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Heart failure is a systemic syndrome caused by multiple pathological factors. Current
treatments do not have satisfactory outcomes. Several basic studies have revealed the
protective effect of trimetazidine on the heart, not only by metabolism modulation but also
by relieving myocardial apoptosis, fibrosis, autophagy, and inflammation. Clinical studies
have consistently indicated that trimetazidine acts as an adjunct to conventional
treatments and improves the symptoms of heart failure. This review summarizes the
basic pathological changes in the myocardium, with an emphasis on the alteration of
cardiac metabolism in the development of heart failure. The clinical application of
trimetazidine in heart failure and the mechanism of its protective effects on the
myocardium are carefully discussed, as well as its main adverse effects. The intention
of this review is to highlight this treatment as an effective alternative against heart failure and
provide additional perspectives for future studies.
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INTRODUCTION

Cardiovascular disease is one of the most harmful diseases to human health, and heart failure
represents the final clinical manifestation of all chronic cardiovascular diseases (Zhou et al., 2019).
Although angiotensin converting enzyme inhibitors (ACEIs), angiotensin receptor antagonists
(ARBs), beta-blockers, digitalis, spironolactone, furosemide, and other drugs are available, the
prognosis of heart failure is still poor, as indicated by the low 5 years survival rate (Wenmeng and
Qizhu, 2011). Therefore, heart failure research and the subsequent development of appropriate
treatments still has a long way to go.

In Europe, trimetazidine has been used for the treatment of angina pectoris for more than
40 years. In 2000, trimetazidine was shown to directly improve myocardial metabolism by
modulating beta oxidation, rather than by indirectly improving the hemodynamics (Kantor
et al., 2000). In the past 20 years, clinical and basic studies on trimetazidine have confirmed its
effectiveness in the treatment of heart failure. This article summarizes the basic pathophysiological
processes of heart failure and discusses the clinical studies and associated molecular mechanism of
trimetazidine in heart failure.

PATHOPHYSIOLOGICAL PROCESS OF HEART FAILURE

In heart failure, the cardiac contractile function decreases greatly, and the heart is unable to pump
enough blood into the artery, resulting in ischemia and hypoxia, venous reflux obstruction, dyspnea,
edema, and limb cyanosis. The burden of heart failure has increased to an estimated 23 million
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people. The incidence of heart failure for all ages is 2%–3%
(3%–4% for people over 45 years old and 10% for people over
70 years old) (Vasan et al., 2018; Murphy et al., 2020).

A variety of external stimuli can promote the development of
heart failure, including ischemia/hypoxia, pressure overload, and
volume overload (Ziaeian and Fonarow, 2016). A series of
compensatory changes occur in cardiomyocytes and non-
cardiomyocytes when the myocardial tissue is exposed to
stress. Most adult cardiomyocytes are terminally differentiated
cells and possess very limited proliferation capacity (Zhu et al.,
2020), while non-cardiomyocytes (fibroblasts, endothelial cells,
inflammatory cells, and vascular smooth muscle cells) retain the
ability to proliferate. Therefore, cardiomyocytes can only adapt to
external changes through myocardial hypertrophy and metabolic
remodeling, while other non-cardiomyocytes, including
fibroblasts, proliferate in response to external stress, leading to
structural changes in the heart.

Cardiac Hypertrophy and Cell Death
Cardiac hypertrophy is characterized by an increased cross-
sectional area of cardiomyocytes and enhanced protein
synthesis, which is the most obvious and important change in
myocardium under pressure or volume overload (Nakamura and
Sadoshima, 2018). In a state of high pressure, the
neuroendocrine system is activated, and vasoactive substances
(angiotensin II, endothelin-I, vasopressin) are released into the
blood. By binding to the corresponding receptors on the surface
of cardiomyocytes, vasoactive substances activate the
intracellular calmodulin kinase-nuclear factor of activated
T cells (NFAT), mitogen-activated protein kinase (MAPK),
and c-Jun N-terminal kinase (JNK) signaling pathways
(Molkentin, 2013), and promote the expression of cardiac
hypertrophy-related genes. Myocardial hypertrophy is an
adaptive change of the myocardium in response to external
pressure, which is conducive to the maintenance of basic
systolic function in the compensation period. However, if
external stimulation persists, cardiomyocytes die by apoptosis,
necrosis, or autophagy-dependent cell death. The death of
cardiomyocytes leads to a direct decrease in the number of
cardiomyocytes, and it promotes hypertrophy of the
remaining cardiomyocytes (Hariharan and Sussman, 2015).
When the number of cardiomyocytes decreases by a certain
extent, hypertrophic cardiomyocytes cannot fully compensate
for cardiac function, leading to heart failure. Therefore,
cardiomyocyte death is an important turning point from
compensatory myocardial hypertrophy to heart failure.

Myocardial Interstitial Fibrosis
In addition to alterations in cardiomyocytes, myocardial
interstitial fibrosis is another important pathological change in
heart failure (Lazzeroni et al., 2016). Myocardial interstitial
fibrosis is characterized by a diffuse and disproportionate
accumulation of collagen (collagen type I and III) in the
myocardial interstitium, and it is known to aggravate heart
failure in several ways (Gonzalez et al., 2018). First, the cross-
linking of collagen directly reduces the diastolic function of the
myocardium. Second, the rearrangement of collagen and

cardiomyocytes indirectly reduces the force transfer between
cardiomyocytes, which subsequently affect myocardial
contractile function (Kasner et al., 2011). Furthermore,
myocardial interstitial fibrosis induces ventricular arrhythmias
during heart failure (Disertori et al., 2017). Studies have shown
that myofibroblasts can act directly on cardiomyocytes during
cell-cell contact, or can indirectly affect the sinoatrial node by
secreting paracrine factors, affecting the normal rhythm and the
downward transmission of rhythm, and ultimately leading to
ventricular arrhythmias (Nguyen et al., 2017). Finally, myocardial
interstitial fibrosis further aggravates the hypoxic symptoms of
heart failure due to the increased oxygen diffusion distance (Kong
et al., 2014).

Changes in Myocardial Metabolism
The energy required by myocardial tissue is mainly provided by
aerobic oxidation of fatty acids, supplemented by glucose,
ketone bodies, amino acids, and lactic acid (Jansen, 2017).
Although fatty acids serve as the main metabolic substrate,
the aerobic oxidation efficiency of glucose is much higher, and
glucose can maximize the production of ATP through the
aerobic oxidation process. For example, 1 mole of 16-carbon
fatty acid oxidation requires 46 moles of oxygen atoms and
produces 105 moles of ATP, while the oxidation of 1 mole of
glucose molecules requires only 12 moles of oxygen atoms,
which produces 31 moles of ATP. Previous studies have
shown that the myocardial ATP content decreases by
30%–40% during heart failure (Fukushima et al., 2015). To
maintain adequate energy supply, the substrate for energy
metabolism gradually changes from fatty acids to glucose.
Moreover, it has been shown that patients with severe heart
failure, such as advanced dilated cardiomyopathy, demonstrate
lower expression of metabolic enzymes related to aerobic
oxidation of fatty acids (long-chain acyl-CoA dehydrogenase
and medium-chain acyl-CoA dehydrogenase). Peroxisome
proliferator-activated receptors (PPARs) have also been
shown to be significantly decreased during heart failure,
resulting in a decrease in myocardial fatty acid utilization
(Oka et al., 2012); in parallel, the expression of type I
glucose transporter was upregulated and the utilization rate
of glucose increased. The conversion of the energy metabolic
substrate is beneficial for improving the efficiency of
myocardial energy metabolism and alleviating the symptoms
of heart failure. However, glucose glycolysis is more apparent
during heart failure than during aerobic oxidation (Zhabyeyev
et al., 2013), which results in excessive accumulation of protons
and lactic acid in cardiomyocytes. Hydrogen ions are further
exchanged with extracellular calcium ions through sodium-
calcium channels, which leads to an overload of intracellular
sodium and calcium (Fillmore and Lopaschuk, 2013).
Therefore, most of the glucose acquired by cardiomyocytes
is not used effectively; this not only reduces the efficiency of
energy metabolism but also leads to calcium overload. Calcium
overload can lead to endoplasmic reticulum stress (Nie et al.,
2019; Mohsin et al., 2020) and mitochondrial dysfunction
(Malyala et al., 2019), which can further aggravate
myocardial injury.
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BASIC RESEARCH OF TRIMETAZIDINE IN
HEART FAILURE

Energy Metabolism
More than 90% of the ATP in the heart is produced by aerobic
oxidation. As mentioned above, in the case of heart failure, the
energy supply is insufficient, so the heart preferentially chooses
glucose, which leads to more efficient oxidation. Trimetazidine
has been shown to reduce the rate of aerobic oxidation of fatty
acids by inhibiting the mitochondrial long-chain 3-ketoacyl-CoA
thiolytic enzyme, which is a key enzyme of long-chain fatty acid
beta oxidation that catalyzes the last step of the fatty acid beta-
oxidation cycle; this process indirectly increases the activity of
pyruvate dehydrogenase, the rate-limiting enzyme of aerobic
oxidation of glucose (Heggermont et al., 2016; Rosano and
Vitale, 2018) (Figure 1). The evidence that administration of
trimetazidine decreases the aerobic oxidation of fatty acids and
encourages the utilization of glucose indicates that trimetazidine
promotes the conversion of metabolic substrates and improves
energy efficiency.

Glycolysis only takes place in the cytoplasm before glucose is
fully oxidized in the mitochondria. Glycolysis produces pyruvate
together with hydrogen ions; if excess pyruvate cannot
successfully enter the mitochondria for oxidation, it will be
reduced to lactic acid in the cytoplasm. During heart failure,
glycolysis is enhanced, and consequently, hydrogen ions and
lactic acid are increased. Indeed, previous clinical studies have
shown that the level of plasma lactic acid in patients with heart
failure is much higher than that in healthy people (Adamo et al.,

2017). The level of lactic acid is closely related to the severity and
prognosis of heart failure (Grodin and Tang, 2018); that is, a
higher lactic acid content leads to worse prognosis (Zymliński
et al., 2018; Biegus et al., 2019). Trimetazidine has been shown to
alleviate lactic acidemia in right heart failure, and consequently
promote the recovery of right ventricular function (Fang et al.,
2012). In a rat model of cardiac ischemia, trimetazidine was
shown to decrease the rate of myocardial glycolysis, enhance the
aerobic oxidation of glucose, and promote post-ischemic repair
(Kukes et al., 2013). The inhibition of glycolysis by trimetazidine
effectively reduces the accumulation of hydrogen ions and lactic
acid in the cytoplasm, thus avoiding adverse cardiac events, such
as calcium overload (Swietach et al., 2013).

Taken together, the positive effects of trimetazidine on energy
metabolism for heart failure is three-fold: First, it reduces the fatty
acid metabolism by inhibiting the enzyme long-chain 3-ketoacyl-
CoA thiolytic; second, it increases glucose metabolism by
increasing the rate-limiting enzyme activity of glucose aerobic
oxidation; and third, it inhibits excessive glycolysis and reduces
the levels of hydrogen ions and lactic acid in the cytoplasm.

Apoptosis of Cardiomyocytes
Cardiomyocyte apoptosis is a key factor that determines the
transformation from compensation to decompensation. In a
model of coronary artery microembolization-induced heart
failure, trimetazidine significantly prevented cardiomyocyte
apoptosis (Liu et al., 2015). In addition, similar to
N-acetylcysteine (NAC), trimetazidine alone significantly
reduced serum malondialdehyde (MDA) levels, infarct area,

FIGURE 1 | Effects of trimetazidine on cardiomyocytes. Trimetazidine promotes the production of mir-21, which targets and inhibits PTEN activity, and therefore
activates PI3K-Akt signal pathway, and finally blocks the apoptosis pathway of cardiomyocytes by inhibiting the expression of Bax/Bcl-2 and caspase-3. Trimetazidine
also promotes the expression of NADPH oxidase 2 and reduces ROS. It participates in the modulation of cardiomyocyte autophagy by regulating AMPK. Trimetazidine
reduces the rate of aerobic oxidation of fatty acids by inhibiting the long-chain 3-ketoacyl-CoA thiolytic enzyme of mitochondria (a key enzyme for long-chain fatty
acid beta oxidation), while indirectly increasing the activity of pyruvate dehydrogenase (the rate-limiting enzyme of aerobic oxidation of glucose). Therefore, it not only
improves the efficiency of aerobic oxidation but also reduces the hydrogen ion produced by glycolysis. PTEN, phosphatase and tensin homolog; NOX2, NADPH oxidase
2; ROS, reactive oxygen species; AMPK, AMP kinase; FFA, free fatty acid; 3-KAT, 3-ketoacyl-CoA thiolytic enzyme; PDH, pyruvate dehydrogenase
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and apoptotic activity induced by ischemia-reperfusion,
compared to those observed in the saline group (Senturk et al.,
2014). Other studies have confirmed that trimetazidine
antagonizes myocardial apoptosis by reducing the production
of reactive oxygen species (ROS) and the expression of reduced
form of nicotinamide-adenine dinucleotide phosphate (NADPH)
oxidase 2 (Zheng and Liu, 2019) (Figure 1). Micro-RNA is also
involved in the anti-apoptotic effect of trimetazidine, and miR-21
is known to be upregulated by trimetazidine (Liu et al., 2012;
Yang et al., 2015). After targeting PTEN, miR-21 activates the
PI3K-Akt signaling pathway and inhibits the expression of Bax/
Bcl-2 and caspase-3, thus blocking cardiomyocyte apoptosis (Ma
et al., 2016) (Figure 1).

Myocardial Autophagy
Autophagy degrades longevity proteins and damaged or excessive
organelles through lysosome-mediated pathways (Mialet-Perez
and Vindis, 2017). Trimetazidine has been shown to enhance
cardiac function by modulating cardiomyocyte autophagy.
Indeed, administration of trimetazidine in diabetic
cardiomyopathy rats was shown to enhance cardiomyocyte
autophagy and improve cardiac function (Zhang et al., 2016).
In addition, by promoting autophagy, trimetazidine also reduces
sunitinib-induced cardiotoxicity in mice (Yang et al., 2019b).
However, autophagy is a double-edged sword in myocardial
tissue depending on the type and duration of stress. Moderate
autophagy helps cardiomyocytes to survive and maintain the
normal function of the heart, while excessive activation of
autophagy may lead to decreased cardiac function and even
heart failure (Ghosh and Pattison, 2018). In the ischemia-
reperfusion injury model, moderate autophagy has a positive
effect on cell recovery in the transient myocardial ischemic
period. However, during the perfusion period, autophagy is
strengthened, leading to excessive autophagy. This cytotoxic
effect promotes excessive degradation and self-digestion of
important components of cells, which causes irreversible
damage to cardiomyocytes and eventually cell death.
Therefore, inducing moderate autophagy and inhibiting
excessive autophagy both contribute to the functional recovery
of cardiomyocytes. Trimetazidine bidirectionally regulates
cardiomyocyte autophagy during ischemia-reperfusion injury.
In a hypoxia-reoxygenation injury model, in which
trimetazidine induced moderate autophagy, trimetazidine
alleviated cardiomyocyte damage by promoting AMPK
autophagy influx (Zhong et al., 2017) (Figure 1). Furthermore,
in an excessive autophagy model, which results from ischemia-
reperfusion injury in vivo, the heart benefits from the inhibition
of excessive autophagy following the activation of the Akt/mTOR
signaling pathway by trimetazidine (Wu et al., 2018).

Myocardial Interstitial Fibrosis
Connective tissue growth factor (CTGF) is a key molecule in
myocardial interstitial fibrosis, which induces fibroblasts to
proliferate and secrete extracellular matrix (Ramazani et al.,
2018). Interestingly, trimetazidine effectively inhibits the
expression of CTGF and reduces the accumulation of collagen
I and collagen III in myocardial tissue (Zhang et al., 2020). The

combination of irvabradine hydrochloride and trimetazidine has
been shown to significantly reduce myocardial interstitial fibrosis
caused by cardiac pressure overload (Ma et al., 2019). In an
animal model of heart failure produced by transverse aortic
constriction surgery, the expression of CTGF in rats treated
with trimetazidine decreased by 34% compared to that in the
normal saline group. ROS, which are negatively regulated by
trimetazidine, induce the synthesis of CTGF (Zhao et al., 2019).
Trimetazidine can improve the activity of NADPH oxidase and
reduce the expression of ROS by regulating the translocation of
the Rac1 subunit of NAPDH oxidase (Liu et al., 2010). Thus,
trimetazidine may inhibit CTGF synthesis by reducing ROS
production, which may improve myocardial interstitial fibrosis.

The improvement of myocardial interstitial fibrosis increased
the efficiency of oxygen utilization by cardiomyocytes, alleviates
the impaired contractility and compliance of the myocardium,
and improves the symptoms of heart failure. The function of
trimetazidine in myocardial fibrosis suggests that the protective
effects of trimetazidine on the heart may not only depend on
cardiomyocytes; therefore, the effects on non-cardiomyocytes
and extracellular remodeling need to be explored further.

Myocardial Inflammation
Heart failure evokes inflammation, and TNF-α, IL-6, IL-18, and
atrial natriuretic peptide (ANP) can be induced in pressure
overload-induced heart failure. In contrast, the release of
cardiac cytokines deteriorate heart function and induce heart
failure (Shirazi et al., 2017; Van Linthout and Tschöpe, 2017).
Trimetazidine has anti-inflammatory effects and has been shown
to significantly decrease the levels of serum inflammatory
markers (IL-1 β, IL-6, and TNF-α) (Zhou et al., 2012). In the
model of coronary artery microembolism in Guangzhou Bama
miniature pigs, inflammatory markers, such as PDCD4, NF-kB,
and TNF-α, were shown to increase by 4–8 fold (Su et al., 2017)
and were shown to decrease by about 40% following treatment
with trimetazidine. Trimetazidine combined with coenzyme Q10
is effective against viral myocarditis (Shao et al., 2016) and
alleviates septic myocardial damage induced by endotoxin by
activating sirt1 (Chen et al., 2016) and promoting the migration
of central granulocytes (Chen et al., 2018).

CLINICAL STUDIES OF TRIMETAZIDINE IN
HEART FAILURE

The recommendation for the utilization of trimetazidine in stable
coronary syndrome is at the IIa level (Knuuti et al., 2020). The
2016 European Society of Cardiology (ESC) guidelines on heart
failure recommended TMZ for the relief of persistent angina
pectoris in patients in combination with a beta-blocker or an
alternative agent at the IIb level (Ponikowski et al., 2016). Many
randomized controlled trials have confirmed the protective
effects of trimetazidine in heart failure by improving clinical
manifestations and cardiac function (Fragasso et al., 2006a;
Fragasso et al., 2011; Grajek and Michalak, 2015). In terms of
mechanisms, trimetazidine has been shown to reduce the
expression of atrial natriuretic peptide (ANP) (Morgan et al.,
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2006), increase left ventricular high-energy phosphate levels
(Fragasso et al., 2006b), and reduce the risk of arrhythmias in
heart failure (Gunes et al., 2009b; Cera et al., 2010). Furthermore,
trimetazidine can improve the symptoms of heart failure by
reducing the energy consumption of the whole body.

Chronic Ischemic Heart Failure
Ischemic heart disease is an important cause of heart failure, and
clinical studies have also shown that trimetazidine has a
significant protective effect against chronic ischemic heart
failure. A meta-analysis (including 17 clinical trials, 955
patients) showed that trimetazidine dramatically increased the
ejection fraction of patients with heart failure (weighted mean
difference [WMD], 7.49%; 95% confidence interval [CI], 6.26 to
8.71; p < 0.01) (Gao et al., 2011). Furthermore, subgroup analysis
showed that trimetazidine also had a positive effect on patients
with ischemic heart failure (WMD, 7.37%; 95% CI, 6.05 to 8.70;
p < 0.01). Table 1 shows the randomized controlled study of
trimetazidine in heart failure from 2000 to 2020.

Previous clinical studies have shown that the treatment time
for trimetazidine ranges from 1 to 48 months. The improvement
of the ejection fraction (EF) value of the heart is not obvious in
short-term treatment (≤6 months). A previous study of 19
patients with heart failure with EF values less than 40% who
received trimetazidine for 1 month showed no significant
difference in cardiac function compared to the placebo group
(Thrainsdottir et al., 2004). Subsequently, Gunes et al. expanded
the sample size to 60 people and prolonged the treatment time to

6 months; however, the trimetazidine group still showed no
benefit at the end of the treatment (EF, trimetazidine vs.
placebo, 32.7% ± −6.5% vs. 37.2% ± −5.5%) (Gunes et al.,
2009b). In contrast, in the trial conducted by Tuunanen et al.,
there was a significant improvement in cardiac function (EF,
trimetazidine vs. placebo, 34.8% ± 12% vs. 31.9% ± 12%) in
patients with heart failure who received trimetazidine (70 mg per
day) for only 3 months (Tuunanen et al., 2008). These differences
may be due to differences in ultrasound testing and selection bias
as a result of the small sample size.

Unlike short-term treatment, trimetazidine has been shown
to improve heart function in chronic treatment for more than
1 year. In a trial of 55 people with heart failure with an EF
value of less than 45%, the trimetazidine group showed a
significant improvement in EF value compared to the placebo
group (trimetazidine vs. placebo, 43% ± 10% vs. 34% ± 7%)
after receiving trimetazidine 60 mg daily for 13 months
(Fragasso et al., 2006a). Furthermore, the trimetazidine
group showed a greater improvement in EF value
(trimetazidine vs. placebo, 42% ± −11% vs. 36% ± −6%)
when the follow-up time was extended to 36 months
(Fragasso et al., 2011). Moreover, in a study by Di Napoli
et al., the effect of trimetazidine was more significant
(trimetazidine vs. placebo,∼40% vs. ∼30%) than in the
placebo group, who had lower EF values (<35%) and
longer treatment time (48 months); these findings indicate
that the longer the treatment time of trimetazidine, the more
significant the improvement of cardiac function.

TABLE 1 | Randomized controlled study of trimetazidine in heart failure.

year study patients
(T/c)

NISH ISH LVEF TMZ
(mg/d)

Time LVEF* other
endpoints

Positive/
none

2004 Thrainsdottir et al.
(2004)

10/9 50% 50% <40% 60 1 month 33 ± 8% vs. 37 ± 16% / none

2006 Fragasso et al.
(2006b)

12/12 / / <45% 60 90 days 34 ± 10% vs. 39 ±
10%

PCr / ATP: 1.80 ± 0.50 vs. 1.35 ± 0.33 none

2006 Fragasso et al.
(2006a)

28/27 / 100% <45% 60 13 months 43 ± 10% vs. 34 ± 7% / postive

2007 Di Napoli et al.
(2007)

30/31 34.40% 100% <35% 60 48 months ∼40% vs. ∼30% / positive

2008 Tuunanen et al.
(2008)

12/7 / 100% <40% 70 3 months 34.8 ± 12% vs. 31.9 ±
12%

/ positive

2009 Gunes et al.
(2009a)

51/35 29% 66% <40% 60 3 months 42.4% ± 6.3% vs.
33.2% ± 6.6%

/ positive

2009 Gunes et al.
(2009b)

36/36 / 33% <40% 60 6 months 32.7 ± 6.5% vs. 37.2 ±
5.5%

Max P-wave duration :106.7 ± 15.8 vs.
91.7 ± 12.7 ms

none

2010 Cera et al. (2010) 17/13 / 60% <45% 60 6 months 40.11 ± 1.23% vs.
37.97 ± 13.21%;

QTc interval duration: 451.81 ± 55.02 vs.
453.20 ± 51.50

positive

2011 Fragasso et al.
(2011)

25/19 34% 66% <45% 60 36 months 42 ± 11% vs.36 ± 6% REE: 1,580 ± 263 vs. 1,690 ± 337
kcal/day

positive

2014 Winter et al. (2014) 30/30 100% 0 <45% 70 6 months 31 ± 10% vs. 34 ± 8% 6MWT: 443 ±25 vs. 506 ±79 m; (18)
FDG-PET SUV: 7.0 ±3.6 vs. 8.2±3.4

none

2016 Momen et al.
(2016)

55/53 / 100% <40% 70 6 months 36.6% vs. 31.2% / positive

2016 Jatain et al. (2016) 52/48 46% / <45% 60 3 months 30.9% vs 27% 6MWT: 402 vs. 349.7 m positive

T/c, TMZ/control, trimetazdine group/control group; NISH, non ischemic heart disease; ISH, ischemic heart disease; LVEF, left ventricular ejection fraction stated in the inclusion criteria of
the clinical trial, LVEF represents the fact that all patients included in the study had an LVEF < the number indicated; LVEF *, the average LVEF of all patients after treatment, trimetazdine
group vs. control group; TMZ, trimetazidine; 6MWT, 6 min walk test; REE, Whole body resting energy expenditure; FDG-PET, β-2-[18 F]-Fluoro-2-deoxy-D-glucose-Positron Emission
Tomography; PCr/ATP, phosphocreatine/adenosine triphosphate.
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However, it is worth noting that the population samples
included in the current clinical studies on trimetazidine are
very small, and there is a probability of overestimating the
clinical benefit. Second, the follow-up time was relatively
short; only one study lasted 48 months, and most lasted
3–6 months. In addition, the side effects of trimetazidine have
not been thoroughly evaluated. Therefore, large-scale,
prospectively designed, randomized, double-blinded trials are
still required to verify the cardiac benefits of trimetazidine and
evaluate its adverse effects (Gao et al., 2011).

In addition to improving the EF value, trimetazidine can also
improve arrhythmia by reducing heart rate variability and
shortening the QTc interval (Gunes et al., 2009a; Zemljic
et al., 2010). In addition, trimetazidine has been shown to
improve endothelium-dependent relaxation (EDR), which
correlates with improved nitric oxide (NO) bioavailability and
reduced ROS levels (Godo and Shimokawa, 2017). Wu et al.
proved that superoxide dismutase (SOD) activity, eNOS
expression, and the production of NO were all elevated in
endothelial progenitor cells pretreated with trimetazidine (Wu
et al., 2013). Moreover, trimetazdine also significantly reduced
plasma brain natriuretic peptide (BNP) and cardiac troponin T
levels in patients with ischemic heart failure (Di Napoli et al.,
2007; Rehberger-Likozar and Šebeštjen, 2015). Long-term use of
trimetazidine has also been shown to be effective at increasing
exercise endurance (Sisakian et al., 2007) and reducing all-cause
mortality (Grajek and Michalak, 2015). With regards to patients
with ischemic heart failure and diabetes (Fragasso et al., 2003),
trimetazidine administration was shown to improve liver
function (Li et al., 2017) and lower blood glucose and
myocardial glucose metabolism. In addition, the therapeutic
benefits of trimetazidine have been shown to be increased
when combined with other non-heart failure first-line
medicines. For example, trimetazidine combined with
bisoprolol significantly increased the ventricular ejection
fraction in patients with chronic heart failure compared to
bisoprolol alone (Ke et al., 2016). Moreover, treatment with
trimetazidine and Shexiang Baoxin pills improved the clinical
symptoms of ischemic heart failure to a greater extent than with
Shexiang Baoxin pills alone (Wen et al., 2018).

Previous studies have shown that trimetazidine improves
cardiac function by improving hemodynamics; however, the
protective effect of trimetazidine on ischemic heart failure is
not entirely due to its effects on the hemodynamic system.
Indeed, trimetazidine has been shown to significantly reduce
the number of angina pectoris attacks per week in patients
with heart failure, without changing the ejection fraction (3.9
vs. 5.7, p < 0.01), as well as significantly improve the exercise
ability of patients (6 min walking test, trimetazidine vs. placebo,
245 m vs. 210 m, p < 0.05) (Sisakian et al., 2007). Furthermore,
trimetazidine can alleviate skeletal muscle damage caused by
statins and promote functional recovery (Song et al., 2018).
Trimetazidine has also been shown to help to mitigate the
damage to lung function caused by high altitude reactions and
hypoxia at high altitudes (Yang et al., 2019a). In addition,
trimetazidine can reduce renal ischemia-reperfusion injury by
reducing the expression of erythroid-derived nuclear factor-2

related factors (Amini et al., 2019). Therefore, it is speculated that
the protective effect of trimetazidine on ischemic heart failure not
only comes from the direct effect onmyocardial tissue but also the
indirect effect on other tissues and organs.

Non-Ischemic Heart Failure
Trimetazidine also has a protective effect against non-ischemic
heart failure, as shown by a meta-analysis by Gao et al. (WMD:
8.72%; 95% CI:5–51 to 11.92; p < 0.01) (Gao et al., 2011; Tarkin
and Kaski, 2018). In a randomized parallel study conducted in
patients with diabetic cardiomyopathy over the course of
1 month, trimetazidine elevated the ejection fraction by
approximately 5% compared to that observed in the placebo
group (Rosano et al., 2003). Therefore, early application of
trimetazidine has the potential to prevent the occurrence or
ameliorate the degree of diabetic cardiomyopathy and reduce
the incidence of heart failure caused by diabetic cardiomyopathy
(Wenmeng and Qizhu, 2011). One explanation for this
observation is that trimetazidine optimizes the substrate
metabolism of dilated cardiomyopathy (Jatain et al., 2016) and
improves systemic insulin sensitivity (Zhang et al., 2016).
However, one previous study reported that there was no
significant difference in ejection fraction, exercise tolerance, or
quality of life between trimetazidine (70 mg/day for 6 months)
and placebo for non-ischemic heart failure Winter et al., (2014).
One potential reason for this may be that trimetazidine is more
effective in patients with fatty acid oxidative disorders, such as
diabetes and obese individuals (Ussher et al., 2014; Tang et al.,
2019), while the prevalence of diabetes in this cohort was only 8%.
Non-ischemic heart failure has a variety of causes, including
diabetes and hypertension; therefore, specific treatments
targeting the causes may provide more promising outcomes
than simply relieving the symptoms of heart failure. In view of
this, a more detailed subgroup analysis of different causes of heart
failure is needed in order to obtain more accurate treatment.

Adverse Effects
Clinical pharmacological studies suggest that although common
adverse reactions of trimetazidine can be found occasionally, such
as gastrointestinal discomfort, nausea and vomiting, and rarely
reported thrombocytopenia, agranulocytosis, and liver
dysfunction (Chrusciel et al., 2014), these adverse reactions
tend to disappear after withdrawal (Meiszterics et al., 2017). In
the past, there was a concern that trimetazidine might be linked to
Parkinson-like syndrome. A report that eight patients developed
Parkinson’s disease while taking trimetazidine was first published
in 2004 (Martí Massó, 2004). Then, several cases of Parkinson’s
disease induced by trimetazidine were reported in the following
years (Masmoudi et al., 2012; Kwon et al., 2019; Pintér et al., 2019;
Pintér et al., (2020); Dy et al., 2020). However, all these reported
Parkinson’s disease were studies based on a small series of
patients and case reports. A recent published trial focusing on
efficacy and safety of trimetazidine after percutaneous coronary
intervention (ATPCI), which recruited 6,007 patients with a
median follow-up of 47.5 months, showed that the occurrence
of neurological symptoms such as Parkinson’s disease or drug
induced parkinsonism were similar in the placebo and
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trimetazidine arms, which provided strong evidences that
trimetazidine had no association with those neurological
symptoms. In addition, this trail also showed there were no
statistically significant differences in thrombocutopenia,
agranulocytosis, hepatic disorders, etc. between treatment
groups (Ferrari et al., 2020).Therefore, trimetazidine is
relatively safe even in long-term prescription.

SUMMARY AND OUTLOOK

Until now, heart failure has been a huge challenge for
cardiovascular doctors. Myocardial hypertrophy, apoptosis,
myocardial interstitial fibrosis, and myocardial metabolic
remodeling are all important pathological factors leading to
heart failure. There are a variety of medicines used for the
treatment of heart failure, among them, trimetazidine has a
unique position in cardiovascular therapy because of its ability to
optimize energy metabolism (Marzilli et al., 2019). Trimetazidine
has been recommended for the treatment of stable coronary artery
diseases since 2013, but it has not been recommended for heart
failure (Montalescot et al., 2013; Milinković et al., 2016). Although a
number of double-blind controlled trials have confirmed the
effectiveness of trimetazidine in the treatment of heart failure,
the total number of cases included is limited, and large-scale
multicenter clinical studies are still required.

Many basic studies have confirmed that trimetazidine has
positive effects, including against myocardial fibrosis and
apoptosis, as well as anti-inflammatory effects. Double-blind
controlled trials have demonstrated the effectiveness of
trimetazidine in ischemic and diabetic heart failure, but whether
trimetazidine has a good protective effect on other types of heart
failure with decreased ejection fractions remains unknown. In
addition, the effect of trimetazidine on heart failure is not
limited to cardiomyocytes, and clinical studies have found that
trimetazidine also improves EDR (Belardinelli et al., 2007) and
reduces inflammation (Shao et al., 2016) in heart failure. Basic
studies have also shown the protective effects of trimetazidine on
non-cardiomyocytes, including antifibrotic effects (Zhao et al.,
2019). Therefore, exploring the effect of trimetazidine on non-
cardiomyocytes will be important in future studies.

Heart failure with preserved ejection fraction accounts for a
large proportion of patients with heart failure (Dunlay et al.,
2017), and its inducing factors, development, and changes in
internal energy metabolism are quite different from those of
heart failure with decreased ejection fraction (Borlaug, 2014;
Redfield, 2016). Given that trimetazidine exhibits many
beneficial effects on the cardiovascular system, it is
considered likely that it could also prove useful in the
treatment of ejection fraction preserved heart failure.
However, there have been no clinical studies of trimetazidine
on preserved ejection fraction heart failure. An ongoing
randomized double-blind controlled trial of trimetazidine in
ejection fraction preserved heart failure may provide some
preliminary answers as to whether trimetazidine is effective
in these patients (van de Bovenkamp et al., 2020). Moreover,
there is no basic research on trimetazidine in preserved ejection
fraction heart failure, and more in-depth research is required.
Research in this field is lacking and immature, and further
studies of the use of trimetazidine in heart failure with preserved
ejection fraction may bring considerable benefits, both
medically and economically.
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