ef-
fectiveness of our proposed method, we conducted experiments using 600
lymphoma WSIs where we compared the accuracy of our approach against
several baseline methods. Additionally, we visualized the computed
weights in the model to confirm that each network worked well as
expected. In this paper, as an initial step, the number of target classes was
set to six, comprising three superclasses, eachwith two classes as illustrated
in Fig. 1, while the total number of lymphoma subtypes is approximately
100 and there should exist themore suitable number of superclasses. To en-
sure successful learning and achieve the expected visualization with
weights, the number of cases in each class was equalized. As the number
of target classes in the model increases, aligning with the complexity of
the actual lymphoma diagnosis problem, the proposed method aids the
pathologist’s decision-making process as the clinical application. It provides
class predictions and the rationale for decisions for a given case through the
combination of FCM and WSI. Table 1 shows a list of abbreviations used in
this paper.
Our contributions in this paper are summarized as follows:

• We developed a multimodal classification method that incorporates
WSI and FCM data, closely resembling pathologists’ diagnostic pro-
cess.

• We introduced a feature aggregation mechanism that combines MIL
and MoE architectures.

• We provided explanations for the decision-making process by visual-
izing gating and attention weights.

2. Related works

2.1. Digital pathology

In the field of digital pathology, numerous machine learning algorithms
have been developed for various tasks using digital pathological images.
These tasks include classification,1,28,29 segmentation,2,3,30,31

detection,32–34 survival analysis,4,5,35 similar image retrieval,6–8,36 and
pathomics.9,10 AWSI is a digital image that represents a pathological tissue
e MoE architecture. This classification problem involves a hierarchy of superclasses
an FCM-based gating network, demonstrates the ability to emulate pathologists’



Table 1
The list of abbreviations in this paper.

Abbreviation Definition

CNN convolutional neural network
FCM flow cytometry
H&E hematoxylin-and-eosin
MIL multiple instance learning
MLP multi-layer perceptron
MoE mixture of experts
WSI whole slide image
AITL angioimmunoblastic T-cell lymphoma
ATLL adult T-cell leukemia/lymphoma
CHL classical Hodgkin lymphoma
DLBCL diffuse large B-cell lymphoma
FL follicular lymphoma
RL reactive lymphoid hyperplasia

1 In an MoE trained from scratch, it is generally not guaranteed that each expert will be in-
terpretable. However, when training data with labels for both superclass and (sub)class are
available, we can pre-train each expert using only the data from each superclass. This allows
us to create an MoE with experts specialized for each superclass.
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slide digitized by a WSI scanner, and these images can have sizes of up to
about 100,000 100,000 pixels. Due to computational resource limita-
tions, it is common to analyze small image patches extracted from WSIs
as inputs for classification models such as convolutional neural networks
(CNNs). Some studies in digital pathology concentrate on lymphoma
classification, with methods typically applied to annotated cancerous
images.11–13 However, in most pathological image datasets, class labels
are assigned to WSIs rather than individual image patches due to the high
cost of pathologists’ annotations of tumor regions. When predicting slide-
level labels only from image patches without patch-level labels, MIL
techniques are known to be effective.24

Multiple instance learning In MIL classification, the model is fed a
bag that represents a set of instances, where class labels are not assigned
to individual instances but rather to entire bags. In the simplest binary clas-
sification problem, a positive bag contains at least one positive instance,
whereas a negative bag comprises only negative instances. When the classi-
fication problem extends tomulti-class classification, each bag representing
a class contains at least one class-specific instance. Note that themajority of
MIL works in digital pathology concentrate on binary classification, distin-
guishing between cancer and normal cases. There have been relatively few
papers published on multi-class classification in this context. The MIL clas-
sification model aggregates information from each instance to produce the
final prediction for an input bag. In machine learning for digital pathology,
the classification problem of WSIs can be formulated as MIL by regarding a
single WSI (bag) as a collection of multiple image patches (instances). Par-
ticularly, attention-based MIL methods14–16,24 have been successful in pro-
viding explainability in WSI classification, including lymphoma
diagnosis.14 These methods automatically compute important image
patches for classification and can provide attention regions corresponding
to tumor regions.

2.2. Multimodal analysis

In various medical fields, including pathological diagnosis, physicians
make diagnoses based not only on images but also on additional auxiliary
data such as clinical records. Hence, it would be effective to not only use im-
ages but also incorporate auxiliary information into the machine learning
method. Multimodal analysis methods that combine images with clinical
records have been studied in the medical field. For example, Yala et al.18

improved risk prediction by combiningmammography images and conven-
tional risk factors.

Yap et al.17 reported improved accuracy in classifying skin lesions and
detecting melanoma by using dermoscopic images and clinical records. Li
et al.25 combined tabular clinical data with histological images in an MIL
setting for lymph node metastasis prediction, where attributes including
age, genes, and tumor location, were used as inputs along with multiscale
histological images. Chen et al.20 proposed a transformer-basedmultimodal
model for survival prediction using images and genetic data. Their method
enabled the visualization of co-attentions between images and genetic in-
formation. Another study21 encoded the relationship between images and
3

clinical records using a transformer mechanism, which provided
exploratory and explanatory attention in classification and achieved high
explainability. In pathology and other medical fields, the use of diagnostic
information as auxiliary input, in addition to images, contributes to
improving task accuracy.

2.3. Flow cytometry in lymphoma

FCM is a technique for measuring the optical and fluorescence charac-
teristics of single cells.37,38 In hematopathology, markers are attached to
cells in collected specimens, and the presence or absence of abnormal cell
populations for each marker is examined. In the pathological diagnosis of
lymphoma, FCM data are commonly provided to pathologists along with
H&E-stained tissue specimens from the laboratory. These data are
presented in the form of “abnormal cell populations for CD20 and CD10”
after post-processing by technologists.

Lymphoma, the focus of our study, consists of groups of subtypes. For
example, DLBCL and FL belong to the B-cell lymphoma group, while AITL
and ATLL belong to the T-cell lymphoma group. In this study, we call
these groups of subtypes as superclasses while each subtype is referred to
as a class. FCMdata is valuable for distinguishing superclasses in lymphoma
diagnosis, and pathologists often refer to FCM results when they examine
H&E-stained tissue specimens. CD20 is a marker strongly associated with
B-cell lymphoma, and the presence of abnormal cells for CD20 indicates a
high possibility of B-cell lymphoma.

However, there are reliability issues with FCM. For example, some
DLBCL cases do not show B-cell-related abnormal cell populations. The
ability to detect abnormal cells varies depending on the class. In our exper-
imental dataset, more than half of patients with AITL, a T-cell lymphoma,
show no abnormal cell populations in T-cell-related markers. If FCM data
from cases without abnormal cell populations are used for classification,
they are likely to be misclassified as other superclasses, such as RL, which
does not show abnormal cell populations in FCM. Therefore, it is challeng-
ing to use FCM data alone for classification or superclass classification.
Previous studies using FCM for machine learning have focused only on
the classification of B-cell lymphoma, which can be easily identified solely
by FCM.39,40 However, to address a wide range of superclasses and classes,
it is essential to appropriately utilize FCM data.

2.4. Mixture of experts

When dealing with a classification problem involving superclasses and
classes, as in our study, the mixture-of-experts (MoE) architecture, which
incorporates hierarchies as a network structure, is effective.23 MoE is a
machine learning method where the final output is obtained by weighting
the outputs of multiple networks, known as experts, using a gating network.
Gating networks can employ soft gating,23,41 which probabilistically
weights the outputs of experts, or hard gating,42 which selects the output
of a single expert. MoE has been applied in digital pathology studies. For
example, there is a segmentation method for histopathological images
that introduces experts corresponding to different magnifications,2 and a
classification method for cytopathological images that introduces experts
corresponding to different input modalities.43

In MoE architectures, the gating network usually receives the same
input as the experts. By using FCM data as input for the gating network,
we aim to construct a classification model that closely resembles the
decision-making process of pathologists who utilizes FCM data for
superclass classification1. For example, the first expert can be trained to
classify DLBCL and FL effectively, the second expert can be trained to clas-
sify AITL and ATLL effectively, and the third expert can be trained to
classify CHL and RL effectively. By incorporating FCM data, which is useful
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for superclass classification, into the gating process, the model can focus on
the output of the first expert if the FCM data indicates a B-cell-related ab-
normal cell population. However, due to the reliability issues with FCM
data, cases without abnormal cell populations in FCM may still receive a
higher weight for the output of the third expert, even if the correct super-
class for the input case is B-cell lymphoma. To address the variability of
FCM, we propose an MoE classification model that employs a robust gating
method by combining images and FCM. Additionally, we aim to develop a
highly explainable model by combining the MoE structure with the MIL
mechanism, as MIL is effective for the classification of WSIs.

3. Proposed method

3.1. Problem setup

The dataset consists of N patients (cases) represented as
Xn,Tn,Yn

N
n 1, where each case comprises three components: a

WSI denoted asXn, FCM table data represented byTn, and a corresponding
label denoted asYn. Tn is an L-dimensional binary vector that indicates the
presence or absence of abnormal cell populations for each marker. Yn is a
K-dimensional one-hot vector that represents the subtype (class). Each
element of FCM data Tn takes the value 1 if the presence of abnormal cell
population for the corresponding marker is confirmed, or 0 otherwise.
FCM data are available as inputs even for test cases, as they are provided
to pathologists during the observation of H&E-stained tissue specimens for
practical diagnosis. In the dataset with C superclasses and K classes, the su-
perclasses are denoted as c 1, ,C and the classes are denoted as
k 1, ,K. Each of the K classes belong to exactly one of the C super-
classes. In this study, the aim is to identify the class for the n-th patient
when a WSI Xn and FCM data Tn are provided as inputs to the machine
Fig. 2. The proposed classification model, which received a set of multiple image patche
gating network, (iii) multiple sub-networks, and (iv) attention-based MIL.

4

learning model. The output of the model is a vector Yn which aims to
match the true one-hot encoded class Yn. Since the WSI Xn is a large digital
image that cannot be directly fed into a classification model, the class for
then-thpatient is determinedbyusingMn small imagepatches xn,m

Mn
m 1 ex-

tracted from Xn. This problem setting is formulated as an MIL classification
problem, where a model obtains the output Yn f xn m

Mn
m 1 Tn from

an input bag Bn consisting of multiple image patches xn,m
Mn
m 1 and FCM

data Tn.

3.2. Proposed model

Fig. 2 illustrates an overview of the proposed classification model,
which consists of four components: (i) feature extractors, (ii) multimodal
gating network, (iii) multiple sub-networks, and (iv) attention-based MIL.
In the following discussions, the subscript n for the patient is omitted for no-
tational simplicity.

(i) Feature extractors Feature extractors gimg x h and gFCM T
h FCM map image patches xm

M
m 1 and FCM T in a bag to feature vectors

hm M
m 1 and h FCM . The functions gimg and gFCM are implemented by CNN

and multi-layer perceptron (MLP) respectively. A feature extractor gimg

which is pre-trained with images of all classes in advance can obtain better
common features to be input to the sub-networks mentioned later.

(ii) Multimodal gating network The proposed method uses FCM
data as an input to the gating network in the MoE architecture following
the practice of pathologists who use FCM as a reference for superclass
classification in diagnosis. However, performing gating for superclass clas-
sification using only FCM data might lead to misclassification due to the
detection ability of abnormal cell populations. To address this, multimodal
s and FCM data, consists of four components: (i) feature extractors, (ii) multimodal
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inputs combining image patches and FCM data enable the computation of
gating weights that are robust to the variability of FCM for each patch. An

FCM feature h FCM is replicated for each image patch in a bag, and the gat-
ing weight for an image patch xm is calculated by anMLP-structured gating
network ggate as follows:

wm ggate h cat
m ,

whereh cat
m cat hm h FCM is a feature vector obtained by concatenat-

ing the image feature hm and the FCM feature h FCM . Each elementwm c of
the C-dimensional vector wm represents the weight assigned to the output
of the c-th sub-network for the image patch xm (∑cwm c 1). To control
the balance between soft and hard gating, a temperature parameter T is
introduced in the softmax activation function of the gating network.44 A
smaller temperature parameter results in sparser weights, emphasizing
the sub-networks on which each patch should focus.

(iii) Multiple sub-networks Sub-networks g c
sub receive a common

image feature hm and output features specific to class classification within
different superclasses. Each sub-network corresponds to an expert in the
standard MoE architecture and is pre-trained to provide encoded features
for accurately predicting classes in the corresponding superclass. For
instance, consider the three superclasses “B-cell,” “T-cell,” and “Others.”

Then, the sub-network g 1
sub provides image features for accurately classify-

ing DLBCL and FL, which are B-cell lymphomas. Second, the sub-network

g 2
sub provides image features for accurately classifying AITL and ATLL,

which are T-cell lymphomas. Finally, the sub-network g 3
sub provides image

features for accurately classifying CHL and RL, which are other lymphoma

and non-lymphoma. Each image feature hm is mapped as h c
m g c

sub hm by
the c-th sub-network, which provides an appropriate representation for
superclass c. Following the method described in23 (see also Section 2.4
above), the C feature vectors obtained by the C sub-networks for each
image patch are aggregated using the gating weight wm as follows:

h agg
m

C

c 1

wm c h c
m

The features of each image patch in a bag, aggregated as described
above, are expected to be more discriminative due to the multimodal
gating, which plays a role in superclass classification. By pre-training an
MIL classification model for each superclass (e.g., a model to classify
DLBCL and FL) using the common feature extractor and trainable
Fig. 3. Pre-training involves the common feature extractor and multiple sub-networks, a
six-class MIL classification is trained using all-class data to obtain a feature extractor with
class MIL classification is performed for each superclass using data from the correspond

5

sub-networks, it is possible to acquire sub-networks specialized for each
superclass.

(iv) Attention-based MIL The image features h agg
m , which are

weighted sums of outputs of the sub-networks based on the gating weights,
are aggregated into a single bag feature using attention-based MIL.24 An
attention network gatt, with an NN architecture, computes an attention

weight am that indicates the contribution of an image feature h agg
m to the

classification. The aggregated feature representing an input bag is
calculated by using the weighted image features and attention weights as
follows,

z
M

m 1

amh agg
m

The classifier gclf provides the prediction Y with z as input. The entire
classification model is optimized to minimize the cross-entropy loss

function between the prediction Y and the correct label Y.
Training of the proposed model To successfully train the proposed

model, it is essential to pre-train a feature extractor capable of representing
all classes and sub-networks proficient in classifyingwithin each superclass.
Before initiating training for the proposed model, the feature extractor and
sub-networks are initialized by pre-training two types of MIL classification
models illustrated in Fig. 3. Bothmodel structures are basic attention-based
MIL classification models, as explained in the previous paragraph. Firstly,
MIL classification for all classes is conducted, enabling themodel to identify
an inputWSI into target six classes. By training this classificationmodel, we
obtain the common feature extractor gimg capable of computing image
features representing all six classes. Following that, three two-class MIL
classification models for three superclasses are trained. The previously
pre-trained feature extractor, with fixed model parameters, is utilized in

all three models. For training sub-network g c
sub, only WSIs belonging to

superclass c are used. When the number of classes in the c-th
superclass is denoted as Kc, the output of the model for superclass c is the

Kc-dimensional vector Yc, representing the predictions for classes within
superclass c. In our problem setting, Kc is set to two for any c, and each
sub-network is trained so that the computed features effectively discrimi-
nate between two classes within the corresponding superclass. The
proposed model is then trained using these pre-trained feature extractor
and sub-networks as the initial parameters.

Role of attentions The proposed classification model provides two
types of attentions: gating weights and attention weights. The gating
weights indicate which sub-network outputs should be focused on, whereas
ccomplished through training two types of MIL classification models. (a) Initially, a
representations of all classes. (b) Subsequently, to pre-train the sub-networks, two-

ing classes.



Table 3
Presence or absence of abnormal cell populations in the 600 cases of the experi-
ment. Cases where the FCM data shows no abnormal cell populations are expected
to be classified as Others within the superclass.

Superclass Class With abnormal cells Without abnormal cells

B-cell lymphoma DLBCL 87 13
FL 96 4

T-cell lymphoma AITL 40 60
ATLL 84 16

Others CHL 1 99
RL 3 97
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the attention weights indicate which image patches should be focused on.
In other words, the gating weights indicate which superclass each image
patch belongs to, considering the FCMdata, and can quantitatively indicate
how each image patch exhibits features specific to B-cell lymphoma, T-cell
lymphoma, or Others. On the other hand, attention weights are expected to
represent something like tumorness since they indicate which image
patches possess class-specific characteristics. However, for RL cases
(which are not lymphomas), attention weights show a degree of
RL-specific features rather than tumors. For example, if the gating weight
for the sub-network of B-cell lymphoma is large for an image patch, and
its attentionweight is large as well, it indicates a tumor region of B-cell lym-
phoma. In contrast, if the gating weight for the sub-network of T-cell
lymphoma is large for an image patch, but its attention weight is small, it
indicates a normal region of T-cell lymphoma. In this study, the highly
explainable classification model is realized by visualizing these two types
of weights to show the classification result.

4. Experiments

We conduct experiments to compare classification accuracy and visual-
ize computed weights to validate the effectiveness of the proposedmethod.

4.1. Experimental setting

Dataset In the experiment, we utilized a private clinical dataset diag-
nosed at Kurume University. The dataset consists of H&E-stained tissue
specimens and FCM provided by a single laboratory company. A class
label was assigned to each case based on the definitive diagnosis according
to theWHOclassification, determined by an expert hematopathologist, tak-
ing into account additional immunohistochemical staining and genetic test-
ing. The dataset comprisesN 600 clinical cases, including six classes: 100
DLBCL, 100 FL, 100 AITL, 100 ATLL, 100 CHL, and 100 RL cases. DLBCL
and FL belong to superclass 1, specifically B-cell lymphoma, while AITL
and ATLL are classified under superclass 2, representing T-cell lymphoma.
CHL and RL fall into superclass 3, categorized as Others. In practical pathol-
ogy, lymphoma comprises approximately 100 classes with varying case
numbers for each class. However, in this study, we focused on only six clas-
ses, categorized into three superclasses. The number of cases for each class
was uniformly set to 100, aiming to effectively train the proposed method
and assess its effectiveness in this initial phase.

H&E-stained tissue specimens were digitized into WSIs using a WSI
scanner (Aperio GT450; Leica Biosystems, Germany) at a magnification of
40x (0.26 μm/pixel). FCM data was obtained through a flow cytometer
and utilized as inputs in the form of binary vectors, indicating the presence
or absence of abnormal cell populations, which were processed by a tech-
nologist. In this study, we employed a total of 18 antibodies shown in
Table 2, resulting in an 18-dimensional binary vector representation of
the FCM data (Tn ∈ 0, 1 18). The FCM data contains valuable information
for superclass classification, as mentioned earlier. However, there are cases
where abnormal cells are not identified by markers associated with the
actual superclass. Table 3 displays the presence or absence of abnormal
cell populations among the 600 cases used in the experiment. As observed
in the table, a majority of the CHL and RL cases lack abnormal cell popula-
tions. Additionally, there are cases of B-cell and T-cell lymphoma where
abnormal cell populations cannot be identified, leading to their classifica-
tion as Others solely based on FCM data. While FCM serves as a powerful
Table 2
The types of markers used in FCM data.

Associated superclass Marker

B-cell lymphoma CD10, CD19, CD20, CD23, kappa, lambda
T-cell lymphoma CD2, CD3, CD4, CD5, CD7, CD8
Others CD11c, CD16, CD25, CD30, CD34, CD56
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tool for assessing cellular function, it is crucial to recognize its limitations
and the fact that it may not always provide reliable data.

Baseline methods We compared the proposed method with the
following baseline methods.The model structures for methods 3, 4, and 5
are shown in Fig. 4. As mentioned in Section 2, various methods utilizing
both images and auxiliary data have been proposed. However, our
approach makes the final prediction solely from images. To confirm the
suitability of the image features obtained through the proposed MoE
architecture for classification, we aim to keep the models of the compara-
tivemethods as simple as possible. Note thatmethod 1 is an optimistic base-
line that assumes a hypothetical situation where the correct superclass
classification is given as an oracle.

(1) Two-class MIL classification model with known superclass
(optimistic method)

In this method, three distinct two-class MIL classification models
illustrated in Fig. 3(b), which are learned to obtain sub-networks for each
superclass during the pre-training step of the proposed method in
Section 3, are utilized. As mentioned in Section 3, the classification model
for superclass c is trained using only WSIs belonging to superclass c. The
feature extractor trained in method 2 is used with the fixed parameters as
the common feature extractor in all three models. During the testing step,
classification is performed by assuming a hypothetical situation where
the superclass of an input case is given as an oracle. For instance, when
the input test cases are DLBCL or FL, the two-class MIL classification
model for B-cell is used for testing. This method represents the ideal situa-
tion when the superclass can be classified with 100% accuracy. The sub-
networks specialized for each superclass are used as the initial parameters
of the corresponding sub-networks in all MoE-architecture method, includ-
ing the proposed method.

(2) Six-class MIL classification model using only images
This method is a simple six-class MIL classification model illustrated in

Fig. 3(a) that does not use MoE architectures and consists of only a feature
extractor, an attention network, and a classifier. The training of this model
is equivalent to one of the pre-training steps outlined in the proposed
method in Section 3. The feature extractor trained in this method is used
as the fixed feature extractor in other methods, ensuring that the models
acquire common image features across all classes.

(3) Hierarchical classification using images and FCM
Hierarchical classification is performed through the two-class MIL

classificationmodels used inmethod 1, following the superclass classification
using FCM data. For instance, when the superclass classifier gsclf predicts the
superclass of an input case as 1, the two-class classification model for super-
class 1 (B-cell lymphoma) is employed to classify the input WSI as either
DLBCL or FL. Thus, if gsclf misclassifies the superclass of an input case, the
final predicted class will be incorrect. Method 1 represents the ideal case for
this method, assuming a superclass classification accuracy of 100%.

(4) MoE classification with gating network using FCM
In this method, a gating network that uses only FCM data as input out-

puts the same gating weights to all image patches in the WSI. The feature
extractor trained in method 2 and the sub-networks trained in method 1
are used as the initial parameters in the model, optionally re-training the
sub-networks. The gating network ggate outputs a single three-dimensional
weight vector w for all image patches in the bag.
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(5) MoE classification with gating network using images
Thismethod involves inputting image patches to both sub-networks and

the gating network without FCM data, where the gating network outputs
different gating weights for each image patch. Similar tomethod 4, the fea-
ture extractor trained in method 2 and the sub-networks trained in method
1 are used as the initial parameters in the model, optionally re-training the
sub-networks.

Implementation details We explain the details of the model archi-
tectures and the training procedure. ResNet5045 is employed as a feature
extractor gimg, and a 2048-dimensional vector after global average pooling
is obtained as its output hm. Among all experiments, the six-class MIL
classification model shown in Fig. 3(a) is initially trained. This involves
learning the classification model for method 2 and acquiring the common
feature extractor for each of the other methods. For the six-class classifica-
tion model, the aforementioned feature extractor pre-trained with
ImageNet is fine-tuned, and the learned feature extractor gimg is employed
Fig. 4.Model structures of the comparedmethods: (a) Hierarchical classification using im
classification with gating network using images.

7

for all other methods. The feature extractor for FCM data, denoted as gFCM,
is a two-layer neural network that transforms the 18-dimensional FCM

vector T into a 128-dimensional feature vector h FCM using 128 output
units and the ReLU activation function. The increase in the dimensionality
of the output vector compared to the input is intended to handle the numer-
ical data from FCM itself. Although the input space is small in this case as it
is based on the presence or absence of abnormal cell populations, we are
implementing a generalized model. The structures of the other networks
are as follows. The gating network ggate is a three-layer MLP with a hidden
layer consisting of 512 units and the ReLU activation function, which out-
puts a three-dimensional weight vector wm through the softmax activation
function. However, the gating network ggate specific to method 4 is a three-
layer MLP with a hidden layer of 128 units and the ReLU activation
function, also producing a three-dimensional weight vector wm through

the softmax activation function. The sub-networks g c
sub are three-layer

MLPs with 1024 hidden units and the ReLU activation function, yielding
ages and FCM, (b) MoE classification with gating network using FCM, and (c) MoE



Table 4
Comparison of classification performance for eachmethod. Each value represents the mean and standard error from five-fold cross-validation. The MoE-architecture models
offer options to re-train sub-networks (Frozen/Trained) and the temperature parameter T 0 5 T 0 8 of gating weights.

Method Option Accuracy Precision AUC

Method 1 Oracle 0 842 0 014 0 846 0 014 0 980 0 002
Method 2 0 702 0 013 0 713 0 015 0 909 0 003
Method 3 0 695 0 013 0 726 0 019 0 869 0 010
Method 4 Frozen, T 0 5 0 557 0 012 0 623 0 032 0 852 0 014

Trained, T 0 5 0 582 0 039 0 593 0 049 0 863 0 017
Frozen, T 0 8 0 553 0 027 0 579 0 027 0 845 0 011
Trained, T 0 8 0 580 0 035 0 606 0 040 0 856 0 017

Method 5 Frozen, T 0 5 0 558 0 013 0 571 0 022 0 858 0 008
Trained, T 0 5 0 660 0 016 0 681 0 017 0 893 0 009
Frozen, T 0 8 0 555 0 020 0 562 0 026 0 859 0 009
Trained, T 0 8 0 642 0 010 0 660 0 011 0 890 0 007

Proposed Frozen, T 0 5 0 670 0 030 0 679 0 030 0 910 0 012
Trained, T 0 5 0 722 0 016 0.738 0.015 0 917 0 010
Frozen, T 0 8 0 710 0 014 0 718 0 016 0 911 0 006
Trained, T 0 8 0.723 0.007 0 737 0 008 0.924 0.009
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the 512-dimensional vector h c
m . The attention network gatt is a three-layer

MLP with 128 hidden units and the hyperbolic tangent activation function,
outputting a scalar. The classifier gclf is a three-layer MLP with 128 hidden
units and the ReLU activation function that outputs a six-dimensional class
prediction vector through the softmax activation function. For the six-class
MIL classification (method 2), the numbers of hidden units in the attention
network gatt and the classifier gclf are set to 512, as the length of input
feature vectors is 2048. The superclass classifier gsclf is a three-layer MLP
with 128 hidden units and the ReLU activation function that provides a
three-dimensional superclass prediction vector through the softmax activa-
tion function. The initialization of network parameters is random, except
for the ResNet50-based feature extractor gimg trained in the six-class
classification. In MoE-based methods, the parameters of the sub-networks

g c
sub are initialized with those of the sub-networks trained in the two-class
MIL classification model within each superclass, as illustrated in Fig 3(b).

As a pre-processing step, all WSIs are divided into tiled image patches of
224 224 pixels at 40x magnification. The average chromaticity within
image patches is thresholded using Otsu’s binarization to eliminate glass re-
gions from the entire slide, extracting only image patches of tissue areas. As
a result of the aforementioned processing, each WSI contains 100 or more
image patches. An input bag consists of 100 randomly selected
224 224-pixel image patches from the entire tissue at 40x magnification,
alongwith an 18-dimensional FCM vector (Mn 100 for any n). During the
Table 5
Confusion matrices of (a) the proposed method and (b) method 3.

(a) The confusion matrix of the prop

DLBCL FL

DLBCL 74 13
FL 14 80

Correct AITL 0 1
ATLL 2 0
CHL 2 1
RL 0 1

(b) The confusion ma

DLBCL FL

DLBCL 75 12
FL 16 80

Correct AITL 1 1
ATLL 1 0
CHL 1 0
RL 0 1
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training step, up to 5000 image patches are randomly selected from each
WSI at each epoch, resulting in the creation of a maximum of 50 bags for
each patient. No image patch overlaps between bags, and each image
patch is used only once in a single epoch of training. To enhance themodel’s
robustness to the randomness of image patches within the bag, 5000 image
patches are randomly selected from each WSI in every epoch. The
determination of the number of image patches in a bag and the maximum
number of bags for each WSI is based on previous literature regarding the
classification of lymphoma WSIs.14 On the other hand, since FCM data is
provided for each case, the same FCM data is assigned to bags of the
same case. During the test step, a maximum of 50 bags are created from a
single case, and the class predictions of all bags for the case are averaged
tomake the case-level class prediction. The selection of patches and the cre-
ation of bags in testing are the same across all methods. The network
parameters are optimized through 10-epoch training using SGD momen-
tum. The learning rates are set to 0.01 (method 2) and 0.001 (all other
methods), while the momentum is set to 0.9. The learning rate is scheduled
to decrease by a factor of 0.1 every 5 epochs. For the superclass classifier
gsclf , it is trained to predict superclass of an input case using only FCM
data. The optimization is performed with 50-epoch training using SGD
momentum, with the learning rate andmomentum set to 0.001 and 0.9, re-
spectively. In the training of the superclass classifier gsclf , the learning rate
is scheduled to decrease by a factor of 0.1 every 10 epochs.
osed method (Trained, T 0 8).

Predict

AITL ATLL CHL RL

1 6 4 2
0 1 0 5

67 10 12 10
15 74 4 5
14 1 64 18
9 4 11 75

trix of method 3.

Predict

AITL ATLL CHL RL

0 0 4 9
0 0 0 4

30 7 41 20
12 71 2 14
0 0 83 16
0 2 19 78



Fig. 5. An example of the visualization result for gating weights for each sub-network (middle column) and those multiplied by attention weights (right column). The high-
value regions in the visualized images in the right column are interpreted as the class-specific regions that contribute to the final class prediction.
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Our dataset is private and not publicly available. However, we pub-
lished python source code using PyTorch library on GitHub https://
github.com/mmmoe-ML/MMMoE.

4.2. Quantitative evaluation

The classification performance of each method was evaluated using
five-fold cross-validation. In each fold, the training, validation, and test
data were divided into 60%, 20%, and 20%, respectively, at the WSI
level. The experiments were conducted five times, with changes in the
data splitting to ensure that all WSIs were used for testing at least once.
The same data splitting was applied to all compared methods, stratified
9

across the six classes. Validation data was utilized to select the best model
during training, and the model showing the smallest validation loss was
chosen for testing after 10-epoch training. The results are presented in
Table 4, where each value represents the mean and standard error from
five-fold cross-validation. Precisions and AUCs were calculated for each
class, and then macro-averaged. In method 3, the AUC was calculated
after determining the classification model used through superclass
classification by FCM-based MLP. For the models with MoE architecture,
the parameters of the feature extractor were fixed, and the parameters of
sub-networks were optionally re-trained (indicated as Frozen/Trained, re-
spectively) to ensure that the roles of each sub-network were not signifi-
cantly altered. To sparsify the gating weights and highlight the salient

https://github.com/mmmoe-ML/MMMoE
https://github.com/mmmoe-ML/MMMoE


Fig. 6. The visualization result of gating and attention weights: (a) the visualization results of an ATLL case where abnormal cells are found in FCM data, and (b) the
visualization results of a CHL case where there are no abnormal cells in FCM data but appropriate weights can be output by the gating network.
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sub-networks, the temperature parameter T of the softmax function at the
output of the gating network was employed. When the temperature param-
eter is set to smaller value, the weight values after the softmax function be-
come more sparse. We selected two values, T 0 5 and 0 8, to examine
their effect on classification performance. However, it is important to
note that in practical applications, the optimal temperature parameter
should be determined using validation data.

The results demonstrate that the proposedmethod achieved the highest
accuracy among the compared methods, except for the optimistic method.
While both the proposed method and method 2 use a single feature vector
to perform final classification by aggregating image features, the proposed
method obtains more discriminative features by aggregating features with
10
higher expressive power. In methods 3 and 4, which directly use FCM
data for superclass classification, the FCM data have a dominant influence
on the classification, and misclassification of cases with no abnormal cell
population strongly deteriorates the results. The accuracy of FCM-based
superclass classification using an MLP in method 3 was 0.831, leading to
lower overall classification performance for method 3. While the proposed
multimodal gating is effective, it is notflawless andmay occasionally assign
inappropriate weights based on FCM data. For instance, there are cases of
T-cell lymphoma without abnormal cell populations in FCM data. To ad-
dress misclassifications by the multimodal gating network, it is considered
that re-training the sub-networks could enhance the overall classification
performance.



Fig. 7. The visualization results of gating and attention weights for an FL case.
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Additionally, Table 5 presents the confusion matrices of the proposed
method and method 3. The multimodal gating in the proposed method im-
proves classification accuracy and provides robust results for AITL cases,
even when abnormal cell populations are not detected. However, the
attempt to incorporate both image and FCM data, even in cases without
abnormal cell populations in FCM, has introduced a new issue where CHL
is misclassified as a T-cell case. Introducing a gating network that incorpo-
rates additional medical record information, such as patient details, might
enhance superclass classification and overall accuracy in classification.
Although the improvement in accuracy achieved by the proposed method
is relatively modest, the task of multi-class classification of lymphoma
solely from H&E-stained WSIs is inherently challenging. A significant con-
tribution lies in the visualization of multiple weights, as detailed in the
next section, a capability unique to the proposed method.

4.3. Visualization of weights

We conducted visualization of gating and attention weights to provide
an explanation for the decision-making process. In this experiment, we cal-
culated gating and attentionweights for all image patches in the entireWSI.
Gating weights were generated as continuous values between 0 and 1 using
the softmax function, allowing us to visualize them as a heatmap ranging
from blue to red. Blue represents a weight of 0, while red represents a
weight of 1. During the classification experiment, the attention network
outputs were normalized to a range between 0 and 1 using the softmax
11
function within the bag, ensuring that the sum of attention weights in the
bag became 1. However, in the visualization experiment, the attention
network outputs for all image patches in the tissue slide were normalized
to a range of 0 to 1 based on the minimum and maximum values. Fig. 5
illustrates an example of the visualization of gating weights for each sub-
network, as well as their multiplication by attention weights. The middle
column displays the visualization of gating weights, where red regions indi-
cate image patches that the model identified as superclass-specific regions
associated with the sub-network using information from images and FCM
data. The right column demonstrates the visualization of the multiplication
of gating weights and attention weights, where the remaining red regions
are interpreted as class-specific regions (i.e., tumor regions) that contribute
to the classification within the superclass. The high-magnification image
displays the region with higher attention, allowing us to identify the large
cells commonly observed in DLBCL.

The cases discussed below were carefully chosen as representative
examples that are easily interpretable. To analyze the visualization results
of correctly predicted cases, an expert pathologist (one of the authors,
who is an institution member with over 15 years of experience diagnosing
more than 10000 cases of lymphoma) provided valuable insights about the
relationship between tumor regions and visualized weights.

Fig. 6 shows (a) the visualization results of an ATLL case where abnor-
mal cells are found in FCM data, and (b) the visualization results of a CHL
case where there are no abnormal cells in FCM data but appropriate
weights can be output by the gating network. The FCM data of this ATLL



Fig. 8. The visualization results of gating and attention weights for an AITL case where abnormal cells are found in FCM data.
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case show significant T-cell lymphoma-specific information, and the out-
puts of sub-network 2 were emphasized at almost the entire tissue region.
On the other hand, the weights for sub-network 2 after multiplying the
attention weights show lower values in the normal follicular regions, and
it can be confirmed that the model predicted the correct class by focusing
on the interfollicular T-cell regions. Although abnormal cell populations
are not usually identified in CHL cases, the absence of abnormal cells in
the dataset used in this study is a reason for superclass classification as
CHL or RL. As a result, the outputs of sub-network 3 are focused by combin-
ing images and FCM data, and attention weights are higher in the regions
where the density of cell nuclei in the tissue specimen is low (i.e., the
color is lighter). The Hodgkin cells characteristic of Hodgkin lymphoma
often occur in these areas of low cell density, and the visualization results
are consistent with the pathologist’s perception of the diagnosis. We can
see that Hodgkin cells actually exist in the high-magnification image.

Figs. 7 and 8 show the visualization results for an FL case and an AITL
case respectively, both of which exhibit abnormal cells in FCM data. In
the FL case, the outputs of sub-network 1 are focused in the follicular
region, while the outputs of sub-network 2 are focused between follicular
regions. The structure in which B-cells form a follicular structure and
T-cells are placed around it is typical of FL cases, and we can see that the
model predicted the final class as FL using the tumor features in follicular
regions. In the AITL case, the model focused on the outputs of sub-
12
network 3 in the light-colored regions of the tissue specimen, which
shows that those regions were suspected as the specific regions associated
with CHL. However, unlike the CHL case in Fig. 6 (b), because there is no
actual Hodgkin cells and they were not considered tumor area, the case
was classified as AITL based on information from the region whose outputs
of sub-network 2 were focused. The light-colored regions of the tissue spec-
imen in the AITL case, which are shown in themagnified version, are due to
the proliferation of histiocytes and differ from those in CHL.

Fig. 9 shows the visualization results of AITL caseswhere abnormal cells
were not found in both FCM data. In both cases, the FCM data show all
zeros, which cannot be discriminated from CHL and RL. In other words, if
superclass classification is based solely on FCM data, the outputs of sub-
network 3 are expected to be emphasized in the entire tissue. However,
by inputting images at the same time, the proposed method can correctly
classify these cases as AITL by focusing on the outputs of sub-network 2.

From the above, we confirmed that each network of the proposed clas-
sificationmodel is appropriately trained and can present a basis for decision
making that is consistent with the pathologist’s diagnostic process.

5. Conclusion

In this paper, we proposed a multimodal classification method for lym-
phoma pathology diagnosis, incorporating both images and auxiliary



Fig. 9. The visualization results of gating and attention weights: both AITL cases have no abnormal cell populations in their FCM data.
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information. By integrating MoE into the MIL framework, our proposed
method constructs an effective classification model for problem settings
characterized by hierarchical class structures, encompassing superclasses
and classes. Notably, the gating network in the MoE structure allows the
input of both FCM (useful for superclass classification) and image features
simultaneously, enabling robust weight outputs from sub-networks to ad-
dress the limitations of FCM power. To assess the effectiveness of our
method, we conducted experiments involving a six-class classification
task with 600 lymphoma cases. The proposedmethod achieved a classifica-
tion accuracy of 72.3%, surpassing the 69.5% obtained through the
straightforward combination of FCM and images, as well as the 70.2%
achieved by the method using only images. Comparative methods suitable
for borrowing from existing literature were unavailable, as our model
13
needed to clearly define the role of inputs, mirroring the actual diagnostic
process. This involved using FCM exclusively for superclass classification,
with the final classification based on image data. Furthermore, the combi-
nation of multiple weights in the MoE and MIL allows for the visualization
of specific cellular and tumor regions, resulting in a highly explanatory
model that conventional methods cannot achieve. Validation from an
expert hematopathologist further confirmed the visualization results in
multiple classes.

The proposed method can offer accurate and highly explanatory diag-
nostic assistance at pathology facilities where WSI and FCM are available.
However, there are several challenges to address for clinical application.
In this study, as an initial step, the number of target classes was set to six,
whereas the total number of lymphoma subtypes is approximately 100.
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For diagnostic support in clinical practice, it is imperative to increase the
number of classes covered by the classification, aligningwith actual diagno-
ses (e.g. mantle cell lymphoma and MALT lymphoma). As the number of
classes increases, a class imbalance issue may arise in clinical settings,
where some classes may have fewer cases than others. We can also apply
the method for addressing class imbalance problems46,47 to challenges in
digital pathology.

In this paper, external validation could not be conducted as therewas no
available dataset with curatedWSI and FCM data. It is well-known that the
variation in tissue processing protocols can adversely impact the results of
machine learning algorithms. Currently, several methods exist to address
such issues.48,49 Notably, domain adversarial learning has demonstrated ef-
fectiveness in the classification of lymphoma for various tissue slides ob-
tained from multiple institutions.14

Our proposedmethod is not confined to lymphoma diagnosis but can be
applied to similar problem settings with hierarchical class structures. Addi-
tionally, as auxiliary data is not limited to FCM, the proposed method can
be employedwhenever there is valuable information for superclass classifi-
cation in patient data, such as medical records.
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