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Abstract: Human adipocytes release multiple adipokines into the bloodstream during physical
activity. This affects many organs and might contribute to the induction of inflammation. In this
study, we aimed to assess changes in circulating adipokine levels induced by intense aerobic and
anaerobic exercise in individuals with different adipose tissue content. In the quasi-experimental
study, 48 male volunteers (aged 21.78 ± 1.98 years) were assigned to groups depending on their body
fat content (BF): LBF, low body fat (<8% BF, n = 16); MBF, moderate body fat (8–14% BF, n = 19);
and HBF, high body fat (>14% BF, n = 13). The volunteers performed maximal aerobic effort (MAE)
and maximal anaerobic effort (MAnE) exercises. Blood samples were collected at five timepoints:
before exercise, immediately after, 2 h, 6 h, and 24 h after each exercise. The selected cytokines were
analyzed: adiponectin, follistatin-like 1, interleukin 6, leptin, oncostatin M, and resistin. While the
participants’ MAnE and MAE performance were similar regardless of BF, the cytokine response of
the HBF group was different from that of the others. Six hours after exercise, leptin levels in the HBF
group increased by 35%. Further, immediately after MAnE, resistin levels in the HBF group also
increased, by approximately 55%. The effect of different BF was not apparent for other cytokines. We
conclude that the adipokine exercise response is associated with the amount of adipose tissue and is
related to exercise type.

Keywords: endurance exercise; anaerobic exercise; adipose tissue; IL-6; resistin; leptin

1. Introduction

Physical exercise is reported to avert diseases, thereby contributing to human health.
It is also crucially involved in metabolism. The adipose tissue is an energy reservoir [1].
Physical activity initiates triglyceride hydrolysis, following which free fatty acids are
released into circulation to fuel up the working muscle [2]. However, the adipose tissue
also has other roles and is no longer solely perceived as an energy storage reserve. Recent
literature has highlighted the importance of body fat, which has been recently described
as a bona fide immune and endocrine organ [3,4]. That is because the adipose tissue
is the source of numerous biologically active compounds and cells [4]. According to
previous research, adipocytes produce and release a wide range of signal-transmitting
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molecules. For instance, the hormone adiponectin [5] plays anti-diabetic, anti-inflammatory,
and anti-atherogenic roles [6,7]. It thus facilitates crosstalk between the adipose tissue
and other metabolism-related organs [8]. Other such hormones are leptin [9,10], which
controls the nutritional intake [11] and is thereby known as the satiation hormone, and
resistin [12], linked to type 2 diabetes [13]. In contrast to adiponectin, which enhances
muscle glucose uptake and increases fatty acid oxidation [14], resistin maintains fasting
glycemia [15]. Further, it has been reported that follistatin-like 1, a well-known promoter
of skeletal muscle growth [16,17] is expressed in adipose tissue [18]. This tissue also
produces pro-inflammatory oncostatin M (OSM) [19], which is thought to regulate the
homeostatic state of the tissue and the immune cell balance [20,21]. There is also evidence
that adipocytes secrete interleukin 6 (IL-6) [22–24], described as an adipocytokine. IL-6 is a
pro-inflammatory cytokine involved in lipid and glucose metabolism, and body weight
regulation [3].

The secretory function of the adipose tissue is well described [3,7,25,26]. However,
far too little attention has been paid to exercise-induced changes in the secretion activity
of the adipose tissue. Although several research groups examined the effect of different
types of exercise on the circulating levels of adipose tissue-derived factors, the results are
inconsistent. For instance, in some studies, plasma adiponectin levels were unchanged
during acute cycling in healthy individuals [27], or after acute/moderate exercise in over-
weight/obese individuals [28,29]. By contrast, in another study, raised plasma adiponectin
levels were reported in overweight elderly men undergoing 6 months of high-intensity
resistance training, while moderate-intensity training did not have any effect [30]. Data on
leptin have also been inconsistent and contradictory. For example, in one study, short-term
exercise (<60 min) did not acutely affect leptin levels in healthy volunteers [31]. While
a decrease in plasma leptin in men after a graded treadmill exercise tolerance test was
shown [31], an increase in leptin levels during 41 min of cycling at 50% of maximal oxygen
consumption (VO2max) was recorded after administration of a standardized meal [32]. This
was followed by a reduction in leptin levels during recovery time, and they increased to
control values after 2 h [32].

Regarding resistin, a potential link between obesity and diabetes has been proposed [15].
Consequently, resistin is mostly studied in obese individuals. Its high blood levels are
linked to poor exercise capacity [33]. In overweight men, high-intensity endurance exercise
does not affect circulating resistin levels up to 48 h after the exercise [34]. Similarly, resistin
mRNA levels in the adipose tissue are not affected in lean and overweight subjects [35]. By
contrast, data for healthy individuals subjected to exercise are scarce.

The role of follistatin is relatively established. A recent study concluded that follistatin
is released into the bloodstream following an acute bout of exercise [36]. In the study,
involving young and healthy men, 3 h of cycling at 50% VO2max elevated follistatin blood
levels but not the follistatin mRNA levels in the muscle. Similarly, resistance training is
associated with an increase in circulating follistatin levels in elderly overweight women [37].
As for OSM, VO2max exercise elevates OSM serum levels in young and old men [38]. These
results corroborate earlier findings in a mouse model [39].

IL-6 levels increase during exercise [40]. Nonetheless, the increase is most likely
driven by the muscle [41,42] and increased IL-6 output from the adipose tissue has not
been convincingly demonstrated to date. The adipose tissue does not seem to contribute to
the elevated arterial IL-6 levels observed during a moderate short-duration workout [43].
However, according to some authors, almost 30% of IL-6 present in the blood is derived
from the adipose tissue [7].

Collectively, the above studies outline the critical role of adipocytes and the influence
of physical activity on the secretory profile of the adipose tissue. It is also apparent that
discrepancies exist in the data regarding adipose tissue-derived factors. In addition, side-
by-side comparisons of the secretory activity of the adipose tissue in the context of body
fat percentage are scarce. Further, the impact of aerobic [44] and anaerobic exercise [45] on
the secretory activity of the adipose tissue is not yet clear. Little quantitative analysis of
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systemic response to physical activity is available. Finally, much uncertainty still surrounds
the relationship between the type of exercise and adipose tissue secretion.

Accordingly, the present study was designed to determine the effect of intensive
aerobic and anaerobic exercise on the serum levels of adipokines and selected cytokines
considering the adipose tissue content of healthy physically active young adults.

2. Materials and Methods
2.1. Experimental Overview

Healthy and physically active male volunteers were assigned to three groups depend-
ing on the body fat content determined using a bioelectrical impedance analyzer. Body fat
content was categorized as low body fat (<8%), moderate body fat (8–14%), or high body fat
(>14%). These reference points were set to correspond to BMI values below 18.5 kg/m2 and
two equal ranges within 18.5–25 kg/m2 [46]. Based on the WHO criteria [47], the authors
of [46] calculated that approximately 8% of body fat corresponds to the BMI of 18.5 kg/m2

(the threshold for underweight) and approximately 20% of body fat corresponds to the
BMI of 25 kg/m2 (the threshold for overweight). The range of 18.5–25 kg/m2 and, in this
study, 8–20% body fat percentage range was wide and represented typical nutritional status.
Therefore, it was decided to investigate participants that were closer to the underweight
values and those closer to the overweight threshold. Thus, the body fat range was arith-
metically divided into half, acknowledging that both size and amount of adipose tissue are
correlated with adipokines secretion ([48] and [49], respectively).

The study was based on a quasi-experimental, repeated-measures design and was
adapted from our previous procedure [50]. The study protocol involved two maximal
tests: an anaerobic test (maximal anaerobic effort, MAnE; a double Wingate anaerobic test,
WAnT) and an anaerobic test (maximal aerobic effort, MAE; Bruce treadmill test). Venous
blood samples were taken at the following timepoints: immediately before, immediately
after, 2 h, 6 h, and 24 h after each type of maximal physical exercise. Medical examination,
the subject’s age, body composition, and height were analyzed at the study enrollment. All
of the volunteers were examined by a professional physician before and after every test.
Performance tests commenced with MAnE, and MAE was performed 14 days later. All of
the laboratory analyses were performed at the Gdansk University of Physical Education
(Gdansk, Poland).

2.2. Participants

Forty-eight male volunteers (21.78 ± 1.98 years old) participated in the study. The
participants were assigned to three groups based on a bioimpedance body composition anal-
ysis (InBody 720, South Korea, Seoul): low body fat group (LBF, n = 16; 20.66 ± 1.91 years),
moderate body fat group (MBF, n = 19; 19.86 ± 0.88 years), and high body fat group (HBF,
n = 13; 20.53 ± 1.40 years). The characteristics of the groups are presented in Table 1.
Recruitment to the research project was carried out based on letters of intent among the
population of male students at Gdansk University of Physical Education and Sport.

The participants were physically active healthy Gdansk university students without
any structured or professional sports training. All of the participants filled in the Global
Physical Activity Questionnaire (GPAQ), excluding professional athletes, extremely physi-
cally active individuals, and those who were completely inactive. During the examination,
11 people were excluded because they did not meet the study’s physical activity demands.
All of the participants had similar levels of physical effort exposure due to their daily sched-
ules related to their course of study. None had a history of known diseases or reported any
intake of medication due to illnesses 6 months before the study.

The participants’ description is consistent with our previous specifications published
by Humińska et al. [50]. In the presented study, the population that was not qualified to
participate in this project (according to the GPAQ declaration of intensive physical training)
was qualified for the previously presented research. The men were representatives of the
control study described in [50]. However, some of the participants involved in the current
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study were rejected from our previous study [50] due to the higher body fat percentage.
While more physically active participants were recruited for the earlier study, the less active
ones engaged in our current study. Nonetheless, all of the participants in both studies were
recruited at a similar time and underwent similar testing procedures, and were treated
similarly, e.g., concerning completing questionnaires and nutrition. For the entire duration
of the study, the participants were instructed to maintain their everyday diet, and were
asked to refrain from vigorous exercise and avoid caffeine and alcohol consumption during
the 48 h preceding the testing date. Food was not consumed during testing and water was
available ad libitum.

The study protocol was accepted by the Bioethics Committee for Clinical Research of
the Regional Medical Society in Gdansk (KB-27/18) and the study was conducted according
to the Declaration of Helsinki. Written consent was obtained from each study participant
before the study. The recruits were also informed about the possibility of withdrawing
consent at any time and for any reason. Before participation, the subjects were informed
about the study procedures.

The lipid panel was assessed once before exercise testing, in venous blood collected
into 5 mL tubes containing lithium heparin as an anticoagulant. Plasma was obtained
after centrifugation at 3500 rpm for 15 min (according to manufacturer protocol). Total
cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density
lipoprotein (LDL) cholesterol were quantified using spectrophotometric methods.

Table 1. Physical characteristics of the participants (n = 48).

Variables Unit
LBF

(n = 16)
MBF

(n = 19)
HBF

(n = 13)
Mean ± SD Mean ± SD Mean ± SD

Height cm 181.60 ± 3.85 179.23 ± 7.27 182.26 ± 7.23
Weight kg 74.04 ± 8.03 76.20 ± 9.11 85.37 ± 11.84 *#
BMI kg/m2 22.47 ± 2.58 23.89 ± 2.33 25.61 ± 2.28 *
Skeletal muscle mass kg 39.87 ± 4.80 39.13 ± 4.66 40.12 ± 5.32
Body fat mass kg 4.56 ± 1.21 8.51 ± 1.80 * 15.06 ± 4.74 *#
Percent body fat % 6.15 ± 1.48 11.12 ± 1.89 * 17.46 ± 3.86 *#

Note: LBF, low body fat; MBF, moderate body fat; HBF, high body fat. * Significant difference vs. LBF at p < 0.05,
# significant difference vs. MBF at p < 0.05.

Laboratory kits (Randox Laboratory Ltd., Crumlin, UK) were used for all of the
biochemical analyses and sample absorbance was read using a UV–vis spectrophotometer
(DREL 3000 HACH). The results of total cholesterol, HDL, LDL, and triglyceride analyses
are outlined in Table 2.

Table 2. Lipid profile characteristics of the participants (n = 48).

Variables Unit
LBF

(n = 16)
MBF

(n = 19)
HBF

(n = 13)

Mean ± SD Mean ± SD Mean ± SD

Total cholesterol mg/dL 137.00 ± 20.71 156.04 ± 31.05 * 156.31 ± 21.50 *
High-density lipoprotein (HDL) cholesterol mg/dL 49.47 ± 8.49 54.79 ± 16.13 46.75 ± 7.31
Low-density lipoprotein (LDL) cholesterol mg/dL 75.17 ± 16.81 86.08 ± 23.14 93.75 ± 20.27 *
Cholesterol non-HDL mg/dL 88.35 ± 18.65 98.20 ± 25.61 109.68 ± 24.48 *
Triglycerides mg/dL 60.35 ± 17.94 65.70 ± 18.66 78.93 ± 35.53

Note: LBF, low body fat; MBF, moderate body fat; HBF, high body fat. * Significant differences vs. LBF at p < 0.05.

2.3. Measurement of Anaerobic and Aerobic Fitness Level

The subjects’ performances were assessed using the WAnT (for MAnE) and the Bruce
treadmill test (for MAE). Table 3 summarizes the individuals’ fitness levels.
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Table 3. Performance characteristics of the participants (n = 48).

Variables Unit
LBF

(n = 16)
MBF

(n = 19)
HBF

(n = 13)
Mean ± SD Mean ± SD Mean ± SD

Maximal anaerobic effort
Relative peak power of the 1st WAnT W/kg 10.47 ± 0.99 10.57 ± 0.99 9.75 ± 0.94
Relative mean power of the 1st WAnT W/kg 8.24 ± 0.72 8.40 ± 0.66 7.87 ± 0.48
Relative peak power of the 2nd WAnT W/kg 7.58 ± 0.83 7.79 ± 0.70 7.56 ± 0.67
Relative mean power of the 2nd WAnT W/kg 5.98 ± 0.60 5.97 ± 0.54 5.53 ± 0.54

Maximal aerobic effort
Maximal ventilation L/min 148.80 ± 21.83 157.41 ± 18.33 146.55 ± 26.54
Maximal oxygen uptake ml/min/kg 57.72 ± 7.83 59.25 ± 5.17 55.28 ± 7.97
Maximal heart rate beats/min 190.40 ± 9.74 188.25 ± 15.55 191.33 ± 9.71

Note: LBF, low body fat; MBF, moderate body fat; HBF, high body fat; WAnT, Wingate anaerobic test.

2.3.1. Maximal Anaerobic Effort

The maximal anaerobic effort was determined using a twice repeated WAnT on a cycle
ergometer (Monark 894E, PeakBike, Sweden). The procedure was described previously
and adapted from Kochanowicz et al. [51]. The saddle height was adjusted for each
participant (knees remaining slightly flexed after the completion of the downward stroke
for the final knee angle of approximately 170–175◦). All of the participants started with
a standardized warm-up on the cycle ergometer (5 min at 60 rpm, 1 W/kg). During the
test, each participant pedaled with maximum effort for 30 s against a fixed resistive load of
75 g/kg of total body mass, as recommended by Bar-Or [52]. After that, the participants
had a 30 s break and the WAnT was repeated in the same manner, with maximum verbal
encouragement.

2.3.2. Maximal Aerobic Effort

For MAE, the Bruce protocol on an electric treadmill (h/p/cosmos, Germany) was
implemented as described elsewhere [50]. Briefly, after a standardized warm-up, each
participant undertook running with an increasing load, including velocity and treadmill
inclination. During the test, the participants wore a facemask connected to a pulmonary gas
exchange analyzer (Quark CPET, Cosmed, Italy). The test ended when the subject could
not continue because of fatigue or other conditions.

2.4. Blood Sample Collection and Measurements of Selected Markers

The following procedures were adapted from our previous study [53]. Blood (9 mL)
was collected five times: immediately before, immediately after, 2 h, 6 h, and 24 h after every
test. Venous blood samples were collected into Sarstedt S-Monovette tubes (S-Monovette®

Sarstedt AG&Co, Nümbrecht, Germany) without an anticoagulant for serum separation but
containing a coagulation accelerator. The serum was separated using standard laboratory
procedures, aliquoted, and frozen at −80 ◦C until further analysis.

Levels of the following markers were determined: adiponectin, follistatin-like 1, IL-6,
leptin, OSM, and resistin. The analyses were performed using a MAGPIX fluorescence
detection system (Luminex Corp., Austin, TX, USA) and Luminex assays (Luminex Corp.-
Luminex Human Magnetic Assay (6-Plex).

2.5. Statistical Analysis

The statistical procedures used were adapted from our previous work [50]. The
descriptive statistics included mean ± standard deviation (SD) for all of the measured
variables. One-way ANOVA was used to investigate intergroup differences in physical,
lipid profile, and performance characteristics. Two-way ANOVA with repeated measures
(RM: baseline and immediately after, and 2 h, 6 h, and 24 h after exercise) was used
to investigate the levels of biochemical markers after MAE and MAnE depending on



Int. J. Environ. Res. Public Health 2022, 19, 8782 6 of 17

the participants’ percent body fat (group: LBF, MBF, and HBF). To assess differences in
particular subgroups, Tukey’s post hoc test was used. In addition, the effect size was
calculated by using eta-squared statistics (η2). Values equal to or more than 0.01, 0.06,
and 0.14 indicated a small, moderate, and large effect, respectively. The Shapiro–Wilk
and Levene’s tests were performed to check the normal distribution and homogeneity of
variance, respectively. The total sample size of 48 participants was determined using the
G*Power software ver. 3.1.9.4. (Franz Faul et al., Universität Kiel, Kiel, Germany) for the
moderate effect size and power of 0.95. All of the analyses were performed using Statistica
12 (StatSoft Inc., Tulsa, OK, USA). The level of significance was set at p ≤ 0.05.

3. Results
3.1. Maximal Anaerobic Effort

Changes in biochemical marker levels after MAnE are shown in Figure 1. In contrast to
IL-6, the analysis of variance revealed a significant RM effect for all of the tested biochemical
markers. In turn, the effect of the group factor was apparent for adiponectin and leptin.
Significant interactions of the group and RM factor were noted for leptin and resistin. A
post hoc analysis revealed a significant increase in serum leptin levels 6 h after exercise,
compared with the values recorded immediately after exercise, only in the HBF group (by
34.35%). On the other hand, leptin levels in the LBF and MBF groups were unchanged from
baseline to 6 h after exercise. Leptin levels significantly decreased in the LBF (by 31.32%)
and MBF groups (30.33%) after 24 h. Despite the decrease noted 24 h after MAnE in each
group, leptin levels in the HBF group were significantly higher than in the LBF group.

A post hoc analysis of serum resistin revealed a significant increase in the HBF group
immediately after MAnE. Resistin levels 6 h and 24 h after exercise decreased to values
comparable with those at baseline (Table 4).

Table 4. Two-way (3 groups × 5 repeated measures) ANOVA of biochemical marker levels induced
by a double 30 s Wingate anaerobic test in low, moderate, and high body fat groups.

Variable Effect F df p-Value Effect Size (η2) Post Hoc Outcome

Adiponectin
Group

RM
Group × RM

3. 85
30.64
1.24

2, 45
4, 180
8, 180

0.02 *
<0.01 **

0.28

0.14
0.40
0.05

LBF < MBF
V < I, II, III, IV

Follistatin-like 1
Group

RM
Group × RM

1.74
39.63
0.41

2, 45
4, 180
8, 180

0.18
<0.01 **

0.91

0.07
0.46
0.01

II > I, III, IV, V; V < I,
III, IV

Interleukin 6
Group

RM
Group × RM

1.45
1.91
0.88

2, 45
4, 180
8, 180

0.25
0.31
0.53

0.05
0.02
0.03

Leptin
Group

RM
Group × RM

7.22
21.20
2.20

2, 45
4, 180
8, 180

<0.01 **
<0.01 **

0.02 *

0.24
0.32
0.10

LBF < HBF
IV < I, II, III, IV; IV > II

I-IVLBF > VLBF
I-IVMBF > VMBF
IIHBF < IVHBF
IVLBF < IVHBF
VLBF < VHBF

Oncostatin
Group

RM
Group × RM

0.65
34.22
1.32

2, 45
4, 180
8, 180

0.52
<0.05 *

0.24

0.02
0.43
0.05

V < I, III, IV

Resistin
Group

RM
Group × RM

0.66
24.18
2.56

2, 45
4, 180
8, 180

0.52
<0.01 **

0.01 *

0.02
0.34
0.10

II > I, IV, V; V < III
IHBF, IVHBF, VHBF <

IIHBF

Note: LBF, low body fat; MBF, moderate body fat; HBF, high body fat; I, baseline; II, immediately after exercise;
III, 2 h after exercise; IV, 6 h after exercise; V, 24 h after exercise. * Significant difference at p < 0.05, ** significant
difference at p < 0.01.
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Figure 1. Changes in the levels of biochemical markers ((A)—adiponectin, (B)—follistatin like 1, 
(C)—interleukin 6, (D)—leptin, (E)—oncostatin, (F)—resistin) after the double 30 s Wingate 
anaerobic test (means and standard deviations are shown) in the low body fat (blue), moderate body 
fat (green), and high body fat (red) groups. I, baseline; II, immediately after exercise; III, 2 h after 
exercise; IV, 6 h after exercise; V, 24 h after exercise. Significant difference vs. * low body fat group 
24 h after exercise at p < 0.05; # moderate body fat group 24 h after exercise at p < 0.05; † high body 
fat group immediately after exercise at p < 0.05. ^ Significant difference vs. high body fat group at 
baseline, immediately after, and 6 and 24 h after exercise at p < 0.05. MAnE exerts significant 
interactions between the group and RM factor on leptin and resistin ((D) and (F), respectively). 

  

Figure 1. Changes in the levels of biochemical markers ((A)—adiponectin, (B)—follistatin like 1,
(C)—interleukin 6, (D)—leptin, (E)—oncostatin, (F)—resistin) after the double 30 s Wingate anaerobic
test (means and standard deviations are shown) in the low body fat (blue), moderate body fat (green),
and high body fat (red) groups. I, baseline; II, immediately after exercise; III, 2 h after exercise; IV,
6 h after exercise; V, 24 h after exercise. Significant difference vs. * low body fat group 24 h after
exercise at p < 0.05; # moderate body fat group 24 h after exercise at p < 0.05; † high body fat group
immediately after exercise at p < 0.05. ˆ Significant difference vs. high body fat group at baseline,
immediately after, and 6 and 24 h after exercise at p < 0.05. MAnE exerts significant interactions
between the group and RM factor on leptin and resistin ((D) and (F), respectively).

3.2. Maximal Aerobic Effort

Changes in the levels of biochemical markers after MAE are presented in Figure 2.
Similar to MAnE, the analysis of variance revealed a significant effect of the time factor on
all of the tested biochemical markers, in contrast to IL-6. However, the effect of the group
factor was noted for IL-6, leptin, and OSM.

The analysis of variance revealed a significant interaction of effects only for serum
leptin levels (Table 5). As in the case of MAnE, serum leptin levels were highest 6 h after
exercise. However, a significant increase was noted from the baseline values (35.48%) and
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immediately after exercise (27.29%). In addition, leptin levels 6 h after MAE in the HBF
group were significantly higher than those in the LBF and MBF groups.
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Figure 2. Changes in the levels of biochemical markers ((A)—adiponectin, (B)—follistatin like 1, 
(C)—interleukin 6, (D)—leptin, (E)—oncostatin, (F)—resistin) after the Bruce treadmill test (means 
and standard deviations are shown) in the low body fat (blue), moderate body fat (green), and high 
body fat (red) groups. I, baseline; II, immediately after exercise; III, 2 h after the exercise; IV, 6 h after 
exercise; V, 24 h after exercise. †† Significant difference vs. high body fat group before and 
immediately after exercise, vs. low and moderate body fat group 6 h after exercise. MAE exerts a 
significant interaction between the group and RM factor on leptin (D).  

  

Figure 2. Changes in the levels of biochemical markers ((A)—adiponectin, (B)—follistatin like 1,
(C)—interleukin 6, (D)—leptin, (E)—oncostatin, (F)—resistin) after the Bruce treadmill test (means
and standard deviations are shown) in the low body fat (blue), moderate body fat (green), and high
body fat (red) groups. I, baseline; II, immediately after exercise; III, 2 h after the exercise; IV, 6 h
after exercise; V, 24 h after exercise. †† Significant difference vs. high body fat group before and
immediately after exercise, vs. low and moderate body fat group 6 h after exercise. MAE exerts a
significant interaction between the group and RM factor on leptin (D).
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Table 5. Two-way (3 groups × 5 repeated measures) ANOVA of biochemical marker levels induced
by the Bruce treadmill test in low, moderate, and high body fat groups.

Variable Effect F df p-Value Effect Size (η2) Post Hoc Outcome

Adiponectin
Group

RM
Group × RM

1.12
0.77
1.82

2, 45
4, 180
8, 180

0.33
0.54
0.07

0.05
0.01
0.08

Follistatin-like 1
Group

RM
Group × RM

0.54
28.17
0.84

2, 45
4, 180
8, 180

0.58
<0.01 **

0.57

0.03
0.41
0.04

II > V > I, III, IV

Interleukin 6
Group

BTT
Group × RM

3.77
1.92
1.66

2, 45
4, 180
8, 180

0.04 *
0.11
0.53

0.05
0.02
0.03

MBF > HBF

Leptin
Group

RM
Group × RM

6.32
9.18
2.26

2, 45
4, 180
8, 180

<0.01 **
<0.01 **

0.02 *

0.24
0.19
0.10

LBF, MBF < HBF
V < III, IV; IV > II
IHBF, IIHBF, IVLBF,

IVMBF < IVHBF

Oncostatin
Group

RM
Group × RM

3.36
6.62
1.25

2, 45
4, 180
8, 180

0.05 *
<0.01 **

0.27

0.13
0.14
0.05

MBF > HBF
V < I, II, III, IV

Resistin
Group

RM
Group × RM

0.39
12.53
0.58

2, 45
4, 180
8, 180

0.67
<0.01 **

0.78

0.02
0.23
0.10

I, IV, V < II, III

Note: LBF, low body fat; MBF, moderate body fat; HBF, high body fat; RM, repeated measure; I, baseline; II,
immediately after exercise; III, 2h after exercise; IV, 6 h after exercise; V, 24 h after exercise. * Significant difference
at p < 0.05, ** significant difference at p < 0.01.

4. Discussion

In this study, we set out to determine changes in the circulating adipokine levels in
association with the amount of adipose tissue and inflammation, in response to intensive
aerobic and anaerobic exercise in physically active young adults. To the best of our knowl-
edge, this is one of the first studies that mainly concentrates on the association between
aerobic and anaerobic exercise and the endocrine function of the adipose tissue. A direct
comparison of the results to those of other studies is therefore limited because the discussed
problem is novel.

The analysis revealed that exercise-induced changes in the serum adipokine levels
are associated with the amount of adipose tissue and related to the type of physical effort.
For both anaerobic and aerobic exercise, leptin levels increased substantially only in the
HBF group and reached a peak 6 h after exercise. Most studies investigating the effects
of short-term exercise on leptin report a reduction or no changes in leptin levels [54–61].
For example, a transient decline in leptin levels (6–14%) in individual subjects, up to
120 min post exercise, was shown in men and women 18–55 years of age and with a BMI
corresponding to that of the HBF group in the current study after a treadmill test following
the Bruce protocol to exhaustion [31,62]. Similarly, longer exercise, i.e., 1 h of running at
50% VO2max, caused a transient decrease (28%) of leptin levels in obese women up to 60 min
after the exercise [63]. A long-lasting physical effort was associated with a decline in leptin
levels [63]. This decrease might be related to the elevated production of non-esterified fatty
acids during exercise, which is inversely correlated with leptin levels [64].

Considering MAnE, one study reported no immediate effect of a single WAnT on
leptin levels in moderately active men with moderate body fat (BMI = 23.78 kg/m2) [65].
On the other hand, Guerra et al. [66] demonstrated that leptin levels in skeletal muscle
are reduced in response to a single WAnT exercise by 17% and 26%, 120 and 240 min after
exercise, respectively. In another study, four repeated WAnTs decreased leptin levels by
up to 20% within the first 90 min after exercise in young overweight/obese women [67].
While we did not detect any significant changes in leptin levels immediately after a double
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WAnT in the current study, we did observe significantly higher leptin levels 6 h after the
exercise in the HBF group than those in the LBF and MBF groups. Most likely, we did not
observe a significant reduction in leptin levels in the current study because the applied
exercise required only half of the energy expenditure of that applied by Vardar et al. [67].
In addition, we used a different methodological approach than that in [67], comparing five
timepoints instead of three. This resulted in a relatively lower sensitivity to detect small
changes between analyzed parameters. In summary, the immediate and short-term effects
of MAnE on serum leptin levels are probably associated with the amount of adipose tissue
and the exercise volume.

The leptin data are intriguing, as the levels increased 6 h after exercise for both types
of exercise only in the HBF group. Duzova et al. [68] also reported an increase in serum
leptin levels following the implementation of the Bruce treadmill protocol. However, the
increase occurred immediately after the exercise. This presumably could be associated
with different amounts of adipose tissue (32% in ref. [68] vs. 17.4% in our study) and the
different sex of the participants (females in [68] vs. males in our study). It should be noted
that in the current study, we also observed the tendency to increase immediately after MAE
and as soon as 2 h after MAnE. Of note, the increase reported by Duzova et al. [68] was
observed only after 12 weeks of jogging–walking training. Other studies investigating
changes in leptin levels after acute exercise focused on the immediate effects in untrained
individuals or athletes with lean body types. Therefore, an increase in serum leptin levels
might be observed only in individuals with an increased amount of adipose tissue and who
are trained to withstand intense aerobic exercise. It is accepted that leptin resistance might
not be a simple short-term biomarker of satiety [69] and that leptin levels are a function of
body fat and food availability [70].

Besides the immediate and short-term effects of exercise, others have reported a
delayed effect on leptin levels. For instance, it has been reported that the deferred (24–48 h)
decline in leptin levels after exercise mainly depends on the energetic expenditure [71–73],
so the higher the energy expenditure, the shorter the delay in leptin level decrease, even
within a few hours in the case of prolonged exercise [71–73]. We here showed a reduction
of leptin levels 24 h after only MAnE, which was more pronounced in the LBF group than
in the HBF group. In the case of MAE, a tendency for leptin levels to decrease after 24 h was
only apparent in the HBF group. It is possible that the rise in leptin levels described earlier
compensated for the reduction observed in participants with a relatively low amount of
adipose tissue.

Similar to the leptin data, the current study revealed a decrease in serum adiponectin
levels only 24 h after MAnE. This was observed regardless of the amount of adipose tissue.
The knowledge of the late effects of exercise on adiponectin levels is limited. Jamurtas
et al. [34] reported no difference in adiponectin levels in overweight men up to 48 h after
45 min of exercise at 65% VO2max intensity. A similar lack of change was documented
17–22 h after an ultramarathon run [74]. The difference in outcomes in [74] and in the
current study could be related to the different types of effort and energy expenditure tested.

According to previous studies, strenuous exercise augments adiponectin levels or
does not affect them at all [54,55,67,75]. Conversely, others reported a reduction in serum
adiponectin levels after five repeated WAnTs in sedentary young adults [76]. The lack of
immediate effect in the current study could be explained by the notion that raised cate-
cholamine levels during intense exercise hamper adiponectin secretion [29]. Augmentation
of adiponectin levels is likely related to the changes in body composition, instead of a
specific manner in which an exercise is being performed [34], when energy expenditure
is limited. Resting serum adiponectin levels are diminished in overweight/obese indi-
viduals [77]. While the amount of adipose tissue in the HBF group was higher than that
in other groups, we did not observe any differences in adiponectin levels at rest or after
exercise. The current study suggests that it is unlikely that changes in the adiponectin levels
after exercise are related to the amount of adipose tissue in physically active non-obese
young adults.
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In the case of resistin, the effect of the amount of adipose tissue was only observed in
MAnE, with resistin levels elevated immediately after exercise in the HBF group. Similarly,
prolonged strenuous exercise, such as marathon running, leads to an increase in serum
resistin levels among athletes [74,78,79]. Other studies investigating acute effects of exercise
on serum resistin levels in overweight/obese participants reported no changes [34] or a
transient decrease after 90 min [67] after four repeated WAnTs. These discrepancies could
be explained by the differences in the amount of adipose tissue and physical activity of
study participants (VO2max of 55.28 mL/kg/min and a mean relative power output of
7.87 W/kg in the current study, with 32.8 mL/kg/min in Jamurtas et al. [34] and 3.7 W/kg
in Vardar et al. [67], accordingly). Hence, the aerobic and anaerobic capability could play a
role in post-exercise changes in resistin levels, especially since the changes in serum resistin
levels (associated with a 10.8% mean power output increase) were no longer apparent after
19 days of high-intensity interval training [67]. The increase in resistin levels in the HBF
group immediately after MAnE suggests dysregulation of adipose tissue activity. This
secretory factor has been linked to insulin resistance and diabetes. Therefore, it is important
to analyze it in the context of metabolic syndrome [15,80,81].

In the current study, FSTL-1 levels did not differ between groups. In both MAnE
and MAE, we observed an increase in serum FSTL-1 levels immediately after exercise
and a decrease 24 h after exercise, in relation to rest values. The observed increase after
exercise is in accordance with the results of Mendez-Gutierrez et al. [70], Mieszkowski
et al. [82], and Kon et al. [83], who showed that FSTL-1 levels increase after an endurance
exercise session consisting of a maximum effort test on a treadmill, a marathon run, and
four repeated WAnTs, accordingly [70]. Of note, among the three cited studies, only
Mieszkowski et al. [82] investigated the late (24–48 h) response post exercise and, in
contrast with the findings of the current study, no difference in comparison to the baseline
was apparent. Similarly, OSM data indicated no effect of the adipose tissue on changes
induced by either MAE or MAnE. Overall, we observed a reduction of serum OSM levels
24 h after both exercise types regardless of the group. Not much is known about the effect of
acute exercise on OSM. According to one study, a marathon run does not substantially alter
OSM levels [82]. While the amount of energy expenditure in the current study drastically
differs from that in [81], it was also previously shown that a 12-week training either leads
to an increase in OSM levels [84] or has no effect on them [85]. Therefore, the impact of
exercise on OSM levels remains to be explored.

IL-6 is considered to be both pro- and anti-inflammatory. It has been shown that obese
individuals are prone to increase circulating IL-6 levels [86]. In the current study, while no
obese participants were considered, we did evaluate participants (physically active men)
with a wide range of adipose tissue content. Within that range, IL-6 levels in the HBF group
were not higher than those in other groups. Of note, IL-6 levels in the HBF group tended to
be lower than those in the MBF group, both at rest and after exercise.

It is well known that intense physical activity leads to an increase in circulating IL-6
levels [55], especially after prolonged strenuous exercise, such as a marathon run [75].
Surprisingly, in the current study, we did not observe any changes in IL-6 levels. Similar
findings, i.e., no change, were reported by Lira et al. [87] after four repeated WAnTs
of either the upper or lower limbs among judo athletes. The same was observed by
Williams et al. [88], who showed that just 60 min of endurance effort (65% VO2max) induced
significant changes in IL-6 levels, while four repeated WAnTs did not. According to Lira
et al. [87], the maintenance of IL-6 levels can be related to increased serum glucose after
exercise sessions [89], as trained individuals are typically characterized by elevated muscle
glycogen storage [90]. Furthermore, no changes after 60 min of either moderate (50%
VO2max) or intense (70% VO2max) effort were observed among overweight men [29]. On the
other hand, Bilski et al. [61] reported that a single WAnT procedure increases plasma IL-6
levels. Similarly, Antosiewicz et al. [91] demonstrated that three repeated WAnTs lead to a
rise in IL-6 levels in both untrained and trained participants. While the effect of different
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effort types is unclear, it appears that the exercise-induced increase in IL-6 levels is not
associated with the amount of adipose tissue in non-obese young adults.

Of note, in the current study, the anaerobic and aerobic performance was similar in all
of the groups, regardless of the amount of adipose tissue. As mentioned above, this could
be a factor in the case of specific findings for participants characterized by high adipose
tissue content but still capable of high performance.

In the present study, the HBF population was at an increased risk of metabolic syn-
drome, as indicated by the amount of adipose tissue and lipid profile characteristics (mainly,
increased triglycerides, cholesterol, LDL, etc., and high body fat allocation). However, they
were all young individuals in their twenties and, from this point of view, it is encouraging
that HBF did not manifest significant alterations in most of the tested biochemical parame-
ters. This implies that the secretory function of the adipose tissue is somehow balanced, so
that even at such a distant timepoint as 24 h after both types of exercises, no striking effects
were seen. Both aerobic and anaerobic exercise are distinctly correlated with improved
health. Further work is required to determine the effects of aerobic and anaerobic exercise
on the endocrine function of the adipose tissue and to establish the superiority of one type
of exercise over another.

It is well known that intense physical exercise generates a robust inflammatory re-
sponse, characterized by a great outflow of inflammatory mediators (cytokines, exerkines,
interferons, growth-regulating factors, and other peptides). It should be emphasized that
these mediators also act on each other, by inhibiting or stimulating other peptides, and their
complex interconnection of mutual relations underpins the term “cytokine network” [92,93].

The exercise applied in the current study was relatively brief, only lasting up to
several min (time to exhaustion) for MAE and 60 s for MAnE. Many studies employing
longer training programs reported the anticipated anti-inflammatory effects [94]. Hence,
in the current study, one could speculate that the two types of effort did not affect the
inflammation profile, as any such change was not evident, e.g., in IL-6, oncostatin M, and
follistatin levels. Nonetheless, we acknowledge that these markers are pleiotropic.

Further study could assess the short-term effects of both types of exercise on the levels
of pro-inflammatory mediators, e.g., TNF-α and IL-1β, and those of anti-inflammatory
mediators, e.g., TGFβ1 and IL-10. The duration of the inflammatory response varies greatly
depending on the nature and duration of the stimulus. However, such data would be
indicative of inflammation induced by aerobic and anaerobic exercise, if induced at all.
In addition, experimental protocol enhancement, e.g., the extension of the experiment
by several days in combination with dietary control and body fat measurements, could
indicate whether the alterations in biochemical parameters have a disadvantageous or
beneficial role in improving the anaerobic and aerobic performance of young adults with
high body fat content [67].

4.1. Limitations

Considering the secretory endocrine activity of the adipose tissue, one should remem-
ber that the cellular response of adipocytes always depends on the number of adipose cells.
In the current study, we focused on healthy physically active young adults with a BMI
below 30 kg/m2, and with a relatively low or moderate fat percentage. Subsequent studies
should also consider obese individuals with a BMI over 30 kg/m2 and over 35 kg/m2. On
the other hand, it should be acknowledged that the amount of adipose tissue is not the only
factor regulating its secretory activity. We have to keep in mind that the secretory activity
may also be influenced by the location and variability of adipose tissue. For instance, mus-
cle mass and the number of myocytes determine myokine activity, which affects other cells’
secretions. It is well established that adipocyte secretory activity should be assessed in rela-
tion to myocyte secretory activity as one of the main regulating factors. The age of the study
population is another limitation of the current study. Our study focused on healthy young
men, in whom any pathological changes related to the disturbance of endocrine activity
of the adipose tissue might not be as pronounced, so that the compensatory mechanisms
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would hamper the progression of an unfavorable secretory trend. Further, the low number
of participants and heterogeneity within groups is another limitation of the study, as that
could bias the results. However, according to the sample size calculation, the number of
participants involved in the current study exceeds the necessary number of participants
for the selected study design. Furthermore, it has been shown that a three-group model
similar to the one used in the current study and with a total sample size of 30–45 is robust
even without heterogeneity of variance, up to a variance ratio of 3.0 [95]. Hence, the risk of
bias in the used approach is limited.

4.2. Practical Application

The current manuscript complements earlier findings on the secretory/endocrine
activity of the adipose tissue. The presented research has several practical applications.
First, it points to the observation that differences in adipose tissue content influence many
physiological factors. Of course, the exclusive focus on biochemical cellular responses
is a limitation. However, an adiposity increase of only a few percent affects most of
the physiological characteristics of training individuals and differentiates the exercise
response. At the initial stage of training, obese individuals do not respond to acute aerobic
and acute anaerobic activity, and they much better tolerate low- and moderate-intensity
exercise. These types of exercises should be implemented at the initial stage of training
when an individual starts performing physical activity. After a short period of adaptation
to a certain type of activity, i.e., its duration and intensity, acute high-intensity exercise
should be introduced. This would have a greater effect on cardiopulmonary efficiency than
intense training counting from its beginning. Of course, this relationship concerns only the
tissue-dependent response. Further recommendations should be carefully examined.

5. Conclusions

The current study revealed different responses of serum adipokine levels, depending
on the amount of adipose tissue, to different types of exercise. The circulating leptin and
resistin levels after an intense effort in physically active young adults with relatively high
body fat were higher than those in physically active young adults with relatively low
body fat.
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