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Abstract: Polarization, a primary step in the response of
an individual eukaryotic cell to a spatial stimulus, has
attracted numerous theoretical treatments complement-
ing experimental studies in a variety of cell types. While
the phenomenon itself is universal, details differ across
cell types, and across classes of models that have been
proposed. Most models address how symmetry breaking
leads to polarization, some in abstract settings, others
based on specific biochemistry. Here, we compare
polarization in response to a stimulus (e.g., a chemoat-
tractant) in cells typically used in experiments (yeast,
amoebae, leukocytes, keratocytes, fibroblasts, and neu-
rons), and, in parallel, responses of several prototypical
models to typical stimulation protocols. We find that the
diversity of cell behaviors is reflected by a diversity of
models, and that some, but not all models, can account
for amplification of stimulus, maintenance of polarity,
adaptation, sensitivity to new signals, and robustness.

Introduction

The ability to form a distinct front and back in response to

chemical or mechanical stimuli is inherent in most eukaryotic cells

(from yeast to neurons), and plays important roles in differenti-

ation, development, and motility. Broadly speaking, polarization is a

redistribution of multiple proteins and lipids in the cell. Some of

these components include phosphoinositide lipids [1], PAR

proteins [2], and Rho family GTPases [3]. Typically, certain

proteins (Cdc42, Rac, PI3K, Par3/6) and lipids (PIP2/3)

determine the cell front (anterior end) and others (Rho, PTEN)

are common at the rear, though details vary from cell to cell.

Many of these are conserved in polarization across a broad range

of cell types.

Eukaryotic cells have spatial gradient sensing (unlike bacteria,

which use a temporal mechanism), that is, they can detect

concentration gradients as low as a few percent across the

diameter of a cell [4–7]. These stimuli evoke macroscopic

gradients of polarity proteins/lipids. Polarity is commonly studied

in motile cells that undergo chemotaxis (movement in the direction

of a chemical gradient). We focus this review on the response to

stimuli such as chemoattractants cyclic AMP (cAMP), fMLP, and

platelet-derived growth factor (PDGF). Motility is known to

require localized assembly of actin filaments in the lamellipod,

which forms the leading edge of a motile cell. However,

polarization precedes motility, and occurs also in the absence of

movement and in the absence of the cytoskeleton in many cell

types.

Understanding the signaling cascades that link cell surface

receptors to motility and chemotaxis is very challenging. For this

reason, theorists have focused on smaller systems in an effort to

understand how polarization is achieved. The underlying

molecular network, akin to a wiring diagram of an electrical

circuit, is then dissected into modules, each comprised of a few

components. By understanding these modules, and then linking

these together, we hope to understand the function of the

molecular network as a whole [8,9]. In a distinct approach,

theorists askew the detailed network, and look at simpler models

that have analogous capabilities (e.g., symmetry breaking, response

to graded or noisy inputs, etc.). Here, we survey largely models of

the latter type, and briefly mention a few of the former.

We first summarize collective and universal features of cell

polarization. These lead to a number of important questions that

theory has been directed at answering. We then briefly describe

cell types commonly used to study polarity and indicate how their

polarization behavior fits into the overall scheme. Next, we survey

several classes of mathematical models proposed to explain how

cell polarization occurs. To focus this review on main insights

(rather than a multiplicity of details), we concentrate here on the

qualitative aspects of the models, with occasional mention of

biochemical correspondence. We devise a set of in silico tests that

are based on common experimental protocols. This allows us to

compare the performance of four typical models in a standardized

approach. We argue that some classes of models are more

appropriate for describing the behavior of certain cell types but

miss important features of other cell types.

Universal Features of Polarizing Cells
The following features of cell polarization are shared by many

cell types.

(1) Cells are able to sense both steep and shallow external

gradients (where the difference between front and back

receptor concentration is as small as 1%–2%) within a vast

range of concentrations. Polarization leads to an amplification

of this asymmetry to some macroscopic level.
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(2) Polarized chemotactic cells remain sensitive to new stimuli, and

can reorient when the stimulus gradient is changed.

(3) In many types of cells, polarity is maintained after the

triggering stimulus is removed (maintenance). Some evidence

suggests that this persistence requires an intact cytoskeleton.

(4) Some cells spontaneously polarize, that is, they establish an axis of

asymmetry in the absence of spatial cues.

(5) Some cell types exhibit adaptation in a uniform stimulus, that is,

the cells generate a persistent response to a gradient of

chemoattractant, but transient response to a temporal change

in a uniform stimulus.

(6) In response to multiple stimuli (such as two sources of

chemoattractant), some cells form multiple ‘‘fronts’’ in certain

situations, whereas others rapidly resolve the conflict with a

unique axis of polarity.

(7) In some cells, pseudopods are continually extended and

retracted. Some of these types of cells reorient by splitting one

pseudopod into two, one of which becomes dominant.

Here, we have outlined the most prevalent observations. Other

cell-type specific behaviors are discussed in the next section. Such

observations have led to numerous theoretical questions. These

include (but are not limited to) the following: (1) How is

amplification created? What feedback loops are necessary so that

stochastic fluctuations in the local concentrations of polarity

factors are amplified into a single dominant asymmetry? (2) How is

polarization maintained in a way that still allows sensitivity to new

signals? (3) How do feedbacks from the actin and/or microtubule

cytoskeleton enable cells to maintain their polarity? (4) How can

spontaneous polarization be reconciled with adaptation to a

uniform stimulus that is also observed under some conditions? (5)

How do cells resolve multiple conflicting stimuli to establish a

single ultimate ‘‘front’’ of activity?

Polarity in Various Cell Types

It could be argued that motility and polarization in cells have

been crafted by evolution in the context of distinct functions or

environmental challenges. For example, cells of the amoeba

Dictyosteium discoideum chemotax under starvation conditions,

relaying signals to one another to form aggregates. Neurons

extend processes over long distances (meters) following specific

guidance cues to their synaptic targets. In contrast, yeast is

nonmotile, reacting to mating pheromones by formation of a

‘‘schmoo-like’’ shape. The diversity of cell functions might suggest

that many distinct underlying mechanisms are at play, so it is

remarkable how universal are the conserved aspects of polariza-

tion. However, experimental science specializes on a limited

number of cell types, and hence there tend to be many species-

centric views of polarization. This tends to obscure both the

common and universal features, as well as the distinct differences

between cell types.

The budding yeast, Saccharomyces cerevisiae, provides a simple,

genetically very well-understood nonmotile cell that exhibits

several polarization responses, including maintenance (3), spon-

taneous polarization (4), and unique axis of polarity (6). In yeast,

polarization is required for mating and for budding (formation of a

daughter cell) [10]. Mating is analogous to cell migration in that

cells polarize and grow toward a gradient of mating pheromone.

When exposed to uniform concentrations of pheromones, mating

projections form in random orientations. During bud formation,

Cdc42 concentrates in a ‘‘polar cap’’, marking the site for a new

daughter cell [11]. New buds usually form in a direction specified

by a previous bud scar, but when bud site selection genes are

genetically abrogated, the budding occurs at random locations

[12]. Cdc42 accumulation on the cell membrane during bud

formation is regulated by two parallel positive feedback loops. The

first is a slow, actin-dependent loop and the second, a fast, actin-

independent mechanism [13,14]. If one loop is disabled,

polarization occurs; if both are inhibited, no polarity is possible.

In cells with actin-independent feedback only, polarization is

delayed, but the resulting polar caps are stable. If just the actin-

dependent loop is disabled, polar caps form quickly, but often drift

or disappear [10]. It has been reported [15] that cells lacking the

positioning factor Bud1 are unable to stably maintain the position

of the polar cap at the onset of budding; this may indicate the

presence of an additional negative feedback loop.

The chemotactic social amoeba, Dictyostelium discoideum, senses

gradients of the chemoattractant cAMP, chemotaxes, and secretes

cAMP to attract other amoebae under starvation conditions. Like

yeast, D. discoideum can spontaneously polarize in the absence of a

gradient [16]. Unlike mammalian cells that require a stimulus to

initiate motility, in D. discoideum, pseudopods are continually

formed, and take over dominance of the leading direction

depending on perceived cues [17]. Unstimulated cells exhibit

dynamical wave-like protrusions [18,19]. Chemotactic reorienta-

tion is sometimes achieved by the splitting of pseudopods [20].

After a Y-shaped split, one branch becomes dominant while the

other regresses, leading to sequential turns if the external cue is

altered. Such splitting has also been observed in the absence of

external cues [21]. Essentially, D. discoideum has polarity attributes

(1–5,7) as described above. D. discoideum cells with an immobilized

actin cytoskeleton (after treatment with the drug latrunculin) form

multiple areas of localized PIP3 activity [22]. The cell’s internal

chemical polarization shows amplification of the external gradient

up to 7-fold over a wide range of concentrations [22]. These cells

easily repolarize when the gradient direction is changed and adapt

to uniform elevation of chemoattractant [23,24]. Latrunculin-

treated D. discoideum cells are seen to respond to and to amplify

external signal asymmetry and adapt to uniform stimuli [22,25],

demonstrating that gradient sensing can be decoupled from the

cytoskeleton and the resulting morphological polarity [26].

Because D. discoideum has a small haploid genome, genetic

manipulations are easy to perform. As a result, the molecular

details of how the directional sensing system operates in D.

discoideum are much better understood than in most mammalian

chemotactic cells [27]. In mammalian cells, Cdc42 and Rho

GTPases play an important role in polarity establishment, while in

D. discoideum, genes homologous to Rho or Cdc42 have not been

discovered [28], so other components are likely to be involved in

actin and myosin regulation in these cells [29].

Mammalian neutrophils (white blood cells), like those of D.

discoideum, have highly sensitive gradient sensing and strong

internal amplification. These immune system cells migrate

directionally in response to external N-formylated peptide

gradients produced by bacteria. These cells exhibit features (1–
4) and (6). However, unlike D. discoideum cells, the neutrophil

default state is nonmotile, and neutrophils spontaneously polarize

only if chemoattractant is present. Wild-type neutrophils have a

unique axis of polarity; stimulating human neutrophils with

spatially homogeneous chemoattractant induces ruffles that

consolidate into a single pseudopod within minutes [30]. However,

cells where RhoA has been inhibited [31], or where the lipid

domains in the plasma membrane have been chemically altered

[32], can form multiple protrusions in a uniform field of

chemoattractant. Fluorescent probes have revealed front-localizing

(phosphoinositide lipids PIP2 and PIP3, F-actin, and Rho GTPases

Cdc42 and Rac), versus back-localizing signaling components
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(RhoA and myosin II) [31,33]. In neutrophils, but not D.

discoideum, there is evidence for front–back mutual inhibition

(e.g., by Cdc42 and Rho) [31]. This lends support to the idea that

cell polarization is a self-organizing mechanism that emerges as a

result of feedback loops between various polarity factors [34].

Several positive feedback circuits for actin accumulation involving

phosphoinositides have been found in chemotactic cells [35].

Latrunculin treatment inhibits actin polymerization, disabling

these loops.

Fibroblasts are connective tissue mammalian cells responsible

for wound healing. These cells migrate in response to gradients of

platelet-derived, epidermal, and other growth factors. These cells

have attributes (1,2), (4), and (5). However, PDGF sensing

requires steeper gradients and a much narrower range of absolute

chemoattractant concentrations than neutrophils and D. discoideum

[36]. Fibroblasts are larger than neutrophils and D. discoideum (50–

150 mm versus 10–20 mm), with a more complex cytoskeleton,

and, unlike the latter, require an intact microtubule (MT)

cytoskeleton for migration. Fibroblasts polarize spontaneously on

adhesive substrates (e.g., fibronectin or poly-D-lysine), on the

timescale of 30–50 min [37], involving cell spreading mediated by

integrins. Their motility is much slower than that of neutrophils

(2 mm/min compared to 20 mm/min), likely due to enhanced

adhesivity. As in other migrating cells, fibroblasts transduce

external gradients to the actin cytoskeleton via PIP3 and Rho

GTPase signaling [38], but a positive feedback loop involving actin

and PIP3 in neutrophils [39] has not been observed in fibroblasts

[36,37].

Nerve cells have to extend long distances in accurate migration

during development, demonstrating features (1–3,5) and (7).
This extension is mediated by growth cones, flat lamellipodial-like

structures that sense and respond to the environment, much as

the motile cells described above do. In neuronal growth cones, a

guidance response can be detected in gradients as shallow as 1%.

Responding to a variety of diffusible and adhesive chemoattrac-

tants and repellents, growth cones adapt their sensitivity to a

broad range of concentrations encountered over their route.

Cytoskeletal regulation in the extending growth cone is governed

by many of the same molecular components mentioned above,

including Rho GTPases, PI3K, Ena/VASP, and cofilin [40].

Formation of ‘‘front-like’’ and ‘‘rear-like’’ portions of the growth

cone, as well as turning responses and biased branch selection,

resemble analogous behavior of the previously described motile

cells [41,42].

Other model systems for cell migration include keratocytes, fast-

moving epithelial cells from scales of fish, that exhibit features (2–
4) and (6). Unlike other motile cells, keratocytes maintain a

consistent shape and smooth gliding motion during motility [43],

and react (and reorient) to mechanical, rather than chemical,

stimuli. Fragments of keratocytes containing no nucleus or

organelles exhibit polarization that is sustained long after the

stimulus is gone [43]. These cells also spontaneously polarize upon

separation from tissue by breaking symmetry in the actomyosin

network at the rear of the cell [44].

Cell type differences described above are summarized in

Table 1. We observe that even if cells share common polarity

phenotypes, there are significant differences in how they come

about. D. discoideum and neutrophils can sense very small

gradients over a large range of concentrations, while fibroblasts

operate in a much narrower concentration regime. Neutrophils

polarize spontaneously only when exposed to stimulus, but D.

discoideum polarizes even in the absence of cAMP. Gradient

sensing in F-actin-inhibited D. discoideum cells is a transient

phenomenon [22], while wild-type D. discoideum will migrate long

distances in the absence of a gradient. Fibroblasts spontaneously

polarize after being put on adhesive substrate, while keratocytes

polarize after being detached from surrounding cells. The

temporal aspects of polarity also differ, with neutrophils, D.

discoideum, and keratocytes polarizing very fast (in less than a

minute), while fibroblasts are much slower. While many of the

same components are required for polarity in many cell types,

again, there are differences. For instance, an intact MT

cytoskeleton is required for migration of cultured fibroblasts

and neurons, but not for keratocytes, neutrophils, and lympho-

cytes. The actin (but not the MT) cytoskeleton is involved in

polarity establishment in budding yeast, while in fission yeast the

opposite situation is true.

Common experimental designs in polarity experiments include

exposure to one or more localized stimuli, for example, pipette(s)

of chemoattractant (fMLP for neutrophils, cAMP for D. discoideum,

and EGF for fibroblasts), exposing cells to a gradient of

chemoattractant in a microfluidic chamber, changing the location

of the pipette or reversing the gradient to gauge the sensitivity to

changing stimuli, and placing a cell in a well-stirred solution, i.e.,

uniform field of chemoattractant with stochastic fluctuations. In

what follows, we devise a set of protocols based on such

experimental tests and use these for testing the responses of a

variety of models.

A Survey of Mathematical Models

Here, we review several classes of mathematical models that

have been proposed for individual cell polarization and list the

features that these models were designed to explain. Not all

polarization features occur in all cell types, and no single model

addresses all of these questions, nor is it desirable to so construct

such models, since, as discussed above, real cells of any given type

display some, but not all of these properties. We summarize the

strengths and weaknesses of each class of model in Table 2. In

Table 3, we provide examples of published models that fit into

these classes. For discussion of quantitative models of the cell

signaling pathways involved in chemotaxis, see recent reviews

[45,46].

As discussed below, many models in the literature contain

features that, broadly speaking, represent feedback in the form of

activation, inhibition, depletion of a substrate, or combinations

thereof. We have chosen to avoid grouping models simply by these

categories. Instead, we discuss classes of dynamic behaviors, for

example, models with instability to spatial noise, models

supporting wave behavior, etc. (This also means that some models

could fit into several classes.)

Because polarization involves chemical redistribution and

symmetry breaking along one axis (‘‘front to back’’), it is often

modelled by reaction diffusion (RD) systems in 1-D. Two

common approaches are used. The first is to take a thin slice

across the diameter of a cell with impermeable ends at opposite

edges. (In that case, a polar chemical pattern has high level at one

end, low at the opposite end.) Alternatively, some models describe

chemical distributions only along the cell perimeter, and consider

the ‘‘interior’’ as spatially uniform. (A polar pattern would then

be a chemical distribution with one peak anywhere on the

domain. In this way, even 1-D models can be used to account for,

for example, multiple pseudopods around the perimeter of the

cell.)

Models with ‘‘Turing-Type’’ Pattern Formation
Turing [47] described the possibility of spatial instability in

reaction-diffusion systems and argued that morphogenetic
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spatial patterns could be so created. His calculations were

restricted to linear stability analysis. The destabilization of a

uniform chemical distribution to spatial patterns at a given

(range of) wave number is now commonly termed ‘‘Turing-type

pattern formation’’ (or Turing bifurcation) in the mathematics

community. Using simulations, Gierer and Meinhardt [48]

showed that chemical interactions that depict local self-

enhancement and long-range inhibition could produce biolog-

ically realistic patterns. Meinhardt and Gierer [49] were the first

to point out the application of the idea of ‘‘lateral inhibition’’ to

chemotactic orientation. While at the time, quantification of cell

polarization biochemistry was still far into the future, this paper

paved the way decades ahead of others. More recently, a paper

by Meinhardt [50] rekindled this direction and initiated a new

interest in modeling the mechanisms underlying chemotaxis.

This has been followed in recent years by other models based on

related theoretical foundations [51–54]. Recall that if a Turing

instability is present, an unpolarized cell would react to any

spatially varying stimulus (small or large) by breaking symmetry

and forming a chemical pattern (see [55] for a review). Polarity

requires that the dominant pattern have a single global

maximum, though Turing patterns are notorious for producing

multiple peak patterns under suitable ranges of parameters. The

basic idea behind such diffusion-driven pattern formation rests

in having processes with vastly different spatial characteristics

that promote local activation and long-range inhibition. In two-

component systems used to model polarization, this is achieved

by postulating a large, membrane-bound autocatalytic ‘‘activa-

tor’’ with slow diffusion, and a small cytosolic inhibitor with

faster, possibly infinite, diffusion, and hence more global reach

(Figure 1a). Variations on this theme include a spatially uniform

average for the cytosolic inhibitor [50,56] or two mutually

inhibitory activators (since double negative feedback is mathe-

matically equivalent to autocatalysis [57]). Alternatively, the

inhibitor can be replaced by substrate-depletion, which damps

the activator production (Figure 1b).

A brief survey of polarization models with Turing instability

includes the following: Meinhardt [50] proposed that two

antagonists are necessary to achieve dynamic pseudopod exten-

sion; a global one to generate patterns and a local one to

deactivate local maxima after some time. His model was able to

account for generation and decay of local maxima, strong

amplification, and rapid adaptation to a changed external

gradient, as well as patterning and the persistence of that

patterning in the absence of external signals. The model can be

adapted to include a rest state. In Narang and co-workers [51,58],

the activator is associated with membrane phophoinositides, and

cytosolic inositides are identified as the substrate. Narang [52]

Table 1. Summary of cell type–specific polarization differences.

Cell type Polarization Behaviors Scale Feedback Loops Stimulus Cytoskeleton

Budding yeast Spontaneous polarization,
unique axis of polarity

Size: 5 mm, TP: 3 min Cdc42?Cdc24?Cdc42,
Cdc42?actin?Cdc42

Bud1 Actin (MO)

D. discoideum Gradient sensing (1% and up),
adaptation (Lat), spontaneous
polarization, high amplification,
reorientation, maintenance,
multiple fronts (Lat), unique
axis (WT)

Size: 10–20 mm, TP: 30–60 s,
speed: 3–15 mm/min

Amplification upstream of PI3K cAMP Actin (MO)

Fibroblasts Gradient sensing, reorientation Size: 50–150 mm, TP: 30–50 min,
speed: 1 mm/min

Cdc42?Rac?RhoA PDGF,
fibronectin,
interleukins

Actin, MT, FA

Keratocytes Spontaneous polarization,
maintenance

Size: 10 mm (fragments), 30–40 mm
(cells), speed: 10–40 mm/min,

Mechanical Actin

Neutrophils Gradient sensing, spontaneous
polarization, high amplification,
reorientation, unique axis (WT)

Size: 10 mm, TP: 30 s, speed:
10–20 mm/min

Front/back mutual inhibition
PIP3RactinRPIP3

fMLP,
interleukins,
others

Actin

Neurons Attractive/repulsive turning,
gradient detection, adaptation

Rac/Rho mutual inhibition Netrins,
semaphorins,
ephrins

Actin, MT

FA, focal adhesions; Lat, latrunculin (no cytoskeleton); MT, microtubules; MO, maintenance only; TP, time to polarize’ WT, wild-type.
doi:10.1371/journal.pcbi.1001121.t001

Table 2. Features of polarity explained by various classes of RD models.

Behavior ‘‘Turing Type’’ Wave-Based Gradient Sensing

Maintenance of polarity Yes Yes No

Multi-stimuli response Yes (transient) Yes (long time-scale) Yes

High amplification Yes Yes No

Adaptation No No Yes

Spontaneous polarization Yes Yes No

Reversible asymmetry No Yes Yes

doi:10.1371/journal.pcbi.1001121.t002
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demonstrated that a Turing instability is impossible in a two-

component mutually inhibiting system (which is equivalent to a

single positive feedback loop), and derived a minimal three-

component model consisting of two mutually inhibiting local

activators that promote the synthesis of a diffusible inhibitor that,

in turn, inhibits both the activators (Figure 1c). Otsuji et al. [53]

proposed a mass-conserved activator-substrate system and showed

that multi-peak states arise transiently, and are then replaced by a

polar distribution. (Similar ‘‘winner-take-all’’ behavior is also seen

in some other Turing-type models [51,54,58,59].) Goryachev and

Pokhilko [54] presented a detailed eight-variable model (for

budding yeast) based on GTP-GDP cycling of Cdc42, its activator

Cdc24, and the effector Bem1, and reduced it to a two-component

activator-substrate system with similar essential features. In both

[51,58] and [54], the total amount of polarization readout

(phosphoinositides in [51,58]; Cdc42 in [54]) in membrane and

cytosol is conserved.

Turing-type models are attractive theoretically, as they can

account for spontaneous polarization, achieve a high degree of

amplification, and maintain the polar pattern after the signal is

removed. In D. discoideum, several pseudopods can coexist

transiently. These could be considered multiple peaks of activity,

but such peaks do not have a specific spacing behavior and are

thus unlike a Turing pattern. In the two-antagonist model by

Meinhardt [50], several maxima with irregular spacing can

temporarily coexist. At the same time, some features of Turing-

type models are less desirable. First, they fail to account for a

resting nonpolar state in unstimulated cells (such as neutrophils)—

every spatial disturbance, no matter how weak, breaks symmetry

in the Turing regime. Second, and as mentioned above, multi-

peak solutions can and do occur even in cases where these may not

have biological relevance (e.g., in growing domains, or given

appropriate variation of underlying parameters). Finally, the

pattern, once formed, tends to ‘‘freeze’’, and to be unresponsive

to further stimuli [60]. This is fortuitous in some cases (e.g.,

formation of the Cdc42 cap in budding yeast, which is

irreversible), but certainly not appropriate for migrating cells that

have to respond to a highly variable or complex environment. To

alleviate this problem, additional mechanisms or components are

required to unfreeze the pattern; for example, Meinhardt and

Gierer [49] showed that reorientation is possible if the system

oscillates and that oscillation occurs if the inhibitor has a longer

half-life than the activator. See also Meinhardt’s local inhibitor

[50], described above.

Gradient-Sensing (Adaptation) Models
Early models for gradient sensing that were highly influenced by

D. discoideum sought to account for both its adaptation to spatially

uniform stimuli and its sensitivity to gradients. Levchenko and

Iglesias [61] proposed a local excitation, global inhibition (LEGI)

model consisting of a fast-acting local activator and a slow global

inhibitor, both activated in direct proportion to external spatio-

Table 3. Summary of published mathematical models for cell polarity.

Model Class Cell Type Major Components

[79] Stochastic Budding yeast Cdc42

[72] Wave-based D. discoideum Phosphoinositides

[83,84] Stochastic Chemotactic cells Pseudopods

[78] Wave-based Chemotactic cells Activator/inhibitor

[85] Detailed biochemical Neuron Receptors, kinases, calcium channels, G-proteins

[99] Turing type Fission yeast Activator-inhibitor

[73–76] Detailed biochemical, wave-based Chemotactic cells Phosphoinositides, Rho GTPases,Actin, Arp2/3

[81,82] Detailed biochemical, stochastic Chemotactic cells Phosphoinositides

[54] Detailed biochemical, Turing type Budding yeast Cdc42, Cdc24, Bem1, GAPs, GDI

[70] Excitable system D. discoideum Activator/inhibitor

[100–102] Gradient-sensing Fibroblasts Phosphoinositides

[61,62,64,71,103,104] Gradient-sensing D. discoideum Phosphoinositides

[63] Gradient-sensing D. discoideum Activator/inhibitor

[105] Turing type Autocrine cells EGFR

[106] Gradient-sensing D. discoideum Phosphoinositides

[56,88,107] Yeast Cdc42

[50] Turing type Chemotactic cells Activator-inhibitor

[51,58] Turing type Chemotactic cells Phosphoinositides

[52] Turing type Neutrophils Activator-inhibitor

[86] Detailed biochemical, wave-based Neutrophils Receptor, Ras, Rho, phosphoinositides, actin, myosin

[90] Stochastic Neutrophils Receptors, inhibitors, mediators, microtubules

[53] Turing type Neutrophils Rho GTPases

[15] Wave-based Yeast Cdc42, Bem1

[108] Gradient-sensing D. discoideum and neutrophils Second messenger

[109] Neurons Rho GTPases

[110] Gradient-sensing Chemotactic cells Phosphoinositides

doi:10.1371/journal.pcbi.1001121.t003
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temporal stimuli (Figure 1d). By assuming that the response

depends on the ratio of activator to inhibitor, they achieved perfect

adaptation to uniform stimulation in a simple way that is robust to

changes in parameters. LEGI accounts for some features of

phospholipid PIP3 in latrunculin-treated D. discoideum cells [26,60–

62], such as an increasing response to stronger gradients, and a

reversal of polarity if the gradient is reversed. This led its

originators to propose that the roles of activator and inhibitor are

played by PI3K, the kinase that synthesizes PIP3, and PTEN, the

phosphatase that reverses that reaction [61], motivating experi-

mental investigation of the idea. Indeed, models with two coupled

LEGI mechanisms were shown to mimic PI3K data in D.

discoideum quite well [62], leading to rapid surge in the popularity

of the LEGI mechanism throughout many cell biology papers. In a

variant of LEGI, the ‘‘balanced inactivation’’ model [63]

(Figure 1e) proposes that the cytosolic inhibitor converts to a

membrane-bound form, inactivates the slow activator, and is

thereby depleted. The addition of this extra component allows a

switch-like response to external gradients, leading to a well-defined

front and back.

The positive features of a LEGI mechanism (adaptation,

sensitivity, response in proportion to signal appropriate response

to multiple stimuli, concordance with latrunculin-treated D.

discoideum data) come with some limitations. The LEGI mechanism

by itself does not significantly amplify the external gradient,

requiring additional mechanisms to do so [61,64]. Interactions of a

LEGI-type gradient sensing with existing asymmetries was studied

in [64]. Further, on its own, LEGI cannot account for persistence

of polarization: when the signal gradient is removed, the polar

pattern disappears. In short, LEGI mechanisms as proposed in

these references lack inherent pattern-formation capability. Thus,

while LEGI accounts very well for some data, additional

mechanisms (either up or downstream), possibly involving modules

coupled to LEGI, would have to account for the observed

Figure 1. Schematic diagrams for proposed cell polarity mechanisms. Slow-diffusing (local) components are shown on the ‘‘cell membrane’’
(shaded), while fast-diffusing (global) components are shown in the interior of the cell (not to scale). S, signal; A, activator; I, inhibitor (unless
otherwise indicated). (a) Model with a short-range activator and long-range inhibitor. See [48,50]. (b) Model with substrate depletion. See [53,54]. (c) A
three-component model based on mutual inhibition [52]. F and B mutually inhibit each other and activate the global inhibitor. (Note: models (a–c)
have Turing instabilities and we refer to these as ‘‘Turing-type’’ models.) (d) Local excitation, global inhibition (LEGI) [61]. The signal has identical
effect on A and I, which together regulate a downstream response element (R). (e) Balanced inactivation mechanism [63]. S activates A and B, which
produces Bm. Bm and A are mutual inhibitors. (f) The wave-pinning mechanism [76]. S affects a local membrane-bound activator (A*), which is
produced autocatalytically from its cytosolic substrate (A).
doi:10.1371/journal.pcbi.1001121.g001
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persistent polarity of cells such as neutrophils and keratocytes [65].

As a final caution, recent knockout experiments in D. discoideum

have revealed that mutants lacking PI3K can still polarize and

chemotax [66], casting doubts on the suggested molecular

identities ascribed to the components in [61,62]. And so, the

actual identities of the hypothesized LEGI activator and inhibitor

are as yet unknown.

Excitable Network and Wave-Based Models
A number of models for polarization are predicated on the idea

that polarization is an outcome of a wave of activation (rather than

growth of a unimodal pattern). In fact, some waves of activity (of

actin polymerization [67], of the actin-regulator Hem1 [68]) are

observed in cells. Furthermore, even if signaling is abolished due to

the loss of receptors, localized regions of high concentrations of

PIP3 and actin activity continue to emerge and disappear [69].

These are closely related to the subsequent formation of

pseudopods. (The two-antagonist model discussed earlier [50]

has been proposed to explain these dynamic features.) It has also

been proposed [70,71] that a spatially extended excitable system

with a noisy input can likewise explain these types of phenomena.

In the case of a rapidly diffusing activator, and a slower inhibitory

process, a localized excitation will spread throughout the cell as a

pulse/wave [68,72]. When a local activator and a fast spreading

inhibitor are considered in an excitable system, noise induces a

spatiotemporal localized excursion to the excited state, and

transient formation of localized patches is observed to recur

[70]. When a chemical gradient is superimposed on the noise, a

single patch tends to form in the direction of the gradient [71]. (An

anonymous reviewer of this paper pointed out a link between [71]

and [49] and added the following comments: (1) An oscillating

activator-inhibitor system is sensitive to an external stimulus only

in a narrow time window, just before the autocatalytic burst. (2)

Due to the short period of time when competition between

antipodal peaks can take place (during the burst), there is frequent

formation of simultaneous peaks at opposite poles in the cell,

leading to failure of polarization. (3) After a burst of global

inhibitor, the refractory period would exclude other waves or

peaks, in contrary to some observed behavior cell behavior [69].

See [49] for a discussion of oscillating activator–inhibitor

distributions.)

It has also been shown that an activation wave triggered at one

edge of a cell can produce a robust stationary polar pattern [73–

76]. To do so, that wave has to stop inside the domain, creating a

macroscopic difference between the level of activity at opposite cell

edges. Necessary conditions for such wave-pinning (WP) behavior

have been described in connection with Rho GTPase biochemistry

[76] as follows: (1) The active GTP form, known to be bound to

the cell membrane, and thus slowly diffusing, has to have positive

feedback on its activation. (2) The inactive GDP form (known to

associate with GDP dissociation inhibitor (GDI) to form a

cytosolic, i.e., fast-diffusing complex) has to be depleted as

activation takes place. In fact, this depletion halts the wave, and

is thus essential for polarization. The latter property can be

assured if the total amount of (active+inactive) protein is

conserved. While mass conservation is shared with other models,

the latter lack other features and fail to display stalling waves, for

example, [53]. Similarly, other substrate-depletion models with

saturating feedback terms look superficially similar to [76], but

lack the features (conservation, bistability) required for such WP

dynamics. The fact that WP in its simplest variant requires bistable

kinetics [76] recalls models for protein-kinase cascades [77] where

fast signaling exploits the traveling wave behavior. Unlike those,

WP couples fast signaling with robust polarity.

WP models have a number of promising features. Unlike

Turing-instability models, WP admits rest states that are stable to

small amplitude stimuli. Thus, WP can account for resting cells

that are unpolarized (e.g., neutrophils and keratocytes). A further

advantage is that WP responds rapidly once the stimulus

magnitude exceeds some threshold: in contrast to pattern

formation close to a Turing bifurcation (which tends to slowly

grow in magnitude from some small disturbance), WP forms a

macroscopic peak of activity rapidly in response to a stimulus and

then spreads to adjoining areas with significant speed. (A

comparison of pattern-forming time scales in WP and Turing

instability models is described in [76].) Unlike Turing patterns, the

polarized stalled wave front in the WP model does not freeze: it

can be reversed in response to new (sufficiently strong) stimuli.

Like all models, WP has a number of drawbacks: first, the

magnitude of the response (e.g., activity level at the front) is not

directly proportional to the strength of the stimulus. Second, while

patterns with multiple peaks are unstable, should they form due to

noisy or competing stimuli, they can persist over long timescales

until resolved. The presence of additional components can also

accelerate the resolution of multiple peaks, as shown in [75]. As

before, this suggests that WP on its own is not enough to account

for all cell polarization features.

Coupling Different Polarity Mechanisms
This review of individual models indicates that, while each one

has good and bad aspects, none of the simple theoretical models

accounts for all the features of polarity. This suggests hybrids

where the output of one module is input to another. For example,

WP might serve as a ‘‘symmetry breaking’’ module in larger

models with other modules such as LEGI. An idea of coupling an

adaptation module with a bistable system is discussed in [78]

where LEGI is coupled to a bistable switch. Recently, coupling a

LEGI module to an excitable network has been proposed to

explain spontaneous spots of activity without stimulation [71].

WP and Turing instability mechanisms need not be mutually

exclusive. The interactions between multiple components can

result in a model that has WP behavior, but can also undergo a

Turing instability in some parameter regimes [74]. This allows

both sensitivity to small gradients, and an ability to reorient to new

stimulus.

Stochastic Models
While not the focus of this review, we briefly mention stochastic

effects. Altschuler et al. [79] proposed a stochastic model based on

positive feedback with mass action kinetics to explain spontaneous

polarization in latrunculin-treated yeast. If, on average, a particle

on the membrane recruits more than one particle from the cytosol

during its residence time, aggregation can take place. In the

stochastic regime this positive feedback, coupled with slow

diffusion on the membrane, leads to recurrent patches of active

particles on the membrane. If there are a lot of particles in the

system, then positive feedback leads to activation all over the

membrane, so that polarity is lost. Hence, this model predicts that

polarity cannot occur for high numbers of molecules. By contrast,

stochastic simulation of WP [80] showed that low copy number of

reactant molecules fails to polarize the cell, whereas the probability

of polarization increases, and approaches the behavior predicted

by partial differential equations as the number of molecules

increases. (The speed of polarization was the same in the stochastic

and deterministic versions.)

A stochastic mechanism for gradient sensing based on phase

separation (patch coalescence) was proposed by Gamba and

coworkers [81,82]. In that stochastic model, patches of PIP3
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accumulate on the side of the spherical domain with higher

concentration of activated receptors, and a coarsening process

occurs with smaller patches eventually being absorbed by larger

patches. However, the timescale on which polarization factors

segregate into separated phases (representing spontaneous polar-

ization) is about 100 minutes, which is rather slow for the

timescale of polarization in many cell types.

Models of chemotaxis based on right-left splitting (or biased

turning) of an existing pseudopod include [83,84]. These account

for both random motion and the biased random walk that

migrating cells perform in the presence of shallow gradient, but do

not depict the localization of polarized components within the cell.

Detailed Biochemistry-Based Models
Many of the models mentioned above are ‘‘capability’’ models

that describe theoretical mechanisms for cell polarity establish-

ment. While such models are conceptually important, it is also

useful to build detailed biochemical models ‘‘from the bottom up’’

that are based on identifiable molecular components and

experimental findings [55]. Several such models already exist.

Goryachev and Pokhilko [54] model Cdc42 and many of its

activators and effectors in yeast polarity. Causin et al. [85] include

many of the polarity players in neuronal polarity. Marée et al. [73]

and Dawes and Edelstein-Keshet [75] simulate the interactions of

Rho GTPases, phosphoinositides, and the actin cytoskeleton in a

motile cell. Onsum and Rao [86] include some of the same

molecules (e.g., phosphoinositides, actin, and the GTPase Ras, but

not Rho GTPases) in neutrophil chemotaxis. However, it is

difficult to directly compare these models as they are often tailored

to specific cell types and conditions, and focus on properties of

some specific subset of polarity regulators and experimental

findings. Furthermore, the appreciation of the roles of regulatory

substances changes rapidly. As an example, the phosphoinositide

PIP3 is no longer viewed as essential for chemotaxis under some

conditions [66]. By understanding the necessary features for the

types of phenomenological models discussed in this review, we can

categorize the more complicated biochemistry-based models by

the types of modules they contain (Turing instability, adaptation,

wave-based, etc.) and identify the necessary components that give

rise to their global behavior.

A Comparison of Models

We chose typical representatives from the deterministic classes

of models described above and subjected each of them to a set of

common ‘‘stimulation protocols’’ (details in Methods). The

representative models (columns in Figure 2) comprise (i) the WP

[76] (wave-based) model, (ii) Goryachev’s [54] (GOR) reduced

Turing-type model, (iii) Otsuji’s (OT) [53] Turing-type model, and

(iv) the LEGI model [61]. Several of these models (WP, OT,

GOR) are based on the biology of membrane-cytosol exchange of

a pair of active/inactive Rho GTPase forms, making them good

candidates for comparing proposed GTPase-based mechanisms

for achieving polarity. As mentioned above, the LEGI model

represents an unspecified activator, inhibitor, response element,

and external stimulus [61].

The stimuli are: (a) transient-localized stimulus on the left edge,

(b) two (identical) transient stimuli, one on each edge, (c)
persistent graded stimulus, (d) transient gradient with reversal, (e)
noisy initial conditions, and (f) change in cell size (see Methods).

Except for case (e), we assume that the the initial conditions are

spatially uniform for all models. In order to compare the speed of

response, effect of cell size, etc., all models were calibrated to a

timescale of seconds and length scale of microns. Responses of the

four models are shown in rows of Figure 2 for a 10-mm diameter

cell, over a timespan of 200 s (or, in some few slow cases, up to

1 hour).

(a) Response to Transient-Localized Stimulus
As shown in Figure 2a, all four models respond to a single

localized stimulus (Equations 8 and 9, indicated with dotted lines

on the left domain edge, magnified 10 times for visibility). The WP

and LEGI models respond most rapidly for the given parameter

values, but the latter loses polarity as soon as the transient stimulus

is turned off. The two Turing instability models, GOR and OT,

take far longer to polarize: the amplitude of the peak in GOR

continues to increase throughout the simulation, and OT only

reaches a steady state amplitude by t~200 s, whereas the wave-

based WP polarizes by t~20 s. Both WP and GOR respond with

a single polarized peak, whereas OT first develops multiple peaks

and only later resolves these into a single front. Note that for the

parameter sets we used, the highest amplification is exhibited by

the two Turing-type models.

(b) Response to Two Transient Stimuli at Opposite Cell
Edges

As shown in Figure 2b, all four models develop a transient

period with two responding peaks of activity mirroring the double

stimulus. As before, LEGI returns to baseline as soon as the stimuli

are removed. Of the remaining three models, all eventually have a

single winning peak of frontness. However, the timescale on which

stimuli are resolved is very long (thousands of seconds). Note that

when the secondary peak collapses, the WP model responds by

broadening the remaining peak without much of a change in the

amplitude, while the Turing models respond by increasing the

peak amplitude, while maintaining the width of the peak. If one of

the stimuli is larger in magnitude, then the resolution of the stimuli

is accelerated in all models (not shown), and the largest stimulus

always takes over.

(c) Response to Persistent Graded Stimulus
When a transient gradient is used as stimulus, results (not

shown) are similar to a transient-localized stimulus. We next

compare the responses of the models to persistent gradients of

various steepness (S~0,0:01, � � � ,0:9 in Equation 10). Responses

at t~200 s are shown in Figure 2c. Several differences are

noteworthy. The WP model exhibits a switch-like response; unlike

both Turing-type models, it requires gradients larger than some

threshold to respond. The LEGI model responds in a way that

increases with stimulus strength. The OT model shows the same

response regardless of gradient steepness. GOR model responds to

stimuli of all steepnesses, but polarizes faster for stronger stimuli.

(d) Response to Gradient Reversal
As shown in Figure 2d, neither GOR nor OT are able to

respond to a reversal of the stimulus direction (stimuli as in

Equations 11–13). Both WP and LEGI are able to reorient.

However, for WP, the new stimulus has to be larger than a certain

threshold, while no such requirement exists for LEGI.

(e) Response to Noise
In keeping with the above, all models other than LEGI respond

to noise by producing a chemical pattern (Figure 2e). Unlike GOR

and OT, the WP model returns to baseline if the noise amplitude

fails to exceed a threshold (results not shown). Both GOR and OT

respond to noise at an arbitrarily low level. In the case of OT, the

pattern formed has multiple peaks of activity, and does not
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correspond to a polar pattern, but resolves on a longer timescale

(similar to Figure 2b). WP can either form a polar pattern, as

shown in the figure, or form multiple peaks that are resolved on a

longer timescale.

(f) Effect of Cell Size
All our previous calculations were done for a cell of size

L~10 mm. To test the behavior of the models for cells of various

sizes, note that if we rescale space to j~x=L, diffusion coefficients

Figure 2. Comparison of polarization behavior of four models. Columns: (left to right) the wave-pinning (WP) system (2) [76], Goryachev’s
(GOR) system (4) [54], the Otsuji (OT) system (3) [53], and the LEGI system (5) [61]. Rows: the stimuli used: (a) single localized stimulus, (b) two
competing local stimuli at opposite ends of the cell, (c) persistent graded stimuli of various strengths, (d) graded stimulus and its reversal, (e) noisy
initial conditions, (f) increase in cell size. (See Methods for details.)
doi:10.1371/journal.pcbi.1001121.g002
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get rescaled to Du=L2, Dv=L2. (Therefore, increasing the domain

size is equivalent to decreasing the diffusion coefficients.) We

examine the effect of a series of domain sizes (L~1{39 mm) on

the models’ ability to resolve multiple peaks in Figure 2f. Models

WP, GOR, and OT were stimulated with two transient stimuli (as

in Figure 2b) and then compared at T~2000 s (approximately

30 min) after initial simulation. (For ease of comparison,

homogeneous [nonpolar] solutions are indicated with a dotted

line, and multi-peak solutions with a dashed line.) We find that a

minimum size is required for polarity to emerge. The smallest

‘‘cells’’ (or cell fragments) of size L~1 mm fail to polarize in all

three pattern formation models (WP, GOR, and OT). The GOR

model produces a unique peak that concentrates all of the polarity

regulator. Since the total amount of material in the simulation

increases with cell size, the amplitude of the peak increases as the

cell gets larger. Larger cells take longer to reach steady state. (Note

that the location of the peak is still shifting at T~2000 s for large

L.) The OT model generally responds by initially forming multiple

peaks and resolving them over time. Again, larger cells take longer

to reach steady state, hence at T~2000 s we still observe a quasi-

stationary two-peak state for large L. By contrast, the WP model

responds with a single peak for LvL�, and two persistent peaks

for LwL�. The exact value of this critical size L� depends on the

total amount of material in the system. In summary, all models

predict that larger cells should take longer to resolve two

competing stimuli, but eventually a single front will emerge. The

timescale on which a single winning peak appears depends on the

relative strengths of the stimuli (not shown).

We used persistent stimuli for the LEGI model as the system

returns to basal unstimulated cell for transient stimuli. Domain size

does not affect the LEGI model, as the activator and inhibitor

profile simply mirror the profile of the external signal.

Effect of Parameter Variation
The above simulations for the four models were carried out with

parameter values as published in the cited sources. To explore

robustness of these models to parameter variations, we also ran

tests with a 1.5-fold increase or decrease in the values of certain

key model parameters.

Results of such parameter variations can be summarized as

follows: (1) In the GOR model, varying the strength of feedback a
or basal activation rate b up or down by 1.5-fold has an

imperceptible effect. Changing the initial amount of u slightly

alters the height of the single peak of activity, whereas the turnover

rate c has a much more pronounced effect: increasing c more than

doubles the peak height of u. (2) The OT model is insensitive to

variation of the basal activation rate a1, and only mildly affected

by variation of the initial amount of u (slight increase/decrease of

peak height). It is highly sensitive to both parameters s and a2, with

a failure to polarize at one extreme of the parameter range

(downregulation) and the formation of two peaks of activity at the

other extreme (upregulation). (As discussed earlier, this is resolved

into a single peak on a longer timescale.) (3) The LEGI model is

unaffected by the production rate of the inhibitor kI , and only

mildly affected by the initial amount of response element RT , the

production rate of response element kR, and the production rate of

the activator kA. (These merely shift the profile up or down by a

small value, but otherwise have little influence.) (4) In the WP

model, increasing the initial amount of u (which also increases the

total amount of protein in the domain) shifts the wave of

polarization further into the domain without affecting its

amplitude. Varying the basal activation rate k0 affects both front

position and amplitudes of the plateaus. The WP model is more

sensitive to the turnover rate d, and feedback half-level K—at the

1.5-fold change (up or down) of either of these, the polarization is

lost and the result is a spatially homogeneous state.

Overall, the WP model appears to be the only one in which the

width of the polarized region (when it exists) undergoes dramatic

change through up/down regulation of the total amount of

protein. In contrast, varying the total amount of material for the

other models mainly resulted in shifting the amplitude of the peak

(or the rate of polarization), while the width of the peak remained

the same. This forms one prediction that is amenable to

experimental testing.

It is difficult to draw strong conclusions about robustness from

this comparison of models, since some use nonlinear production

rates, and other nonlinear degradation rates. In general, we found

that GOR and LEGI were least responsive to parameter variations

in the given range. WP and OT were most sensitive, occasionally

exhibiting a homogeneous steady state (WP) or a secondary peak

(OT) as described above.

Contact between Experiment and Theory
It has often been the case that mathematical models for polarity

were developed independently from the experiments and then

demonstrated to reproduce previously obtained experimental

results. Can mathematical models do more than just recapitulate

experimentally observed behavior? Here, we mention examples of

mathematical modeling that have fostered biological experiments.

Gradient-sensing models such as LEGI have initiated experimen-

tal work on inhibitory mechanisms on the PI3K activation

pathway in D. discoideum [87]. The inhibitory mechanisms found

by that study were local rather than global in nature, and a global

inhibitor is still unconfirmed. The multipipette experiments on

immobilized D. discoideum, where cells are presented with two

competing stimuli and showed two responses [22], were inspired

by the LEGI model. However, it would be interesting to repeat

these experiments in cells with an intact actin cytoskeleton and

compare to the results obtained in Figure 2. In Goryachev’s model

for yeast polarization, a unique polarity axis emerges due to

competition for substrate between clusters [54]. This inspired

experiments to ‘‘re-wire’’ the positive feedback loop to get cells

with multiple Cdc42 caps that then get resolved into a single bud

[59]. Although these experiments are consistent with the idea that

competition for a limited resource can resolve multiple foci, the

details of how this competition is resolved on a tightly controlled

timescale (a few minutes in the experiments, but longer in the

model), or why a more intense cap does not always win, are still to

be resolved.

In budding yeast, experiments have confirmed that the removal

of one of the two parallel Cdc42 positive feedback loops does not

abolish polarity [14,88]. Interestingly, models of yeast polarization

that utilize a single feedback loop predict different outcomes,

depending on which loop is active. A deterministic model of

positive feedback via actin-dependent transport predicts that

increasing the total amount of Cdc42 concentration will lead to

increased frequency of polarization, while a stochastic model for

actin-independent (diffusion-mediated) positive feedback predicts a

decrease in polarization frequency [56,79]. No spatial model

combining both of these positive feedback loops has been

published, although some numerical simulations of spatially

homogeneous systems suggest that a combination of fast and slow

positive feedback loops can reduce the effect of noisy input and

extend the parameter range for bistability [89].

In neutrophils, it has been suggested that microtubules allow

communication between the front and back [34,90]. However, the

mechanism for this long-range feedback between the front and

back is still unclear, and a more detailed model is needed. Why
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microtubules are needed for polarity in some cells, but not others,

is also not understood, and models of polarity can be used to

elucidate this issue.

The effect of cell size and geometry on signaling networks is just

starting to be appreciated. For example, a simple model of

membrane activation/cytoplasmic deactivation predicts that

Cdc42 activity would be greatest where the cell is thinnest (i.e.,

lamellipodia and filopodia) [91]. All the models discussed so far in

this review have been done on a 1-D domain and do not take into

account nonuniform thickness or the shape of the cell. Simulations

in 2-D reveal that the dynamic shape change of a cell can

accelerate the process of polarization (S. Marée, personal

communication). This speaks to studying the phenomena in 2-D

and 3-D, rather than in 1-D domains only. The effect of

biophysical parameters such as membrane tension has also been

neglected in models of cell polarity. However, this is known to

influence polarity regulators. For example, stretching a fibroblast

along one axis inhibits Rac activity in the plasma membrane

parallel to the direction of stretch, confining formation of new

actin polymers to unstretched membrane domains [92].

New experimental tools allow for spatial manipulation of

signaling on a subcellular level not possible earlier, such as

activating a single polarity protein in a localized area [93–95].

These techniques should allow for experimental testing of the

predictions of the many competing models of cell polarization.

Discussion

It is not possible in a single review to be comprehensive, as the

literature on polarity models has become quite large. Here, we

subjected a limited set of (four) deterministic models for cell

polarity to a number of standard stimulation protocols so as to

compare their responses (summary in Table 2). From Figure 2 and

Table 2 we see that models with a Turing instability generally have

a lower sensitivity to second stimuli, and LEGI models have no

inherent persistence. However, amplification is a common feature

observed in all models, with ‘‘Turing-type models’’ exhibiting

highest amplification in our hands. Note that the gradient-sensing

models alone describe adaptation to uniform stimulus, but do not

capture the phenomena of spontaneous polarization or polarity

maintenance in the absence of stimulus. Wave-based and Turing

models differ in their response to multiple stimuli and to a change

in the direction of the stimulus. Thus, some classes of models are

appropriate to describe some polarization behaviors but not

others. Spontaneous polarization is described well by Turing

instability models. Gradient-sensing models like LEGI seem most

pertinent to cells without a cytoskeleton that do not exhibit

maintenance or spontaneous polarity. Cells that need to rapidly

reorient, such as neutrophils are best described by wave-based

models.

What has emerged collectively from theoretical work so far? As

yet, no one model or set of models have been ‘‘proven to be

correct’’, nor would we expect such proof in future. Every model is

incomplete, and various models attempt, with different degrees of

success, to capture some qualitative aspects. There are many

complex processes in the cell, and, clearly, modeling focuses on

some specific subsets and simplifies or ignores others. In

interpreting the results of models or comparing with experiments

such simplifications have to be borne in mind. Nevertheless, we

can point to a number of significant paradigms resulting from

theoretical work that help inform our intuition and understanding

of the qualitative features of cell polarity.

(1) Amplification of weak stimuli and shallow gradients: all

models point to the fact that some inherent pattern-formation

mechanism is likely at play in cells to turn low-amplitude stimuli

into macroscopic responses in polarized cells. This means that the

mechanism should involve local activation and more long-ranged

(‘‘global’’) suppression of activity [49], but whether the details

involve actual global inhibitors, or depletion of inactive forms, or

other more elaborate interaction networks with multiple local and

global reach, is unclear. The fact that pattern-formation

mechanisms involve some positive local influence and other

negative long-range influences helps to explain an interesting

aspect of polarity signaling systems: many of these, notably Rho

GTPases, have both membrane-associated active forms and

inactive cytosolic forms. The wide difference in mobility of these

two forms facilitates the ability to form patterns, by inherently

creating ‘‘local’’ (slow diffusing) and ‘‘global’’ (fast diffusing) forms.

As predicted, the local forms are active, and the global forms

inactive, in the case of Rho GTPases.

(2) Maintenance of polarity (unimodal pattern), once formed, is

an automatic feature of most pattern-forming mechanisms,

explaining the persistence of polarity even when stimuli are

removed. As we have pointed out, this can create the issue of

locking of a pattern, which is undesirable in cases where cells have

to keep changing their polarity in response to a complex

environment. (The WP mechanism described here does not have

this problem.) To counteract this issue in Turing-type models, one

could postulate that many underlying affinities or binding rates are

constantly and rapidly changing (making the polar pattern

destabilize) or that there is an underlying oscillation as described

in [49]. Alternately, additional modules can react to change in

gradient direction and ‘‘unfreeze’’ a pattern.

(3) Models that maintain polarity in the absence of a stimulus

require positive feedback (see, e.g., Figure 1a–c, 1f). Adaptation

models (Figure 1d, 1e) lack this feature. Autocatalysis of local

activation is frequently associated with Turing instability.

However, other behavior, such as WP, may also emerge from

positive feedback. There is experimental evidence suggesting that

feedback loops required for maintenance are provided by the

cytoskeleton.

(4) The current models that account for spontaneous polariza-

tion do not seem to be compatible with cell adaptation. Again, this

results from spontaneous polarity models assuming additional

feedbacks that lead to maintenance of polarity rather than

transient behavior of cell adaptation.

One must then be careful not to assume that even in the same

cell type, the same mechanism of polarity establishment is at work

in cells that polarize in a random direction, and in cells that adapt

to a uniform gradient. As another example, a Turing-type model

explaining the rise of spontaneous polarity in yeast may be

appropriate when the resulting polar caps are stable (in the

presence of actin cytoskeleton feedback), but it would not be

appropriate to describe cells where that feedback is absent, and

caps form and disappear.

(5) The formation of a single peak of activity (i.e., a unimodal

rather than multi-peak pattern) requires careful tuning of

parameters in some models. This leads one to question the

robustness of such mechanisms in the face of cell diversity. (Why

don’t cells develop multiple stripes or spots of frontness?) In fact,

some cells (such as D. discoideum) provide evidence of multiple and

continually spawned pseudopods (‘‘peaks of frontness’’) [20,83]

and react to double-pipette stimuli with a double-faced response.

Other cells resolve conflicts rapidly, owing in large part to

additional layers of the signaling system that promote ‘‘winner

takes all’’ competition between frontness peaks. (Recent work by

A.F.M. Marée, personal communication, demonstrates that the

phosphoinositide signaling by PIP2 and PIP3 plays such a role via
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important positive feedback from a growing peak of GTPase

activity to further growth of that peak.)

(6) Our review has focused on deterministic mechanisms of

polarity establishment. However, in uniform or shallow gradients

of chemoattractant, stochastic effects become important and noise

reduction mechanisms are needed for accurate spatial sensing. For

modeling insights on accurate gradient sensing from weak/noisy

signals, see [96–98].

In short, the power of modeling lies in its abstraction. General

schemes for cell polarity development have been proposed that,

despite differences in specific molecular mechanisms, apply to

many cell types. Here, we showed that each of the different

proposed mechanisms for polarity regulates certain aspects of

polarization behavior more strongly than others.

Methods

Unless otherwise noted, model systems we focus on share the

following basic (1-D reaction-diffusion) form

Lu

Lt
~Du

L2u

Lx2
zf (u,v), ð1aÞ

Lv

Lt
~Dv

L2v

Lx2
zg(u,v), ð1bÞ

for 0ƒxƒL. For all models, we used no-flux boundary conditions

with domain size L~10 mm unless stated otherwise.

WP Model
Here, in system (1), u,v are the active, inactive forms of Rho

GTPase, with Dv&Du as discussed above, and

f (u,v)~{g(u,v)~v k0z
cu2

K2zu2

� �
{du: ð2Þ

The opposite signs for the reaction terms arise from mass

conservation. For simulation of the WP model the following

parameters were used: Du~0:1 mm2s{1, Dv~10 mm2s{1,

k0~0:067 s{1, c~1 s{1, K~1 mM, d~1 s{1. See [76] for

justification of these values.

OT Model
In the Otsuji model equations, [53], we employ (1) with

f (u,v)~{g(u,v)~a1 v{
uzv

a2s(uzv)z1ð Þ2

" #
, ð3Þ

with u and v also representing active and inactive forms of Rho

proteins, respectively.

To choose a set of parameters for this system that would permit

a reasonable comparison of behaviors, we scaled the published

parameters from [53] so that rates of diffusion match those of u

and v in the WP model (since both models consider Rho GTPases

in similar cell types). Scaling time by a factor of 10 leads to the

following parameter set: a1~25 s{1, a2~0:7 mM{1, s~1:0,

uzv~2 mM, L~10 mm, Du~0:1 mm2s{1, Dv~10 mm2s{1.

Finding the dispersion relation for system, we see that modes

n~1 and n~2 are unstable for these parameter values, so that

both one and two peak patterns can occur.

GOR Model
In Goryachev’s reduced two-component model [54], the RD

system (1) has

f (u,v)~{g(u,v)~aEcu2vzbEcuv{cu, Ec~
E0

c

1z
Ð

S
f (u)ds

:ð4Þ

Here, u,v are GTP- and GDP-bound forms of Cdc42 and Ec is the

cytoplasmic Cdc24-Bem1 complex. The integral equation for Ec

represents the conservation of total Cdc24-Bem1 complex. The

diffusion coefficient for membrane-bound Cdc42 in yeast is

significantly lower than in other cell types [54]. We used

Du~0:0025 mm2s{1, Dv~10 mm2s{1, and calculated the reac-

tion parameters a~0:33=(1zf), b~0:67=(1zf), f~100, and

c~0:01733 from the reaction rates given in [54]. Because of

the much slower diffusion coefficient in this model, polarization

takes much longer. For simplicity, Ec was taken to be a

constant.

LEGI Model
The LEGI model is given by

LA

Lt
~kAS(t,x){k{AA, ð5aÞ

LI

Lt
~D

L2I

Lx2
zkI S(t,x){k{I I , ð5bÞ

LR

Lt
~kRA(RT{R){k{RIR, ð5cÞ

where A is the activator, I is the inhibitor, R is the response

element, and S(t,x) is the external stimulus [61]. We used

kA~k{A~2 s{1, kI~k{I~1 s{1, kR~k{R~1 mM{1s{1,

RT~1 mM, and diffusion coefficient D~10 mm2s{1. Adding a

small diffusion coefficient DA,R~0:1 mm2s{1 to the equations for

activator and response element did not affect the results.

Stimuli Repertoire
To test the effect of various stimuli on the WP, GOR, and OT

models, we implemented

Lu

Lt
~Du

L2u

Lx2
zf (u,v)zkSv, ð6Þ

Lv

Lt
~Dv

L2v

Lx2
{f (u,v){kSv, ð7Þ

where kS is a transient spatial signal, that is, a rate of activation of

u, here considered to be the signaling agent. For the LEGI model,

kS was used as the signal S(t,x) in Equation 5. The following set of

stimuli were used for ks:

(a) Transient localized stimulus: We stimulated 10% of

the domain using

kloc
S ~

s(t)(1zcos px), 0ƒxƒ1,

0 otherwise:

�
ð8Þ
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where the time dependence was as follows:

s(t)~

S

2
0ƒtƒt1,

S

4
(1zcos p

(t{t1)

(t2{t1)

� �
, t1ƒtƒt2,

0, otherwise:

8>>>><
>>>>:

ð9Þ

We tested a range of parameters as follows: S~0:01{0:5,

t1~10{25 s, t2~15{50 s.

(b) Two transient localized stimuli: We used the same

stimulus as in (a) on 0%–10% of the domain, and a second

stimulus of the same magnitude (reflected along the x-axis)

on 90%–100% of the domain.

(c) Persistent graded stimulus:

k
grad
S ~S(10{x), 0ƒxƒ10, ð10Þ

where S~0,0:01, � � � ,0:09.

(d) Reversal of graded stimulus: We applied

k
grad
S ~s(t)(10{x), 0ƒxƒ10, ð11Þ

where

s(t)~

S, 0ƒtƒt1,

S 1{
t{t1

t2{t1

� �
, t1ƒtƒt2,

0, otherwise:

8>><
>>: ð12Þ

followed by

k
grad
S ~s(t)x, 0ƒxƒ10 ð13Þ

where

s(t)~

S, treversalƒtƒt1,

S 1{
t{t1

t2{t1

� �
, t1ƒtƒt2,

0, otherwise:

8><
>: ð14Þ

S~0:01{0:05, t1~treversalz10{20 s, t2~treversalz15{

25 s were tested.

(e) Random initial conditions: We used nonuniform initial

conditions with zero mean about the homogeneous steady

state uss for all models. (u~uss{A(1{R), where R is a

random number with uniform distribution in 0ƒRƒ1.)

Noise amplitude A~0:01{0:1 was used.

(f) Effect of cell size: Calculations were done on a unit size

domain with diffusion coefficients Du=L2,Dv=L2 for

L~1,3, � � � ,39 mm. The same stimulus was used as in (b).

Results at T~2000 s are shown.

Acknowledgments

During the preparation of the manuscript, LEK was a Distinguished

Scholar in Residence at the Peter Wall institute for Advanced Studies

(UBC), and AJ was a postdoctoral fellow at the Altschuler and Wu

laboratory (UTSouthwestern). We are grateful to the reviewers for their

extensive comments and suggestions.

References

1. Rameh L, Cantley L (1999) The role of phosphoinositide 3-kinase lipid

products in cell function. J Biol Chem 274: 8347–8350.

2. Goldstein B, Macara I (2007) The PAR proteins: Fundamental players in

animal cell polarization. Dev Cell 13: 609–622.

3. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev

Biol 265: 23–32.

4. Fisher P, Merkl R, Gerisch G (1989) Quantitative analysis of cell motility and

chemotaxis in dictyostelium discoideum by using an image processing system

and a novel chemotaxis chamber providing stationary chemical gradients. J Cell

Biol 108: 973–984.

5. Servant G, Weiner O, Neptune E, Sedat J, Bourne H (1999) Dynamics of a

chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol

Cell 10: 1163–1178.
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