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Abstract

Background: A multivariate genome-wide association test is proposed for analyzing data on multivariate
quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step
models the association between the genotype and marginal phenotype using a linear mixed model. The second step
uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher
combination test statistic.

Results: The simulation results show that the proposed method controls the type I error rate and is more powerful
than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or
independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE)
demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes
contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes.

Conclusions: This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic
relatedness and population structure between subjects. The two-step approach is not only powerful but also
computationally efficient even when the number of subjects and the number of phenotypes are both very large.

Keywords: Genome-wide association study, Fisher combination function, Pleiotropy, Alcohol dependence,
Substance abuse

Background
After the completion of the Human Genome Project
[1] and a successful case-control experiment in identify-
ing age-related markers using single-nucleotide polymor-
phism (SNP) [2], the number of genome-wide association
study (GWAS) has been rising exponentially [3]. GWAS
provides an efficient way to scan the whole genome to
locate SNPs associated with the trait of interest which
may potentially lead to identification of the susceptibility
gene through linkage disequilibrium. Unlike linkage anal-
ysis that requires data collection from genetically related
subjects, GWAS is applicable to a more general setting
involving independent subjects. This makes GWAS highly
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desirable because for many diseases, it may not be feasi-
ble to recruit enough related subjects for linkage analysis.
For example, the parents of human subjects with late onset
diseases are usually not available. Furthermore, many sta-
tistical programs such as PLINK [4] have been developed
tomanage and analyze high dimensional GWAS data from
independent subjects.
Due to reduced costs for SNP arrays, in recent years,

many family studies have collected GWAS data [5–7]. If
existing methods designed for independent subjects are
adopted to analyze these data, the power of association
tests will be greatly reduced because only a subset of data
can be used. On the other hand, employing all the data in
the analysis (i.e. ignoring the correlation between geneti-
cally related subjects) may result in false positive findings
[8]. Yu et al. (2006) [9] proposed a compromise between
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these two approaches that used all related subjects while
adjusting for the relatedness by random effects in a linear
mixed model. This approach has been widely studied and
the original algorithm has been improved to be applica-
ble to larger scale studies [10]. However, this approach can
only handle a univariate phenotype such as a positive or
negative diagnosis.
Many complex diseases such as mental health dis-

orders have multiple phenotypic traits that are corre-
lated [11]. These multivariate phenotypes may point to a
shared genetic pathway and underscore the relevance of
pleiotropy (i.e., a gene or genetic variant that affects more
than one phenotypic trait, Solovieff et al. (2013) [12]).
Furthermore, a statistical model searching for loci that
are simultaneously associated with multiple phenotypes
has higher power than a model that only considers each
phenotype individually [13]. Our research team recently
developed a multivariate association test based on the
Fisher combination function that can be applied to ana-
lyze GWAS data with multivariate phenotypes [14]. This
method, however, can only handle independent subjects.
Taken together, advanced methods that can handle mul-
tivariate phenotypes and related subjects simultaneously
are highly desirable.
The crucial problem in GWAS is to deal with con-

founders such as population structure, family structure,
and cryptic relatedness. Astle and Balding [15] reviewed
approaches to correcting association analysis for con-
founding factors. When family-based samples are col-
lected, analysis based on the transmission disequilibrium
test is robust to population structure. Several methods
have been developed for multivariate phenotype data col-
lected from family-based samples [16–20]. However, the
major challenge of this type of studies is to recruit enough
families in order to conduct the analysis with sufficient
power. This type of studies also have limited applications
to late-onset diseases. Recently, Zhou and Stephens [21]
proposed a multivariate linear mixed model (mvLMMs)
for identifying pleiotropic genes. This approach can han-
dle a mixture of unrelated and related individuals and
thus has broader applications. However, it was recom-
mended for a modest number of phenotypes (less than 10)
due to computational and statistical barriers of the EM
algorithm [21].
For related subjects with multivariate phenotypes, there

are two sources of correlations between multivariate phe-
notypes: one is the correlation arising from genetically
related subjects whose phenotypes are more highly cor-
related because of shared genotypes; and the other is
the correlation between multiple phenotypes which exists
even when independent subjects are employed. This study
proposes a new statistical method that can model both
sources of correlations. We also compare the perfor-
mance of the proposed method with that of the mvLMMs

method. The rest of this paper is organized as follows.
In the “Methods” section, we review our previous work
on multivariate phenotypes in independent subjects and
also extend the method to handle related subjects. The
“Results” section summaries the results of simulation
studies and statistical analysis on the Study of Addiction:
Genetics and Environment (SAGE) data. Future direc-
tions andmajor findings are presented in “Discussion” and
“Conclusions” sections, respectively.

Methods
Suppose that for each subject, we measure R different
phenotypes and run an assay with S SNPs. The resulting
measurements can be organized with two data matrices.
The genotype data are stored in a S × N matrix where N
is the total number of subjects and each element of the
matrix is coded as 0, 1, or 2 copies of the reference allele.
The phenotype data are stored in an N × R matrix where
each row records the individual’s multivariate phenotypes.
Studying the association between genotypes and pheno-
types, thus, involves measuring and testing the association
between each row of the genotype matrix and the entire
phenotypematrix. Since one SNP is consider at a time, the
association test is repeated S times for all SNPs. Specifi-
cally, Let β1, . . . ,βR be the effect sizes of a candidate SNP
on R different phenotypes. The null hypothesis of testing
the pleiotropic gene is

H0 : β1 = . . . = βR = 0.

If this H0 is rejected, we claim that the corresponding
SNP is associated with the pre-determined multivariate
phenotypes.
When the phenotype is univariate, the association

test for GWAS data can be carried out using com-
monly adopted software such as R [22] or PLINK [4].
For multivariate phenotypes in independent subjects,
Yang et al. (2016) [14] has conducted a comprehensive
review of various multivariate methods and proposed a
method using the Fisher combination function. They fur-
ther showed that their proposed method is better than
other existing methods. The following sections briefly
review their method and extend it to handle related sub-
jects by employing a linear mixed model to adjust for
relatedness.

Review of previous work on independent subjects with
multivariate phenotypes
To illustrate the method proposed by Yang et al. (2016)
[14], we define the notations for genotypes and pheno-
types. Let i(= 1, . . . ,N) be the index of individuals. Define
yri as the rth phenotype of individual i (r = 1, . . . ,R)
and gsi as the sth genotype of individual i (s = 1, . . . , S).
Therefore, the vector yr = (yr1, . . . , y

r
N ) represents the rth

marginal phenotype collected from N individuals and the
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vector gs = (gs1, . . . , g
s
N ) represents the genotypes of the

sth SNP from N individuals.
When R = 1 (i.e., the phenotype is univariate), a regres-

sionmodel is commonly adopted tomodel yr as a function
of gs with covariates in the model to adjust for confound-
ing factors or to increase the precision of estimates. When
R > 1 (i.e., multivariate phenotypes), Yang et al. (2016)
[14] proposed a two-step approach. In the first step, for
each phenotype r, a marginal p-value, prs, is derived from
a likelihood ratio test under a linear regression of yr on gs.
The next step is to test association between R multivari-
ate phenotypes and the sth SNP based on these marginal
p-values of p1s, . . . , pRs. The Fisher combination function
is used to combine them and the test statistic is defined as

ξs =
R∑

r=1
−2 log(prs). (1)

The SNP s is claimed to be associated with the R
multivariate phenotypes if ξs is statistically significant.
Although −2 log(prs) follows a chi-square distribution
with 2 degrees of freedom, ξs, which is a sum of dependent
chi-square random variables, does not follow a chi-square
distribution with 2R degrees of freedom. The permutation
methodmay be adopted to calculate the p-value of ξs but it
is computationally too expensive in the context of GWAS
(see Yang et al. (2016) [14] for details).
Under the the null hypothesis, the statistic ξs is the sum

of dependent chi-square statistics. Thus, the null distribu-
tion of ξs follows a gamma distribution [23, 24] with the
mean and variance being functions of the shape parameter
k and the scale parameter θ :

E[ ξs] = kθ ,
Var[ ξs] = kθ2.

Applying the method of moments, we can derive the fol-
lowing equations based on the first two sample moments:

kθ = 2R, (2)

kθ2 = 4R +
∑

r �=r′
cov(−2 log(prs),−2 log(pr′s)). (3)

Yang et al. (2016) [14] showed that the pairwise sample
correlation ρrr′ = cor(yr , yr′) can be used to accurately
estimate cov(−2 log(prs),−2 log(pr′s)) as follows:

cov
(−2 log(prs),−2 log(pr′s)

) ≈
5∑

l=1
clρ2l

rr′−
c1
N

(
1 − ρ2

rr′
)2,

(4)

where c1 = 3.9081, c2 = 0.0313, c3 = 0.1022, c4 =
−0.1378 and c5 = 0.0941. This approximation is very
accurate as the maximum difference is less than 0.0001.
Thus, we can efficiently estimate k and θ using Eqs. (2) and

(3) with the cov(·) in Eq. (3) substituted by the right-hand
side of Eq. (4).

The proposedmethod for related subjects with
multivariate phenotypes
The multivariate method described in the previous
section only applies to independent subjects. When mul-
tivariate phenotypes data are collected from genetically
related subjects, there are two types of correlations: 1)
the correlation between multivariate phenotypes (even
when the subjects are independent); and 2) the correla-
tion due to genetically related subjects (even when the
phenotype is univariate). The approach described in the
previous section only addresses the first type of correla-
tion. To address both correlations in the regressionmodel,
the marginal regression model in the first step needs
to be modified to account for genetically related sub-
jects. Recall that the original regression model has the
form of

yr = αr + gsβr + εr ,

where αr is the intercept term, βr is the genetic effect and
εr ∼ N(0, σ 2I) is a vector of error terms. When the sub-
jects are genetically related, we modify the model to be a
linear mixed model:

yr = αr + gsβr + zr + εr , (5)

where the added term zr is a random effect and it fol-
lows N(0, σ 2

g K) where the matrix K is called the genetic
relationship matrix (GRM) [25].
Direct calculation of the best linear unbiased estimates

of the fixed effects and the best linear unbiased pre-
dictors of the random effects for a large sample size is
extremely slow and may be beyond the memory capacity
of most computers. Many flexible and efficient meth-
ods have been developed to carry out GWAS using lin-
ear mixed models. For example, the efficient algorithm
implemented in GCTA [25] uses the restricted maximum
likelihood (REML) method to estimate σ 2

g and σ 2 under
the null model while the GRM K was estimated from
all the SNPs. To test H0 : βr = 0, the estimates
of the random effects (σ 2

g , σ 2, and K ) under the null
model were plugged in for the estimation of the vari-
ance of the β̂

r
. In this way, the Wald test statistic can be

constructed. Under H0, this statistic follows an asymptot-
ical chi-squared distribution with 1 degree of freedom;
and the corresponding marginal p-value indicates the
strength of association between the SNP and a marginal
phenotype.
The resulting marginal p-values, p1s, . . . , pRs, can then

be combined together using the Fisher combination func-
tion in Eq. (1) to form the test statistic ξs for the associa-
tion between the sth SNP and R multivariate phenotypes.
Based on the linear mixed model in Eq. (5), it can be
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shown that for different traits yr and yr′ , the covariance
between them is

cov
(
yr , yr

′) = νσ 2
g K + ρrr′σ

2I,

where ν is the genetic correlation due to related sub-
jects and ρrr′ is the correlation between phenotypes (even
when only independent subjects are involved). Because
the test statistic ξs is a function of p1s, . . . , pRs which
are derived with the relatedness between subjects being
adjusted by the random effect zr in Model (5), we can use
the pairwise correlation between residuals, cor(εr , εr′),
from this model to estimate ρrr′ and plug this estimate
into Eq. (4). In this way, the null distribution of ξs can
be approximated.
Although the GRM associated with the random effect

zr , in principle, contains information about the population
structure resulting from systematic differences in ances-
try, the random effect is not likely to be estimated per-
fectly in practice. For this reason, we proposed to extend
the linear mixedmodel in Eq. (5) by adding principal com-
ponents [26] estimated from genotype data as covariates
for the purpose of improving the precision of the estimates
for marginal p-values. This was based on the results of
Astle el al. (2009) [15] showing that combining GRM with
principal components could account for the population
structure and relatedness better. Because contemporary
American genomes resulted from a sequence of admixture
process involving individuals descended from multiple
ancestral population groups [27], this additional adjust-
ment may potentially be a crucial step and its effectiveness
was evaluated through simulation studies described in the
next section.

Results
Simulation studies
Generating the genotype data
We simulated genotype data based on two different pop-
ulation structures (parents from the same population or
parents from two different populations) and two different
relatedness structures (independent subjects or related
subjects) so there were four different types of data sets
reflecting all possible combinations. We generated a set
of allele frequencies (corresponding to a total of 10,000
SNPs) from uniform random numbers between 0.1 and
0.9 to represent Population I; and another set of allele
frequencies to represent Population II. Given a set of pop-
ulation allele frequencies, we can generate the genotypes
of parents from the particular population. Through ran-
dommapping, we can generate three types of parents (1/3
each): (1) both parents from Population I; (2) both parents
from Population II; and (3) one parent from Population I
and the other parent from Population II.
Once we had simulated parents’ genotypes, the genes

were dropped down the pedigree according to Mendel’s

law to simulate children’s genotypes. Our procedure
ensured that children from different families represented
independent subjects and children within a family rep-
resented strongly related subjects. To generate a sample
of independent subjects, we simulated 1000 families with
one child from each family. To generate a sample of related
subjects, we simulated 250 families with four children in
each family. Depending on whether parents’ genotypes
were generated from one population (either Population
I or Population II) or from two different populations,
we had four scenarios of children genotype samples: 1)
independent samples from non-admixed/isolated popu-
lation (Non-admixed Independent); 2) related samples
from non-admixed/isolated population (Non-admixed
Related); 3) independent samples from admixed popula-
tion (Admixed Independent); and 4) related samples from
admixed population (Admixed Related).

Evaluating the phenotype correlation estimates
To evaluate the methods for estimating the correlation
between phenotypes ρrr′ , we simulated bivariate pheno-
types using bivariate normal (BVN) random variables. An
additive genetic effect was used to model the relationship
between the genotype and bivariate phenotypes. Let e be
the genetic effect size. The mean value of the marginal
phenotype μr(r = 1, 2) was −e if the genotype was AA; 0
if the genotype was AB; and e if the genotype was BB. The
specific model to simulate phenotypes is:

(
Y1
Y2

)
∼ BVN

((
μ1
μ2

)
,�

)
, (6)

where� is a 2×2 symmetric matrix with the diagonal ele-
ments being 1 and the off-diagonal element ρ. The value
of ρ determines the correlation between the phenotypes.
For each data set, the values of ρ ranged from 0 (indepen-
dent) to 0.9 (highly dependent), and the values of e ranged
from 0 (no effect) to 1 (large effect).
Each configuration was simulated 1000 times. In each

simulated data set, we calculated the estimate for ρrr′
based on three methods:

Method 1: the residuals from the linear mixed model;
Method 2: the residuals from the linear mixed model

with the first ten principal components as covariates;
Method 3: the correlation between simulated pheno-

types.

The third one was a näive method that did not adjust
for the correlation due to related subjects and thus was
expected to overestimate ρrr′ . The program GCTA was
used to fit linear mixed models and calculate correspond-
ing residuals.
The simulation results based on the three methods of

estimating ρrr′ were shown in Figs. 1, 2, 3 to 4 using box-
plots to represent the distribution of ρ̂−ρ. A goodmethod
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Fig. 1 The accuracy of correlation estimations based on three methods for data from non-admixed independent subjects (Method 1: linear mixed
model; Method 2: linear mixed model with principal components; Method 3: correlation without adjusting for relatedness)
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Fig. 2 The accuracy of correlation estimations based on three methods for data from non-admixed related subjects (Method 1: linear mixed model;
Method 2: linear mixed model with principal components; Method 3: correlation without adjusting for relatedness)
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Fig. 3 The accuracy of correlation estimations based on three methods for data from admixed independent subjects (Method 1: linear mixed model;
Method 2: linear mixed model with principal components; Method 3: correlation without adjusting for relatedness)
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was identified by choosing the one with the mean values
of ρ̂ − ρ close to zero. Comparing the accuracies of these
three methods, it shows that the accuracy of estimation
depended on the values of the true correlation and effect
size. When the effect size e was 0 (no effect) or when the
phenotype correlation was highly correlated (near 0.9), all
three methods performed well. On the other hand, when
the effect size was large (e = 1) and the phenotype corre-
lation was small (near 0), all three methods over estimated
the true correlation. However, in this situation, the meth-
ods using residuals from linear mixed models performed
better than the näive method. To our surprise, adding
principal components in the linear mixed model did not
substantially improve the accuracy of estimates. Because
of the poor performance of the näive method, it was not
used for the simulations evaluating the type I error rate
and power.

Evaluating the type I error and power of the proposedmethod
Because the proposed method was designed to iden-
tify pleiotropic genes, evaluating the performance of
the multivariate association test in terms of the type

I error and power is essential. We simulated four cor-
related phenotypes using multivariate normal (MVN)
random variables. The values of the genetic effect
size, e, were 0 (no effect), 0.1 (medium effect), and
0.2 (large effect) and the values of the correlation ρ

were 0 (independent), 0.4 (moderate correlated), and
0.8 (highly correlated). Each configuration was repeated
1000 times.
Figures 5 and 6 shows the distribution of − log10(p) for

different values of correlation ρ and genetic effect size e.
Large values of − log10(p)-value are equivalent to small p-
values. Thus, when the effect size was large, we expected
− log10(p) to be large. Based on our configuration to gen-
erate phenotypes, there was no difference between the
four marginal p-values. Hence, we only presented the
distribution of marginal p-values corresponding to the
first marginal phenotype. The multivariate p-values were
derived using the proposed method with the correlation
estimated by the residuals from the linear mixed model
with the first ten principal components as covariates. The
findings from this simulation study were summarized as
follows:
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1. When there was no genetic effect (e = 0), both the
marginal and multivariate methods produced
uniform p-values distributions which reflected the
null distribution of p-values. When the genetic effect
size increased, the value of − log10(p) increased.
Therefore, the simulation showed that both marginal
and multivariate tests were unbiased.

2. When the population structure and relatedness were
fixed, increasing the correlation between phenotypes
decreased the power of multivariate tests. The
negative relationship between the correlation of
multivariate phenotypes and power has also been
observed in Yang et al. (2016) for various multivariate
testing statistics [14].

3. When the genetic effect was not zero, the proposed
multivariate method was more powerful than the
marginal test in all situations. The advantages of
using the multivariate method was most evident
when the correlation between phenotypes was small
to moderate. But even when the correlation between
phenotypes was as large as 0.8, the multivariate
method was still more powerful than the marginal
tests. Therefore, combining multivariate phenotypes
could increase the power of test.

4. When the sample size was held constant (recall that
the sample size was the same across different
population structure and relatedness in our
simulation), the difference in power between
admixed and non-admixed samples or between
independent or related samples were very small.

Comparing the proposedmethodwith themvLMMsmethod
We further evaluated the performance of the proposed
method in comparison to a competing method, the mul-
tivariate linear mixed model (mvLMMs) method, that has
been implemented in the GEMMA [28] software. Here, we
adopted the most complex situation from the previous
simulation experiment in which genotypes were simu-
lated based on related people from admixed populations
(Admixed Related). Specifically, we simulated genotypes
from 250 families each of which had four children and
resulted in 1000 related individuals. Next, we simulated
the following phenotypes from these genotypes by extend-
ing Model (6) to

⎛

⎜⎝
Y1
...
Y4

⎞

⎟⎠ ∼ BVN

⎛

⎜⎝

⎛

⎜⎝
μ1
...

μ4

⎞

⎟⎠ ,�

⎞

⎟⎠ ,
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where � was a 4 × 4 symmetric matrix with the diag-
onal elements being 1 and the off-diagonal element ρ.
We manipulated the value of ρ to be 0.1 (weak corre-
lated) or 0.5 (moderate correlated). Let e = (e1, . . . , e4) be
the genetic effect sizes corresponding to the phenotypes
Y1, . . . ,Y4. We considered the following combinations:

1. Small effect sizes: e = (0.1, 0.1, 0.1, 0.1);
2. Increasing effect sizes: e = (0.05, 0.1, 0.15, 0.2);
3. Medium effect sizes: e = (0.15, 0.15, 0.15, 0.15).

We did not consider the situation of no effect (i.e.,
e = (0, 0, 0, 0)) because both methods have been shown to
control the type I error.
We simulated each configuration 1000 times. For our

proposed method, we estimated pairwise correlation ρrr′
based on Method 1 described in the previous section for
its good performance.
Figure 7 shows the distribution of − log10(p) for differ-

ent values of the correlation ρ and the genetic effect sizes
e. A powerful method should result in small p-values (or
equivalently, large values of− log10(p)). The findings form
this simulation study were summarized as follows:

1. The power of both methods depended on the effect
sizes. When the effect sizes were increased from
small to medium, the power of both methods
increased. More importantly, the scale of such
increase was larger for the proposed method.

2. When the effect sizes were fixed, both methods had
higher power when the correlation between
phenotypes was weak.

3. When the effect sizes were not equal among
marginal phenotypes, the proposed method still
maintained its high performance.

4. Overall, the proposed method was more powerful
than the mvLMMsmethod. The proposed method
had a larger median value of − log10(p) compared to
the mvLMMsmethod in 5 our of the 6 configurations.
The mvLMMs only achieved the same level of
performance when the phenotypes had a medium
correlation and the effect sizes were increasing.

In addition to high power, the proposed method has the
advantage of being computationally efficient even when
the number of phenotypes is large. The mvLMMsmethod,
on the other hand, was recommended for a modest num-
ber of phenotypes (less than 10) due to computational and
statistical barriers of the EM algorithm [21].

Real data analysis
We demonstrate the application of the proposed method
by conducting analysis on the data from the Study of
Addiction: Genetics and Environment (SAGE).
The SAGE is a study that collected data from three

large scale studies in the substance abuse field: the Col-
laborative Study on the Genetics of Alcoholism (COGA),
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Fig. 7 Comparing the power of two competing methods: the distribution of values of − log10(p) under different correlations ρ and effect sizes e.
The gray boxes correspond to the proposed Fisher method; and the white boxes correspond to the mvLMMsmethod
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the Family Study of Cocaine Dependence (FSCD), and
the Collaborative Genetic Study of Nicotine Dependence
(COGEND). The total number of subjects in all three
studies was 4121. Each subject was genotyped using the
Illumina Human 1M-Duo beadchip which contains over
1 million SNP markers. From the original 4121 individu-
als, some subjects were genotyped twice so we eliminated
duplicate samples and the sample size was reduced to be
4112. Although dbGap provided a PED file to show pedi-
gree and relationship among participants, we used the
KING program [29] to verify their relationship. As a result,
we confirmed and identified 3921 unrelated individuals
and the remaining 191 were family members of these
unrelated individuals. Using the chosen 4112 individuals,
we restricted SNPs to 22 autosomes and conducted qual-
ity control of SNPs based on the minor allele frequency (>
0.01), Hardy-weinberg equilibrium test (p-value > 10−5),
and frequency of missingness per SNP (< 0.05) [30].
The final total number of SNPs chosen for analysis was
711,038.
Because our research aimed to identify the SNPs associ-

ated with the risk for alcohol dependence, four correlated
phenotypes were used for the analysis:

1. age_first_drink:
the age when the participant had a drink containing
alcohol the first time.

2. ons_reg_drink: the onset age of regular drinking
(drinking once a month for 6 months or more).

3. age_first_got_drunk:
the age when the participant got drunk the first time.

4. alc_sx_tot: the number of alcohol dependence
symptoms endorsed.

To deal with missing values in any of these four pheno-
types, we imputed them using the mi package [31] from
R software. The sample distributions of phenotypes and
their pairwise correlations are shown in Fig. 8 and Table 1,
respectively. The first three variables are the onset ages of
important “milestone” events of alcoholism. Earlier onset
ages are indicators for higher vulnerability and have been
shown to predict later progression to alcohol dependence
[32]. Thus, they were expected to be positively correlated
with each other and negatively correlated with the number
of alcohol dependence symptoms.
We conducted marginal genome-wide association tests

on each of these four phenotypes using the GCTA pro-
gram to account for relatedness among subjects. We also
added the first ten principal components to increase
the precision of estimates. In addition to these princi-
pal components, the participant’s gender, age at inter-
view, and self-identified race were included as covariates
in the model. The regression model for the marginal
phenotype is

yr = αr + xηr + gsβr + zr + εr ,

where x contains the participant’s first ten principal
components, gender, age at interview, and self-identified
race, and the corresponding regression coefficients ηr are
treated as fixed effects. The QQ-plots of the p-values for
the marginal association tests are shown in Fig. 9. The
QQ-plot of the p-values for the proposed multivariate
tests is displayed in Fig. 10. Since a primary assumption in
GWAS is that most SNPs are not associated with the phe-
notype studied, most points in the QQ-plots should not
deviate from the diagonal line. Deviations from the diag-
onal line may indicate that potential confounders such as
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Table 1 The correlations among the 4 alcohol dependence phenotypes

Correlation age_first_drink ons_reg_drink age_first_got_drunk alc_sx_tot

age_first_drink 1.00 0.47 0.60 -0.47

ons_reg_drink 0.47 1.00 0.55 -0.26

age_first_got_drunk 0.60 0.55 1.00 -0.30

alc_sx_tot -0.47 -0.26 -0.30 1.00

the population structure or relatedness are not adjusted.
Both of Figs. 9 and 10 indicate that potential confounders
were well adjusted in our real data analysis.
To identify the SNPs associated with the risk for

alcohol dependence, we declared significant SNPs if
their p-values were less than the significance level
of 10−6. Based on the marginal tests, two SNPs
(rs9825428, p-value = 2.3962 × 10−7; rs16822575,
p-values = 7.6411 × 10−7) were associated with
age_first_drink; one SNP (rs11157640, p-value =
2.2658 × 10−7) was associated with ons_reg_drink;
one SNP (rs7700665, p-value = 7.0618 × 10−7) was
associated with age_first_got_drunk; and one SNP

(rs10914375, p-value = 3.2978 × 10−7) was associated
with alc_sx_tot. On the other hand, using the proposed
multivariate method, two SNPs (rs7523645, p-value =
1.1872×10−7; and rs11157640, p-value= 6.6655e×10−7)
were significantly associated with these four correlated
phenotypes for the risk of alcohol dependence.
Based on the findings in the marginal tests, we iden-

tified five SNPs each of which was associated with
an individual phenotype; none of these five SNPs was
associated with two or more phenotypes. Thus, the
marginal tests were limited in terms of finding pleiotropic
genes associated with multivariate phenotypes. In con-
trast, using the proposed multivariate method, we iden-
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Fig. 10 The QQ-plot of − log10(p)-values from the multivariate test for four alcohol dependence phenotypes using real data from 4121 individuals

tified two SNPs associated with the four phenotypes
together and one of these two SNPs (rs11157640) was
also found to be associated with ons_reg_drink in
the marginal test. Hence, combining multiple pheno-
types not only can increase the power of identifying
SNPs that may not be identified by marginal tests but
also can provide insight into the pleiotropic genes con-
tributing to the common risk expressed by multivariate
phenotypes.

Discussion
Although the simulation shows that adding principal com-
ponents as covariates to the linear mixed model did not
substantially improve the accuracy of estimating the cor-
relation between phenotypes, it can adjust for potential
population structure and cryptic relatedness in GWAS as
well as improve the estimation of marginal genetic effects
[15]. More research is needed to study the optimal num-
ber of principal components to be added to the proposed
model. Moreover, the simulation study did not consider
negative correlations between multivariate phenotypes
because the situation is rare in practice. Nevertheless, pre-
vious studies have demonstrated that multivariate meth-
ods such as MANOVA [33] and MultiPhen [34] tend to
have higher power to detect a pleiotropic gene in such a
situation. Furthermore, in this study, we only considered
continuous multivariate phenotypes. Future studies may
extend the methodology work to the case of correlated
discrete phenotypes. For example, in the substance abuse
field, many outcomes are zero-inflated count data [35] or

ordinal data [36]. A future direction that is particularly
challenging is how to analyze multivariate phenotypes
with different measurement scales.

Conclusions
In this study, we propose a new multivariate method
for GWAS when multivariate quantitative phenotypes are
used to indicate the risk for a complex disease and the
data are collected from related subjects. Our approach
is a two-step approach. The first step models the asso-
ciation between the genotype and marginal phenotype
using a linear mixed model. The linear mixed model uses
a random effect to account for the relatedness between
subjects. We also extend the linear mixed model by
adding principal components as covariates to adjust for
potential population structures. Since the sample size in
GWAS generally reaches thousands and a certain pop-
ulation structure exists within the subjects, the benefit
from adjusting for population structures out-weights the
loss of ten degrees of freedom in the linear mixed model.
The linear mixed model in the first step also has the
flexibility to add demographic variables or other con-
founding variables to improve precision of estimation.
The second step of the proposed method uses the cor-
relation between residuals of the linear mixed model to
estimate the null distribution of the Fisher combination
test statistic.
The simulation results show that our proposed method

controls the type I error rate and is more powerful than
the marginal tests across different population structures
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(admixed or non-admixed) and relatedness (related or
independent). The proposed method is also computa-
tionally efficient. The first step takes advantage of the
efficient program GCTA to carry out marginal tests under
linear mixed models. In practice, a few hours are suf-
ficient to derive all marginal p-values. The second step
only takes a few minutes to compute the Fisher com-
bination test statistic and its null distribution using R
software. Furthermore, the real data analysis on the
SAGE database demonstrates that applying the multi-
variate association test may facilitate identification of
the pleiotropic genes contributing to the risk for alcohol
dependence commonly expressed by the four correlated
phenotypes.
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