
ll
OPEN ACCESS
iScience

Article
New open-source software for subcellular
segmentation and analysis of spatiotemporal
fluorescence signals using deep learning
Sharif Amit

Kamran, Khondker

Fariha Hossain,

Hussein

Moghnieh, ...,

Alireza Tavakkoli,

Kenton M.

Sanders, Salah A.

Baker

sabubaker@med.unr.edu

Highlights
4SM: an automated

software solution for

cellular dynamic

fluorescence signal

analysis

4SM relies on a novel

machine-learning pipeline

for fluorescence signal

segmentation

4SM is fast and provides a

consistent method for

high-throughput analysis

of datasets

4SM provides instant

signal quantification and

graphical representation

of the results

Kamran et al., iScience 25,
104277
May 20, 2022 ª 2022 The
Author(s).

https://doi.org/10.1016/

j.isci.2022.104277

mailto:sabubaker@med.unr.edu
https://doi.org/10.1016/j.isci.2022.104277
https://doi.org/10.1016/j.isci.2022.104277
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104277&domain=pdf


iScience

Article

New open-source software for subcellular
segmentation and analysis of spatiotemporal
fluorescence signals using deep learning

Sharif Amit Kamran,1,2 Khondker Fariha Hossain,2 Hussein Moghnieh,3 Sarah Riar,1 Allison Bartlett,1

Alireza Tavakkoli,2 Kenton M. Sanders,1 and Salah A. Baker1,4,*

SUMMARY

Cellular imaging instrumentation advancements as well as readily available opto-
genetic and fluorescence sensors have yielded a profound need for fast, accurate,
and standardized analysis. Deep-learning architectures have revolutionized the
field of biomedical image analysis and have achieved state-of-the-art accuracy.
Despite these advancements, deep learning architectures for the segmentation
of subcellular fluorescence signals is lacking. Cellular dynamic fluorescence sig-
nals can be plotted and visualized using spatiotemporal maps (STMaps), and
currently their segmentation and quantification are hindered by slow workflow
speed and lack of accuracy, especially for large datasets. In this study, we provide
a software tool that utilizes a deep-learning methodology to fundamentally over-
come signal segmentation challenges. The software framework demonstrates
highly optimized and accurate calcium signal segmentation and provides a fast
analysis pipeline that can accommodate different patterns of signals across mul-
tiple cell types. The software allows seamless data accessibility, quantification,
and graphical visualization and enables large dataset analysis throughput.

INTRODUCTION

In recent years there has been a surge in the use of automated-computer-aided detection for biomedical

image processing and analysis (Cai et al., 2016; De Vos et al., 2016; Leigh et al., 2020; Roth et al., 2015; Ter-

amoto et al., 2016). Automated biomedical image analysis incorporates advanced machine learning

methods combined with computer vision and image processing techniques (Becker et al., 2013). Deep

learning methods have shown encouraging results, outperforming experts in the field of medical imaging

(Ganin and Lempitsky, 2014). Deep learning has also improved effectiveness of interpreting various modal-

ities of data due to its computational and automated feature extraction abilities. Most biomedical images

are of higher dimensions, i.e., medical resonance imaging, computed tomography, and Ca2+ imaging, and

can be challenging and time-consuming to annotate manually. In addition, the acquiring devices from

which the images are obtained may differ in their image output quality, therefore, are less optimal for de-

ploying neural networks for such a task that requires a huge amount of consistent data for extracting fea-

tures and generalizations. These limitations prompted the need for novel developments of effective sys-

tems to automate biomedical image tasks.

Generative adversarial networks (GANs) are a recent machine-learning-based approach highly utilized in

different image-related applications such as image translation (Chen and Hays, 2018; Sangkloy et al.,

2017), editing (Dekel et al., 2018; Zhu et al., 2016), and image style transfer (Wang et al., 2018; Xian

et al., 2018). GANs are categorized into two architectures called generators and discriminators, which

are pitted against each other to improve their learning. The purpose of the discriminator is to classify

the input image as a real or fake image, whereas the generator tries to synthesize images that are realistic

to fool the discriminator, like a typical min-max game. GANs can potentially extract and learn fine and

coarse information from images by combining multiple architectures with multiscale resolutions (Brown

and Lowe, 2003; Burt and Adelson, 1987). Such examples are widespread in both conditional (Denton

et al., 2015; Huang et al., 2017) and unconditional GAN settings (Chen and Koltun, 2017; Zhang et al.,

2017). By incorporating multiple high-resolution architectures, they can learn distinct domain-specific fea-

tures with high precision and robustness. Recent advancements in deep learning architectures including
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pix2pixHD (Wang et al., 2018), SPADE (Park et al., 2019), and Stargan-v2 (Choi et al., 2020) made way for the

synthesis of high fidelity and vivid adversarial images.

In addition, cross-domain image translation is another technique utilized that generates images from

incomplete source information. It has been employed in medical image inpainting for standard statistical

analysis (Dalca et al., 2018; Eilertsen et al., 2008; Van Tulder and de Bruijne, 2015), to improve standard

steps of examination such as image registration (Iglesias et al., 2013; Wang et al., 2020a), to fuse informa-

tion (Du et al., 2016; He et al., 2020;Wang et al., 2020b), in image segmentation (Chartsias et al., 2018; Dekel

et al., 2018; Li et al., 2020; Roy et al., 2011), image construction (Commowick et al., 2009; Cordier et al.,

2016), and in disease diagnosis (Li et al., 2014; Zhou et al., 2020). Each of these techniques convert images

of one modality to another interchangeably. Some examples include magnetic resonance imaging (MRI),

optical coherence tomography (OCT), spectral-domain OCT, positron emission tomography (PET), and ul-

trasound imaging (Dalca et al., 2018; Dekel et al., 2018; Eilertsen et al., 2008; Iglesias et al., 2013; Li et al.,

2020; Van Tulder and de Bruijne, 2015; Wang et al., 2020a, 2020b).

The ideal system is one that would have a dynamic end-to-end architecture in place that could both syn-

thesize biomedical images from one modality to another and extract from and learn representations of

the manifold features. In this paper we propose a new subcellular segmenting and analyzing tool for dy-

namic fluorescent signal maps that utilizes core generative architecture for segmenting dynamic fluores-

cent events (i.e., Ca2+ transient signals).

Dynamic fluorescence imaging is a widely used tool in medical research and provides valuable information

on cellular function and regulation. Dynamic fluorescent signals can be monitored at a cellular level to visu-

alize changes in ions, pH, protein trafficking, or voltage in many pathologies. These subcellular signals are

complex, for example, voltage and Ca2+ signaling patterns differ depending on cell type, cellular compart-

mentalization, and target tissue (Roome and Kuhn, 2018). Ca2+ signaling can range from intercellular and

intracellular waves that spread for long distances, over several microns or more, to local Ca2+ release

events that spread on the scale of nanometer to micrometer range (Baker et al., 2013; Berridge and Du-

pont, 1994; Cheng et al., 1996; Drumm et al., 2015; Hennig et al., 2010; Straub et al., 2000). Monitoring

Ca2+ signaling can provide an in-depth approach to understanding the complexities of essential cellular

activities. Extracting important information from cellular Ca2+ signals such as Ca2+ spread, duration, and

initiation sites is almost entirely dependent on segmentation of Ca2+ signals during analysis. Ca2+ STMaps

are widely used for the analysis and quantification of voltage and Ca2+ dynamics parameters that retain

Ca2+ event information as a function of space occupied over time (Cheng et al., 1996; Colman et al.,

2017; Hennig et al., 1999; Lee et al., 2009; Lentle and Hulls, 2018; Roome and Kuhn, 2018; Waadt et al.,

2017). As a result, STMaps can provide a platform to effectively extract quantifiable cellular Ca2+ data

(Baker et al., 2021a, 2021b; Drumm et al., 2014; Fedigan et al., 2017; Sancho et al., 2017; Sergeant et al.,

2006). Extracting dynamic fluorescent data can be a challenging task, as the information is most often

manually defined using single-line pixel measurement or region of interest (ROI). Because of this, discrep-

ancies between users and individual user error are high, which can translate to inaccuracies during STMap

event quantification. The current user-dependent process is highly variable, time-consuming, and labor-

intensive; therefore, we propose a new software for efficient end-to-end architecture to precisely segment

and quantify dynamic fluorescent cellular signals in a fast automated fashion. The tool will allow researchers

to swiftly analyze large volume datasets with high accuracy.

RESULTS

Subcellular signal segmentation using generative adversarial networks architecture

We used a state-of-the-art generative adversarial networks architecture to establish the proposed Spatio-

temporal Subcellular Signal Segmentation Model ‘‘4SM’’. The model incorporates multiple novel compo-

nents to provide a powerful and consistent subcellular signal segmentation tool, as discussed further

below.

Subcellular signal datasets

Datasets from subcellular Ca2+ signals imaged from gastrointestinal pacemaker-type cells called interstitial

cells of Cajal (ICC) from the colon, stomach, and small intestine of Kit-Cre-GCaMP6f mice were used to train

the 4SM model (Figure 1A). Ca2+ signals provide excellent variable patterns ranging from stochastic to

rhythmic subcellular signals that can provide the basis of segmenting subcellar fluorescent signals in our

ll
OPEN ACCESS

2 iScience 25, 104277, May 20, 2022

iScience
Article



model. Dynamic Ca2+ signals can then be plotted and visualized as STMaps. The 2D map is created from

spatiotemporal reslicing of an X-Y-Z section in a movie or image stack (Figure 1B), and STMaps can be used

for fluorescent signal analysis in a variety of cell types including neurons, cardiac myocytes, and smooth

muscle cells. In our dataset, Ca2+ signals in ICC were recorded using spinning-disk confocal microscopy

(Figures 1A and 1C). One cell type within the colon, subserosal ICC (ICC-SS), exhibited variable and com-

plex patterns of Ca2+ signals (Figure 1). STMaps are a valuable tool because they allow for a more complete

representation of individual cell Ca2+ signals through plotting Ca2+ events in cell space (x-axis) and tempo-

rally (y-axis) (Figure 1D). Therefore, Ca2+ signal features and quantification from STMaps can effectively

describe the cellular Ca2+ dynamics and behaviors in many cell types. Accurate and successful analysis

of Ca2+ imaging data and other fluorescent dynamic signals from STMaps depends heavily on defining

and segmenting diverse signal events. Therefore, we created a novel deep-learning method that employs

generative adversarial network architectures to segment signals with high accuracy.

Proposed generators of 4SM

4SM is composed of two generators, each consisting of various block components that effectively carries

out the fine-grained segmentation process. Combining two generators for fine and coarse feature distinc-

tion is highly effective and has shown notable visual results for image translation tasks. We used two gen-

erators in our proposed method, Gfine and Gcoarse (Figure 2). Gfine learns local information of the event’s

A C

DB

Figure 1. Cellular Ca2+ spatiotemporal maps (STMaps)

(A) Representative image of subserosal ICC (ICC-SS) from the proximal colon of a Kit-Cre-GCaMP6f mouse in situ. The

calcium sensor GCaMP6f is expressed in ICC cells. Scale bar in A is 10 mm.

(B) Image sequences of fluorescent signal (GCaMp6f) are acquired and presented as stacks or a movie. The stacks are

composed of three dimensions x and y for each frame and z dimension, where z is time. Spatiotemporal two-dimensional

map is constructed because of spatiotemporal reslicing of an X-Y-Z section in a movie or image stack to generate fluo-

rescence STMaps.

(C) A single ICC-SS within the FOV (outlined in orange) and defines the cellular ROI for Ca2+ signal. Colored arrows from

the cell correspond to the locations of each Ca2+ sites within the cell and plotted in the STMap in D.

(D) Representative two-dimensional color-coded intensity STMap of Ca2+ activity in ICC-SS. Each horizontal unit (cell

space) in the STMaps represent a pixel or average of pixels in the original image. The coded pixels from each frame of the

movie were used to construct a single row, and sequential rows were placed under each other to produce an STMap.

Fluorescence intensity is plotted as (F/F0). Scale bars in D are x = 10 mm and y = 2.5s.
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spatial spread and duration, whereas Gcoarse learns the boundary between multiple occasions in the gener-

ated Ca2+ STMaps. These generators are made of multiple residually connected blocks, downsampling

and upsampling layers, and a skip connection of features between the fine and coarse generators. There

is a manifold of inherent features that can be extracted from the STMaps, as shown in (Figures 1 and 6).

To extract those features and to retain the visual information, we incorporated a spatial feature aggrega-

tion block as illustrated in Figures 2 and 3. Gfine has an input resolution of 64 3 64 3 1 and outputs images

with the same resolution. Likewise, Gcoarse takes an image with half the resolution (32 3 32 3 1) and pro-

duces an image with the same resolution. Furthermore, the Gcoarse outputs a feature vector size

32 3 32 3 64 that is combined with one of the intermediate layers of Gfine using a skip connection module

between the generators. In the next sections, we discuss each of these blocks in detail.

Upsampling and downsampling blocks

Using convolution-based upsampling and downsampling may result in information loss and an inability to

retain specific spatial information. However, we’ve created two new optimized blocks for these operations

(Figures 3A and 3B). These two new upsampling and downsampling blocks can retain intrinsic character-

istics and tackle information loss due to spatial feature compression. Both generators and discriminators

of the 4SMmodel incorporates the downsampling block and only the generators use the upsampling block

to generate the feature maps and output. The downsampling block comprises a convolution layer followed

by a Batch-Normalization layer (Ioffe and Szegedy, 2015) and Leaky-ReLU activation layer (Figure 3A).

Conversely, the upsampling block contains a transposed convolution layer, followed by Batch-Normaliza-

tion (Ioffe and Szegedy, 2015) and Leaky-ReLU activation layer as illustrated in (Figure 3B). The downsam-

pling block is used twice in Gcoarse after consecutive residual blocks, and the upsampling block is used twice

to get the original spatial dimension’s feature output. For Gfine, the downsampling block is used once, and

after multiple repetitions of residual blocks, a single upsampling block is used to get the original spatial

dimension output. For both convolution and transposed convolution functions, a kernel size, K = 3, and

stride, S = 2, was used.

Figure 2. Overall architecture design for 4SM

Proposed generative adversarial network, 4SM, consists of two generators, Gcoarse (Gc) and Gfine (Gf), and two

discriminators, Dcoarse (Dc) and Dfine (Df). Step 1: the coarse generator takes smaller Ca2+ STMaps as input and outputs

coarsely segmented STMaps. Step 2: the fine generator takes larger Ca2+ STMaps as input and outputs finely segmented

STMaps. Step3: fine and coarse discriminators take both original Ca2+ STMaps and segmented Ca2+ STMaps as input and

outputs a probability map, which dictates if the pairs are either real or fake. The architecture also contains spatial-feature-

aggregation (SFA) blocks in both the generators for extracting manifold features and synthesizing realistic images and

two-dimensional convolution (Conv2d). The discriminators use auto-encoders for generated pixel-wise output to dictate

if each pixel is real or fake.
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Residual block

The basic configuration of our 4SM model comprises a residual unit with two successive separable convo-

lution layers and a skip connection that adds the input feature tensor with the output. Regular convolution

layers are computationally inefficient compared with separable convolution (Chollet, 2017). The main dif-

ference between regular convolution and separable convolution is that the latter incorporates a depth-wise

convolution followed by a point-wise convolution. By utilizing separable convolution, the depth and spatial

information is retained from the data. Some recent findings reported that combining separable convolu-

tional layers with dilation allows for a more robust feature acquisition (Kamran et al., 2020). By incorporating

this idea, we designed the proposed residual block to retain both depth and spatial information by using

separable convolution followed by Batch-Normalization and Leaky-ReLU as a postactivation mechanism to

decrease the number of computational parameters and ensure effective memory utilization (Figure 3D).

A B C

D

E

Figure 3. Building blocks for generators and discriminators

The individual blocks of 4SM architecture consist of (A) downsampling block, (B) upsampling block, (C) spatial feature

aggregation block, (D) residual generator block, and (E) residual discriminator block, where K stands for kernel size, S is

for stride, and D is for dilation rate. The ‘‘+’’ indicates element-wise summation of features in the depth axis.
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Residual block reflection padding was also incorporated before each separable convolution operation to

pad plausible data values by reusing values present along the borders of the input. After numerous exper-

imentations, we found that a wider receptive field optimally captured neighboring information. To adjust

for this, the residual block was further modified to contain two branches of separable convolution layers

with distinct dilation rates, as illustrated in (Figure 3D); one branch with a dilation rate of D = 1 and the other

with a dilation rate D = 2. A kernel size, K = 3, and stride, S = 1, was used for all separable convolution layers

where each separable convolution has a pre-reflection padding layer, post-Batch-Normalization and

Leaky-ReLU activation layer. Finally, the skip connection from the input and the two branches’ output

was combined collectively to generate the final output. In addition, a similar technique was incorporated

to create a distinct residual block for the discriminators, as shown in (Figure 3E). Conversely, the residual

block for the discriminator is made of a separable convolution layer, followed by Batch-Normalization

and Leaky-ReLU activation functions where the separable convolution has a kernel size of K = 3 and

stride, S = 1.

Spatial feature aggregation block

The proposed spatial feature aggregation (SFA) block (Figure 3C) was implemented to accommodate for

the potential loss of spatial information from the manifold feature space due to consecutive upsampling

and downsampling (Chen et al., 2018; Zhang et al., 2019). To retain intrinsic features, the skip connections

combined with the SFA block were used to fuse feature information from the bottom layers of the network

with the top layers. The block comprises two successive residual units with convolution, Batch-Normaliza-

tion and Leaky-ReLU layers. Batch-Normalization is utilized for faster and more stable training by normal-

izing the inputs with re-centering and re-scaling (Ioffe and Szegedy, 2015). Leaky-ReLU is used for solving

the vanishing gradient problem (Maas et al., 2013). Here, the kernel size is K = 3 and stride, S = 1. There are

two skip connections: (1) coming from the input and added to the first residual unit’s output and (2) coming

from the input and element-wise summed with the last residual unit’s output. Gcoarse consists of two SFA

blocks that come out of two encoders and are successively added with the two decoders. Conversely, Gfine

has only one SFA block between the encoder and decoder.

Autoencoders as discriminators

In the proposed subcellular signal segmenting model, we used two discriminators, one for Gcoarse and one

for Gfine, termed Dcoarse and Dfine, respectively. The decoders were incorporated to convert the discrimina-

tors into a single auto-encoder, unlike the patchGAN discriminators seen in other architectures (Choi et al.,

2020; Park et al., 2019; Wang et al., 2018). The auto-encoder dictates if each pixel, rather than patches, of

the generated image is real or fake. This in turn helps with the pixel-level segmentation task, as more

discriminative features are retained throughout the architecture and results in a highly accurate segmen-

tation of signals in STMaps. Dfine interprets STMaps with an input size of 64 3 64 3 1 and Dcoarse interprets

STMaps with an input size of 32 3 32 3 1 and outputs feature-maps of 64 3 64 3 1 and 32 3 32 3 1 suc-

cessively. Each point in this feature vector represents values between�1 and +1. Here,�1 represents a real

value and +1 represents a synthesized or adversarial pixel.

Adversarial objective function

To promote adversarial training, a multihinge loss for GANs (Lim and Ye, 2017; Zhang et al., 2019) was used

in our architecture as illustrated in Equations 1 and 2. Conclusively, all the Ca2+ STMaps and their corre-

sponding masks were normalized to [�1,1] to widen the gap between the real and synthesized segmenta-

tion map’s pixel intensities. In Equation 3, we added them and used ladv as a weight multiplier with the

LadvðGÞ.

LadvðDÞ = � Ex;y ½minð0; � 1 + Dðx; yÞÞ� � Ex ½minð0; � 1 � Dðx;GðxÞÞÞ� (Equation 1)

LadvðGÞ = � Ex;y ½ðDðGðxÞ; yÞÞ� (Equation 2)

LadvðG;DÞ = LadvðDÞ+ ladvðLadvðGÞÞ (Equation 3)

In Equation 1, the discriminators were first trained on real STMaps, x, and real segmentation maps, y, which

is signified by D (x,y) and then retrained on the real STMaps, x, and the synthesized segmentation map,

G(x), which is signified byD (x, G(x)). The Ex,y stands for expected value of multiple samples, given the input

x,y and min is for taking the minimum value out of the two values inside the parenthesis. First, the discrim-

inators Dfine and Dcoarse went through batch-wise training for several iterations on randomly sampled data.

Following that, the Gcoarse was trained while the weights of Dfine and Dcoarse were kept isolated. In the same
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manner, the Gfine was trained on a batch of random STMaps, whereas the weights of both the Dfine and

Dcoarse were kept isolated. The generators incorporated the reconstruction loss as shown in Equation 2.

By utilizing these losses, the generated segmentation map depicted a more realistic representation of

actual Ca2+ events. We also incorporated a feature-matching loss component (Wang et al., 2018) with

the Dfine and Dcoarse, given in Equation 5.

LrecðGÞ = Ex;ykðGðxÞ � yÞ2k (Equation 4)

LfmðG;DnÞ = Ex;y

Xk

i = 1

1

N
kDi

nðx; yÞ � Di
nðx;GðxÞÞk (Equation 5)

Where, Lrec is the reconstruction loss for a real STmap, y, given a generated segmentation map, G(x), and

||,|| stands for absolute value. The loss for both Gfine and Gcoarse was utilized so to allow our model to

generate high-quality segmentation maps of two distinct scales. This technique has been previously uti-

lized by combining GAN cost function with amean squared error (MSE) loss, a commonly used loss function

for regression (Pathak et al., 2016). Finally, Equation 6 was estimated by first taking the features from the

intermediate layers of the discriminators by inserting the real and then the synthesized segmentation

map sequentially. Here, N stands for the number of feature layers extracted from the discriminators, Dn

(x,y) is the intermediate feature from discriminator with real image as input, and Dn(x, G(x)) is the interme-

diate feature from discriminator with synthesized image as input. By joining Equations 3, 4, and 5 the final

objective function for 4SM was formulated as shown in Equation 6.

min
Gf ;Gc

ððLadvðGf ;Gc ;Df ;Dc ; ladvÞÞ + lrec ½LrecðGf ;GcÞ� + lfm½LfmðGf ;Gc ;Df ;DcÞ�Þ (Equation 6)

Here, ladv , lrec , and lfm signify loss weighting that were multiplied with their corresponding losses. The loss

weighting dictates which networks to focus on while training. For the proposed architecture, more weight is

given to the ladv and lrec , and thus the bigger l values are selected.

Segmenting model experimentation

Dataset validation

We trained our 4SMmodel on STMaps generated from 64 Ca2+ imaging movies with varied resolution, tak-

ing 64 3 64 overlapping crops with stride 8. Furthermore, we followed the same procedure to test on

STMaps generated from 17 additional videos. The images were collected in gray-scale format, and the seg-

mentation was performed in a binary format. We used the leave-one-out of cross-validation (LOO-XVE) for

training the architecture and separated the dataset into 5 folds. This technique involved training on 4 folds

and validating on the remaining single fold. We tested all 5 versions of the model on the test dataset and

selected the most accurate as the primary model (Table 1).

Stride and inference speed

STMaps can vary in image size, so we divided STMap images into smaller images by cropping with a fixed

window size of 643 64 resolution for robust segmentation of Ca2+ events. The cropping window goes from

left-to-right and then top-to-bottom and can overlap on top of each other. This overlapping factor is called

stride or step-size. For example, given image size = 1283 128, if we choose stride = 64, then the number of

cropped images will be 4. If the stride = 8, the cropped images will be 81. The equation to find the number

of crops per image can be calculated as follows:

Num of crops =

�
IHeight � C

S
+ 1

�
3

�
Iwidth � C

S
+ 1

�
(Equation 7)

Table 1. Five-fold cross-validation of 4SM segmentation masks

Fold Mean-IoU SSIM Dice-coeff

1 92.98 89.55 96.31

2 92.96 89.60 96.30

3 (Best) 93.06 89.52 96.36

4 92.92 89.58 96.28

5 92.81 89.44 96.17
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In Equation 7, I = image height or width, C = crop size, S = stride, and O = number of crops for height or

width. The equation shows that a larger stride will create a small number of crops from each test image, and

a smaller stride will yield a larger number of cropped images. Contrarily, larger strides will speed up the

model’s prediction but will result in poor visual quality. At the same time, smaller strides will slow down

the model’s prediction and yield a high-quality visual result. One of the features of our model is that the

user can control this stride parameter while testing their images.

Hyper-parameter selection

For adversarial training, hinge loss was used for our segmentation model (Lim and Ye, 2017; Zhang et al.,

2019). We selected ladv = 10, lrec = 10, and lfm = 1 (Equation 6). For optimizer, Adam (Kingma and Ba,

2014) was used, with a learning rate of a = 0:0002, b1 = 0:0002, and b2 = 0:999. For training our model,

a batch of b = 64 was trained for 100 epochs, which took approximately 12 h to train on NVIDIA P100 GPU.

Training

To train our segmentation model, multiple steps were generated: (1) all the hyper-parameters were initial-

ized, (2) a sample batch of the real STMaps and segmentation map, x, and y were created; (3) the real

STMaps were trained and fake segmentations were paired with Dfine and Dcoarse; (4) the Gfine and Gcoarse

were used to synthesize fake segmentation maps and the real STMaps and fake segmentation-map, x,

G(x) were used to train discriminators Dfine and Dcoarse; (5) the adversarial loss was calculated, LadvðD;GÞ,
and weights were updated, while keeping the weights of the discriminators isolated; and (6) the generators

were trained. We calculated the LrecðGÞ reconstruction loss and updated both generator’s weights. Subse-

quently, both discriminators’ weights were reintegrated, the feature matching loss LfmðDÞ was calculated
and the discriminator weights were then updated. In the final stage, both discriminator’s weights were iso-

lated and together, the discriminators and generators were adjusted. Lastly, total loss was calculated by

adding and multiplying their relative weights in the model, and weights were recorded.

Evaluation and result

We refer to the newly proposed Spatiotemporal Subcellular Signal Segmenting Model as 4SM, and part of

its novelty is due to its ability to pick up and discriminate subtle differences in Ca2+ events in a variety of cell

types. Original STMaps for both rhythmic and stochastic Ca2+ style events were produced from two

different subsets of ICC’s as shown in (Figure 4). The original STMaps (Figures 4 Ai and Bi) were segmented

by our model (Figures 4 Aii & Bii), and the overlays are visualized in Figures 4 Aiii & Biii. To evaluate the

segmentation efficiency of our architecture, we color-coded the original STMaps in red and the 4SM

segmented maps in green to allow better visualization of Ca2+ events and overlap in yellow (Figures 4C

and 4D). The area overlap percentages of rhythmic signals were 81.5% G 2.1% (n = 5) and 86% G 3.9%

(n = 5) for stochastic Ca2+ signals. We also calculated the Pearson’s Correlation Coefficient (PCC), which

shows the close correlation of overlap between the original image and the 4SM segmented image. PCC

values were 0.94 for rhythmic signals and 0.86 for stochastic signals (Figures 4E and 4F; n = 5).

The proposed 4SM model was compared with current state-of-the-art segmentation models for Ca2+

STMap segmentation based onWeka segmentation models (Leigh et al., 2020) and a deep-learning-based

auto-encoder model called U-Net (Ronneberger et al., 2015). The Weka model utilized a fast-random-for-

est for segmenting Ca2+ events with hand-selected features to generate binary segmentation of the Ca2+

transient events, whereas U-Net utilizes an encoder and decoder with convolution filters to learn spatial

information from images and successively down-samples, up-samples, and extract features of different

depths. U-Net has been extensively used in various biomedical imaging modalities (Alom et al., 2018,

2019; Zhuang, 2018). A side-by-side comparison of the new proposed 4SM, Weka, and U-Net predictions

are given in (Figures 5A–5E). The output of the 4SM architecture produced more accurate segmentation

maps that were 94% similar to the ground-truth (GT). Contrarily, Weka produced broken patches of

Ca2+ events, and the boundaries of the events were not uniformly spread and therefore less accurate.

U-Net cannot produce well-defined boundaries for the Ca2+ events and misclassifies background noise

as events. This, in turn, makes 4SM the more optimal model out of the two. In addition, the spatial spread

and duration of the events can be predicted accurately based on the predicted output using the connected

component algorithm, as illustrated in (Figure 6).

We used three metrics for evaluating the segmented Ca2+ STMaps: (1) mean-intersection over-union

(mean-IoU), (2) structural similarity index measure (SSIM), and (3) dice-coefficient. Mean-IoU is a metric
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that measures the percentage overlap between the target mask and the prediction mask by dividing

the number of pixels that overlap by the total number of pixels. Dice coefficient is calculated as

2*TP/(2 TP + FP + FN). Here, TP, FP, and FN denote true positive, false positive, and false negative,

respectively. Mean-IoU and dice-coefficient are the current gold standards for measuring segmentation

results for many semantic segmentation challenges such as Pascal-VOC2012 (Everingham et al., 2015),

MS-COCO (Lin et al., 2014), and Cityscapes (Cordts et al., 2016). Contrarily, SSIM is a standard metric

for evaluating GANs for image-to-image translation tasks by measuring image quality degradation.

A B

C D

FE

Figure 4. Predicted 4SM segmentation for Ca2+ STMaps

(A) Representative STMap of Ca2+ signals in colonic ICC-MY. (Ai) Original Ca2+ STMap; (Aii) predicted segmented map

generated by 4SM. White pixels represent the Ca2+ events and black pixels are the background; (Aiii) semitransparent

mask (red) from Aii overlayed on original STMap in Ai, which shows the accuracy and extent of the predicted mask. Scale

bars in Ai are x = 10 mm and y = 5 s.

(B) Representative STMap of Ca2+ signals in small intestine ICC-DMP. (Bi) Original Ca2+ STMap; (Bii) 4SM segmented

map, (Biii) semitransparent mask (red) from Bii overlayed on STMap Bi. Scale bars in Bi are x = 10 mm and y = 5 s.

(C) Combinedmap of twomerged STMaps from rhythmic ICC-MY (red) and 4SM segmentedmap (green), and the overlay

is representative of the complete pixel to pixel overlap of both maps (yellow).

(D) Two overlayed STMaps from the stochastic Ca2+ signals from ICC-DMP; both original (red) and 4SM segmented map

(green).

(E and F) Summary data of percentage of Ca2+ signals area overlaps between the intracellular Ca2+ transients in the raw

STMaps and 4SM masks, where E is for rhythmic and F is for stochastic events. Pearson’s correlation coefficient (PCC)

showing the linear relationship of overlap between the original STMaps and the 4SM maps (E & F; n = 5).
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More simply, SSIM predicts the perceptual difference and similarity between two similar images. We

provide the 5-fold cross-validated results for our model in terms of mean-IOU, SSIM, and dice-coeffi-

cient as shown in (Table 1). The best performing model is Fold 3. For testing, we compared between

Weka trained model, 4SM model (Fold �3), and U-Net. 4SM outperforms both U-Net and Weka seg-

mentation, in terms of mean-IoU, SSIM, and dice-coefficient, the three main metrics for this task as

shown in Figures 5F–5H and Table 2.

A

B

C

D

E

F

G

H

Figure 5. Comparative predicted segmentation for 4SM

(A) Representative raw STMap of Ca2+ signals in colonic ICC-IM.

(B) Ground-truth segmentation mask annotated by an expert.

(C) Predicted segmentation mask generated by 4SM, (D) predicted segmentation mask generated by Weka, and

(E) predicted segmentation mask generated by U-Net. The red rectangle boxes on STMaps are plotted every second row

from the top and highlight the expanded scale of STMap Ca2+ events.

(F–H) STMap segmentation efficiency, measured as percentage efficiency, using SSIM (F), mean-IoU (G), and dice-

coefficient (H) between Weka, 4SM, and U-Net architectures. Scale bars in A are x = 2 s and y = 10 mm.
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A

B

C

D

E

F

G

Figure 6. Quantification of segmented Ca2+ events

(A) Representative image of ICC-MY cells from the gastric antrum of Kit-Cre-GCaMP6f mouse; the bar in A represents

20 mm.

(B) Corresponding color-coded STMap with fluorescent intensity indicated, plotted as (F/F0). Scale bars in B are x = 10 mm

and y = 5 s.

(C) Representative segmented STMap using 4SM. The quantifications of Ca2+ events parameters are plotted in (D–G). (D)

Ca2+ event area, (E) Ca2+ event duration, (F) Ca2+ event spatial spread, and (G) Ca2+ event frequency. Data were used from

various 4SM STMaps from all ICC; n = 17. The red lines in D–G represent the average mean values.
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Quantification of signal event parameters

4SM incorporates effective quantification of subcellular event parameters. We achieved this by applying

a connected component algorithm (He et al., 2009) on the 4SM segmented STMaps. The connected

component algorithm, imported from the Open-CV library (Bradski, 2000), finds the frequency of Ca2+

events and defines the rectangular bounding box surrounding each event to define its duration, spatial

spread, and area parameters in pixels (Figures 6A–6G). We also calculated the interval duration between

Ca2+ events by subtracting the lower-most pixel of the first event from the upper-most pixel of the sec-

ond event and applied the process for the remaining events. Moreover, the tool integrates an image cali-

bration option to multiply the pixels in terms of scales (millimeter, centimeter, etc.); this allows the user

to easily quantify the pixel values to its native scale size. Implementing the quantification process of

several Ca2+ parameters within 4SM allows effective data interpretation and enhances the analysis pipe-

line speed.

Implementation of 4SM into a web-based tool

We employed a web-based solution to implement our python code (4SM) to successfully provide a soft-

ware tool capable of analyzing subcellular fluorescent signals. The software tool includes novel algorithms

to effectively analyze fluorescent signal STMaps and can be run through a user-friendly graphical interface

as shown in Figure 7. The deep learning algorithms were implemented using Python, and the graphical

interface was implemented using Streamlit—an open-source Python library. A key advantage of using

Streamlit is to build the software user interface without additional frameworks requirements to be installed.

Also, the software can run on any operating system that has Python installed and can be accessible through

the web.

4SM is capable of batch processing datasets to allow fast data analysis throughput. The graphical user

interface enables the user to specify one or more input images that can be uploaded using drag and

drop functions. The tool facilitates a real-time display of the output of the algorithm in a single view and

allows for user control of certain input parameters such as threshold, connectivity, pixel calibration, and

stride parameters to enhance the degree of event segmentation (Figure 7A). The graphical user interface

enables visualization of original, segmented, predicted maps, and overlay images for each input map im-

age. The software provides multiple quantification parameters including the frequency, area, duration, and

spatial spread of signal events and enables the user to select, view, and download the output quantification

parameters of current or previous runs (Figure 7B).

Within the tool, quantified data can be visualized as graphical plots (Figure 7C) to facilitate the data inter-

pretation on the fly. Each output image and dataset quantification can be visualized and exported within

the software.

DISCUSSION

We provide a new software tool ‘‘4SM,’’ a spatiotemporal subcellular signal segmentation and analysis tool

that provides a seamless workflow and incorporates state-of-the-art machine learning segmentation. The

software demonstrates fast segmentation, quantification of events, visualization, and graphical output of

data within one tool. Overall, 4SM provides an automated end-to-end solution for subcellular spatiotem-

poral signal analysis that is both effective and accurate. At present, only a handful of groups have devel-

oped methods that use machine learning to segment Ca2+ signals (Denis et al., 2020; Giovannucci et al.,

2019; Soltanian-Zadeh et al., 2019). Most of these studies do not permit high throughput of large datasets

and are limited to analyze specific subsets of cells. They also rely on waveform analysis methods for data

retrieval, which typically do not provide a redout of spatial information within a given cell. The major ad-

vantages of using STMaps for dynamic fluorescent signal analysis is that they can provide a platform to

Table 2. Comparison between 4SM, Weka, and U-Net segmentation models

Method Mean-IoU SSIM Dice-coeff

Weka 82.22 79.16 86.24

4SM 93.85 90.63 96.79

U-Net 90.62 84.83 91.28
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analyze a diverse type of cells independently of their shape or origin and can be used to segment and

analyze a variety of subcellular dynamic fluorescent signals to monitor ions, pH, protein trafficking, or

changes in cellular voltage. Thus, by combining the use of spatiotemporal maps of fluorescent signals

and deep learning methodology for segmentation and analysis, we created a universal tool that can be

Figure 7. 4SM interface features

(A) Representative image of the 4SM interface showing the user control segmentation and calibration settings (green

box). The STMaps segmentation results are visualized within the tool (blue box). Quantification results (red box) and

graphical plots (purple box) control are easily accessible by drop-down menus.

(B) The quantifications of Ca2+ signals parameters are displayed numerical format and (C) plotted into graphical plots to

aid in interpretation of the data. An example analysis comparison between datasets from various 4SM STMaps that are

divided into rhythmic (blue circles) and stochastic (orange circles) groups. n = 17.
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utilized across multiple cell types and can interpret data from a variety of dynamic subcellular fluorescent

probes. We validated this point by training our model with two morphologically and functionally distinct

cell types of interstitial cells where the 4SM model was effective in both cases.

Very recently, machine learning and deep learning approaches were adopted for Ca2+ imaging for STMap

analysis by our group. Combining Waikato Environment for Knowledge Analysis (Weka) segmentation, we

incorporated fast implementation of fast-random-forest and selective feature learning for Ca2+ event seg-

mentation (Leigh et al., 2020). However, this technique requires hand-picked features for learning and

segmentation, and user-error diminishes its precision. The 4SM model overcomes these limitations by

automating this process using end-to-end deep learning architecture to provide a more robust standard-

ization and high-throughput analysis of cellular Ca2+ dynamics.

Our 4SM architecture incorporates multiple attention-based skip connections in generators and comprises

novel residual blocks for both generators and discriminators. In addition, it employs reconstruction,

feature-matching, and perceptual loss along with adversarial training to fundamentally learn shared fea-

tures across domains. Because of these features, the 4SM model can distinguish distinct domain-specific

features with high precision and robustness for image segmentation analysis.

Cross-domain image translation is widely employed in medical image inpainting for standard statistical

analysis (Dalca et al., 2018; Eilertsen et al., 2008; Van Tulder and de Bruijne, 2015) and utilized for converting

images of onemodality to another interchangeably. However, no technique has been incorporated to learn

manifold features with coarse-to-fine generators or multiscale discriminators for coarse and fine feature

learning. Our 4SM model successfully combines the learn manifold features utilizing the coarse and fine

generators to achieve segmentation accuracy in an effective manner.

Most of the image-to-image translation models are either focused on domain level transformation or

combining style and textures of two images. For instance, somemodels use attention modules to generate

high-resolution images to extract local feature information without utilizing perceptual loss (Choi et al.,

2020; Kim et al., 2019), whereas other models emphasize more on incorporating perceptual loss with

different styles of target images (Park et al., 2019; Wang et al., 2018). To adapt to these changes, our

4SM architecture combines perceptual loss and a multiscale discriminator to retain global information

like the spatial spread and duration of the Ca2+ transient events. In addition, our model utilizes a

feature-matching loss and introduces new multiattention modules to retain local features such as co-local-

ization and boundary of signal events. The visual representation and quantitative results prove that our seg-

mentation technique surpasses the current state-of-the-art architectures.

In conclusion, our new subcellular signal segmenting analysis tool, 4SM, provides an automated, accurate,

and fast workflow that can achieve high throughput of large datasets and can be utilized across various fluo-

rescence signaling pattern applications.

Limitations of the study

This study provides a novel solution for the fast and accurate segmentation and analysis of dynamic fluo-

rescence cellular signals. However, the proposed software requires newer GPUs to function properly and

run at the intended speed, and many newer GPUs can be costly, which might limit the software’s accessi-

bility. This limitation is not specific to 4SM asmost deep learning architectures rely on a GPU-based compu-

tation. The GPU requirement limits the use of the software in commonly used image analysis software tools

such as Image J. Despite these limitations, 4SM software can provide fast and accurate segmentation of

cellular fluorescent signals to facilitate seamless signal analysis.
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RESOURCE AVAILABILITY

Lead contact

Further information should be directed to and will be fulfilled by the lead contact Dr. Sal Baker (sabubaker@

med.unr.edu).

Materials availability

Software code generated in this study have been deposited to Github: https://github.com/SharifAmit/

4SM/tree/main and https://doi.org/10.2139/ssrn.4016761.

All data are available in the main text.

Data and code availability

d The original software ‘‘4SM’’ is an open-source and publicly available from https://doi.org/10.2139/ssrn.

4016761.

d Or Github: https://github.com/SharifAmit/4SM/tree/main.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Tissue preparation

Colonic, antral and small intestinal tissues were removed from animals and small segments (2 cm in length)

were incubated in Krebs-Ringer bicarbonate solution (KRB) as previously described (Baker et al., 2016). Tis-

sues were cut along themesenteric region and contents were removed. Themucosa and submucosal layers

were removed and the remaining tunica muscularis was placed into a 60 mm Sylgard coated dish and

pinned flat.

Ca2+ imaging

Muscle sheets isolated from the colon, stomach, and jejunum (�5.0 3 10.0 mm) were pinned down and

perfused with 37�C KRB solution. Tissues were equilibration for a period of 1 h. As previously described

(Baker et al., 2018); We used a spinning-disk confocal microscope (CSU-W1 spinning disk; Yokogawa Elec-

tric Corporation) for all Ca2+ imaging experiments. The confocal head is connected to Nikon Eclipse FN1

microscope equipped with a 20 3 0.5 NA, 40 3 0.8 NA, and 60 3 1.0 NA CFI Fluor lens (Nikon instruments

INC, NY, USA). Laser at 488 nm wavelength were directed using a Borealis system (ANDOR Technology,

Belfast, UK). EMCCD Camera (Andor iXon Ultra; ANDOR Technology, Belfast, UK) was used to capture

the GCaMP6f emission. Images were acquired at 33 frames per second using MetaMorph software

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

GCaMP6f-floxed mice (B6;129S-Gt(ROSA)

26Sortm95.1(CAG-GCaMP6f)Hze/J)

Jackson Laboratories Strain #:024105;

RRID:IMSR_JAX:024105

Kit-Cre mice (c-Kit+/Cre�ERT2) Provided by Dr. Dieter Saur https://doi.org/10.1113/JP271699

Software and algorithms

Fiji, version 2.0.0-rc-69/1.52 NIH https://fiji.sc/

4SM, Subcellular Fluorescence Analysis Software This paper https://doi.org/10.2139/ssrn.4016761;

https://github.com/SharifAmit/CalciumGAN/tree/main

STMapAuto, Ca2+ Analysis plugin GitHub https://doi.org/10.1016/j.ceca.2020.102260
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(Molecular Devices INC, CA, USA). Nicardipine (100 nM) was used during the imaging experiments to mini-

mize contractile artifacts.

Ca2+ event analysis

Analysis and quantifications of Ca2+ activity in ICC was performed as previously described (Baker et al.,

2016, 2021b). Briefly, movies of Ca2+ activity in ICC (30 s long) were converted to a stack of TIFF (tagged

image file format) images and imported into Fiji (version 2.0.0-rc-69/1.52, National Institutes of Health,

MD, USA, https://fiji.sc/) for analysis. Whole cell ROIs were used to generate spatiotemporal maps

(STMaps) of Ca2+ activity in individual ICC. STMaps allow for a more complete representation of individual

cell Ca2+ signals through a 2D image that describes both space of a cell (x axis) and time (y axis) or visa

versa. STMaps are a result of spatiotemporal reslicing of an X-Z section in a movie or image stack, where

Z is time (Figure 1B). The space of a cell (x axis) is generated in the STMap as result of pixel line or via line-

scan average analysis and the pixel values are plotted in time. Each horizontal unit (cell space) in the

STMaps represent a pixel or average of pixels in the original image. The coded pixels from each frame

of the movie were used to construct a single row and sequential rows were placed under each other to pro-

duce an STMap. STMaps presented in the results were generated by rotating image stacks so that ICCwere

oriented either horizontally or vertically and STMaps of Ca2+�induced fluorescence changes averaged

across the diameter of the cell and were constructed using the reslice and z project functions. Ca2+

maps area overlap percentages were calculated using Fiji and Pearson’s coefficient between original

STMaps and segmented 4SM STMaps were obtained using the Just Another colocalization plugin (JACoP;

https://imagej.nih.gov/ij/plugins/track/jacop2.html).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

GCaMP6f-floxed mice (B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J) were acquired from Jackson Labo-

ratories (Bar Harbor, MN, USA) and crossed with Kit-Cre mice (c-Kit+/Cre�ERT2), provided by Dr. Dieter Saur

(Technical University Munich, Munich, Germany). Kit-Cre-GCaMP6f mice were injected with tamoxifen at

6–8 weeks of age (2 mg for three consecutive days), as previously described (Baker et al., 2021a, 2021b).

15 days after tamoxifen injection, Kit-Cre-GCaMP6f mice were anaesthetized by isoflurane inhalation

(Baxter, Deerfield, IL, USA) and sacrificed by cervical dislocation. All procedures were approved by the Insti-

tutional Animal Use and Care Committee at the University of Nevada, Reno. All animals used and the pro-

tocols carried out in this study were in accordance with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistics of Ca2+ activity was reported using 4SM, Ca2+ event frequency in ICC was ex-

pressed as the number of events fired per cell per second (sec�1). The duration of Ca2+ events was ex-

pressed as full duration (ms), and Ca2+ event spatial spread was expressed as mm of cell propagated per

Ca2+ event. Unless otherwise stated, data is represented as mean G standard error (S.E.M.). Statistical

analysis was performed using either a student’s t-test or with an ANOVAwith a Dunnett post hoc test where

appropriate. When describing data throughout the text, n refers to the number of STMaps used in that

dataset.

4SM algorithms and implementation

The 4SM tool was developed using Python and the GAN-based algorithm was implemented using Keras

(https://keras.io/) and Tensorflow Libraries (https://www.tensorflow.org/). For image pre-processing, visu-

alization, and making utilities for training pipelines we used NumPy (https://numpy.org/), Matplotlib

(https://matplotlib.org/), and Pillow (https://pillow.readthedocs.io/en/stable/) packages. Finally, the

Streamlit library (https://streamlit.io/) was used to build the user interface for 4SM.

4SM testing

Dataset of 81 STMaps from ICC Ca2+ movies were professionally annotated. The dataset was then divided

into two groups; group1 of 64 STMaps used for training and cross-validation of 4SM and group 2 of unseen

17 STMaps were used for testing the analysis tool. Coding of 4SM was performed using a PC desktop

equipped with dual graphic cards RTX 2080 (Dell 2018; Dell inc; USA).
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Download and installation

The open-source tool ‘‘4SM’’ can be downloaded from Github: https://github.com/SharifAmit/4SM/tree/

main. Detailed description of installation and downloading the software is provided in the repository

(README file) and documentation. A video with captions is also included to provide step by step demon-

stration of the software installation process (https://www.youtube.com/watch?v=t2LsQkyAGQc). For suc-

cessful operation in a seamless manner additional components need to be installed which are provided

in the repository. The software currently supports 8-bit JPG, PNG and TIF gray-scale images. The minimum

hardware requirements for running the software: RAM: 16 GB, GPU: NVIDIA GPU 3 GB or higher memory

with CUDA 10.0 support) and CPU Cores: 4 or highe.
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