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Abstract 

Background:  Deforestation and land-use change have the potential to alter human exposure to malaria. A large 
percentage of Madagascar’s original forest cover has been lost to slash-and-burn agriculture, and malaria is one of the 
top causes of mortality on the island. In this study, the influence of land-use on the distribution of Plasmodium vectors 
and concomitant Plasmodium infection in humans and mosquito vectors was examined in the southeastern rainfor-
ests of Madagascar.

Methods:  From June to August 2013, health assessments were conducted on individuals living in sixty randomly 
selected households in six villages bordering Ranomafana National Park. Humans were screened for malaria using 
species-specific rapid diagnostic tests (RDTs), and surveyed about insecticide-treated bed net (ITN) usage. Concur-
rently, mosquitoes were captured in villages and associated forest and agricultural sites. All captured female Anophe-
line mosquitoes were screened for Plasmodium spp. using a circumsporozoite enzyme-linked immunosorbent assay 
(csELISA).

Results:  Anopheles spp. dominated the mosquito communities of agricultural and village land-use sites, account-
ing for 41.4 and 31.4 % of mosquitoes captured respectively, whereas Anopheles spp. accounted for only 1.6 % of 
mosquitoes captured from forest sites. Interestingly, most Anopheles spp. (67.7 %) were captured in agricultural sites 
in close proximity to animal pens, and 90.8 % of Anopheles mosquitoes captured in agricultural sites were known vec-
tors of malaria. Three Anopheline mosquitoes (0.7 %) were positive for malaria (Plasmodium vivax-210) and all positive 
mosquitoes were collected from agricultural or village land-use sites. Ten humans (3.7 %) tested were positive for P. 
falciparum, and 23.3 % of those surveyed reported never sleeping under ITNs.

Conclusions:  This study presents the first report of malaria surveillance in humans and the environment in south-
eastern Madagascar. These findings suggest that even during the winter, malaria species are present in both humans 
and mosquitoes; with P. falciparum found in humans, and evidence of P. vivax-210 in mosquito vectors. The presence 
of P. vivax in resident vectors, but not humans may relate to the high incidence of humans lacking the Duffy protein. 
The majority of mosquito vectors were found in agricultural land-use sites, in particular near livestock pens. These 
findings have the potential to inform and improve targeted malaria control and prevention strategies in the region.
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Background
Madagascar is a malaria-endemic country where malaria 
ranks fourth among causes of reported mortality. In 
2011, malaria was the second leading cause of death 
among children under 5 years [1]. While malaria epide-
miology varies considerably in different regions of the 
country, with perennial transmission in the southeastern 
regions of Madagascar [1], specific transmission seasons 
in the lowland areas in the northwest, and unstable sea-
sonal transmission in the highland (central) and semi-
desert areas (southwest) areas of the country, the entire 
population is considered to be at risk for the disease [1].

Of the five Plasmodium species capable of infecting 
humans with malaria, four are present in Madagascar 
[2], with Plasmodium falciparum as the most prevalent 
species, followed by P. vivax [2]. According to [2], the 
expected vector species of Anopheles in the region are 
Anopheles funestus, An. gambiae, and An. arabiensis, and 
more recently An. coustani [3, 4]. Although increased 
financing for malaria treatment and mosquito control 
with insecticides has successfully decreased malaria rates 
in Madagascar [1], addressing environmental determi-
nants of disease could provide additional ways of con-
trolling malaria, including environmental management 
practices, such as vegetation clearance, draining swamps 
and modification of river boundaries [5, 6], that would 
increase the efficiency of programmes [5].

Madagascar is a unique island environment with a 
high level of animal and plant endemism; however, to 
date over 90 % of the original forests on the island have 
been lost due to slash-and-burn agricultural practices 
associated with human population growth, which have 
led to rapid conversion of forest to land used for rice 
production [7]. In other parts of the world, this sort of 
deforestation has been linked to deleterious effects on 
environmental conditions capable of enhancing opportu-
nities for human pathogens [8, 9]; and the loss of ecosys-
tem resources through land-use conversion also has the 
potential to increase the risk of human malaria infection 
by altering nutrient enrichment and watershed dynamics 
on a local scale, creating an abundance of new Anopheles 
mosquito breeding habitats [8–11], for example, through 
irrigation, which often leads to an increase in mosquitoes 
and malaria prevalence [5].

In an effort to protect the original forests from land-use 
conversion, several national parks, such as Ranomafana 
National Park (RNP) in the southeastern rainforests 
of Madagascar, have been established [12]. Despite its 
protected status, RNP is threatened by accelerating for-
est conversion due to slash-and-burn agricultural prac-
tices. More than 85 % of the estimated 54,000 people in 
the region immediately surrounding RNP rely primar-
ily on subsistence agriculture and the slash-and-burn 

practice remains a cultural norm [13]. Considering the 
importance of malaria as a cause of mortality in Mada-
gascar [2], an understanding of the relationship between 
land-use conversion and malaria vector distribution and 
concomitant Plasmodium infection in humans and mos-
quito vectors on a local scale is necessary. Consequently, 
this study was conducted to: (1) determine the distribu-
tion of Plasmodium vectors and concomitant Plasmo-
dium-status of vectors relative to small-scale variability 
in land-use patterns, and (2) examine demographic and 
behavioural associations with human Plasmodium spp. 
infection in this system.

Methods
Ethics statement
All research protocols were presented to and approved 
by the USDA and the Government of Madagascar. The 
United States Veterinary Permit for Importation and 
Transportation of Controlled Materials and Organ-
isms and Vectors (Permit # 107234) was used. Although 
initially reviewed for approval by the Emory Univer-
sity’s Institutional Review Board, this work was subse-
quently determined to be ‘public health practice, with 
the goal of benefit to people in the region’ and therefore 
exempt from further human subjects review. In Mada-
gascar, the IRB protocol was reviewed and approved by 
the Director of Health in the Fianarantsoa district. Both 
verbal and written consent were obtained for all par-
ticipants 18  years and older. Verbal and written assent 
were obtained for those 10–17 years of age, and parents 
of children under the age of 10 acted as proxies for their 
children for the individual surveys.

Study site
This work was conducted in six rural villages border-
ing Ranomafana National Park (RNP) (21°02′–21°25′S, 
47°18′–47°37′E) in the Ifanadiana District of Madagascar. 
RNP is a continuous humid tropical forest with natural 
vegetation ranging from montane cloud forest to lowland 
rainforest following an altitudinal gradient from 1513 to 
600 metres above sea level [10].

Study procedures
Villages were defined as communities with at least 10 
homes within 15 metres from one another, and are 
within ≤3 km of the boundaries of Ranomafana National 
Park. Six villages were randomly selected, and in each 
of the villages, 10 households were randomly selected 
to participate in the survey, malaria testing, and health 
assessment components of the study, for a total of sixty 
households. All age groups and sexes were eligible for 
testing. After completing informed consent forms, indi-
viduals were given health assessments measuring height, 
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weight, temperature, blood pressure, and heart rate 
(Additional file  1). Individuals also received a malaria 
RDT (First Response Malaria Ag Combo Kits, Premier 
Med Corps, Nani Daman, India) to determine Plasmo-
dium spp. infection. These tests are optimized to detect 
four malaria species: P. vivax, P. ovale, and P. malariae 
through a PAN test line specific to lactate dehydrogenase 
(pLDH), and P. falciparum through a Histidine-Rich Pro-
tein 2 (HRP2) specific to the species. Individuals testing 
positive for malaria were provided with recommended 

artemisinin combined therapy and advised to seek follow 
up care should symptoms persist. Individuals were also 
surveyed about insecticide-treated net (ITN) ownership 
and usage (Additional file 2).

Mosquitoes were trapped in the six villages and their 
associated agricultural and forest sites using two traps in 
each site. The two traps in the villages did not correspond 
to the households randomly selected for survey admin-
istration, but rather were placed on opposite ends of the 
village (Table  1) outside of households. Six traps were 

Table 1  Geographic coordinates and dates of sampling for mosquito trap sites in six villages near Ranomafana National 
Park, Madagascar

Trap Location Elevation (m)

Ambatolahy (6/17/13–6/21/13) Forest S 21°15′05.6″ E 047°25′21.6″ 1011

Forest w/odor S 21°15′07.5″ E 047°25′23.3″ 930

Village S 21°14′57.3″ E 047°25′48.2″ 865

Village w/odor S 21°14′58.8″ E 047°25′47.3″ 856

Agriculture S 21°15′00.6″ E 047°25′48.1″ 872

Agriculture w/odor S 21°15′02.1″ E 047°25′47.7″ 876

Vohiparara (6/30/13–7/4/13) Forest S 21°14′17.8″ E 047°23′41.4″ 1129

Forest w/odor S 21°14′08.5″ E 047°23′46.9″ 1129

Village S 21°14′20.7″ E 047°22′53.0″ 1133

Village w/odor S 21°14′20.1″ E 047°22′54.7″ 1136

Agriculture S 21°14′11.4″ E 047°23′07.0″ 1129

Agriculture w/odor S 21°14′22.5″ E 047°22′58.2″ 1131

Ambodiaviavy (7/7/13–7/10/13) Forest S 21°15′26.4″ E 047°28′34.1″ ± 10 m 744

Forest w/odor S 21°15′23.4″ E 047°28′34.1″ ± 10 m 781

Village S 21°15′48.8″ E 047°29′06.0″ 640

Village w/odor S 21°15′50.8″ E 047°29′05.7″ 642

Agriculture S 21°15′45.6″ E 047°29′03.3″ 623

Agriculture w/odor S 21°15′50.4″ E 047°29′09.2″ 619

Menarano (7/20/13–7/24/13) Forest S 21°17′27.9″ E 047°27′16.3″ 834

Forest w/odor S 21°17′27.2″ E 047°27′20.2″ 812

Village S 21°17′26.3″ E 047°28′07.9″ 716

Village w/odor S 21°17′25.3″ E 047°28′07.2″ 715

Agriculture S 21°17′34.9″ E 047°28′06.5″ 686

Agriculture w/odor S 21°17′32.2″ E 047°27′59.6″ 688

Manokoakora (7/29/13–8/1/13) Forest S 21°17′10.7″ E 047°32′46.1″ 644

Forest w/odor S 21°17′11.0″ E 047°32′47.1″ 646

Village S 21°17′12.0″ E 047°32′36.1″ 612

Village w/odor S 21°17′12.5″ E 047°32′40.2″ 612

Agriculture S 21°17′17.7″ E 047°32′46.0″ 605

Agriculture w/odor S 21°17′15.0″ E 047°32′42.5″ 616

Bevohazo (8/3/13–8/6/13) Forest S 21°12′20.4″ E 047°30′10.0″ 720

Forest w/odor S 21°12′21.8″ E 047°30′07.0″ 689

Village S 21°12′37.0″ E 047°29′54.5″ 616

Village w/odor S 21°12′30.6″ E 047°29′54.7″ 616

Agriculture S 21°12′37.9″ E 047°29′52.0″ 616

Agriculture w/odor S 21°12′36.1″ E 047°29′54.4″ 602
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set per night for three consecutive nights in each village 
(four consecutive nights, battery permitting). Mosquitoes 
were trapped for a total of eighteen trapping nights at 
thirty-six trapping sites. Forest and agricultural sites were 
all  <1  km from the village center. In most cases, land-
use sites were contiguous (Table  1; Fig.  1). Agricultural 
sites were all former ‘tavy’ (slash-and-burn agriculture) 
sites where the forest has been burned and converted 
into rice paddies that are irrigated by rainfall. Forest sites 
included primary and secondary forest within national 
park boundaries. These sites had no human inhabitants 
and ranged from little (forest trails, trails to a few homes, 
etc.) to no daily human overlap (Fig. 1a).

Mosquitoes were collected from June through August 
2013, using CDC miniature light traps (Model 512, 
John W. Hock Company, Gainesville, FL, USA) accord-
ing to methods outlined in [14]. One of the two traps 
in each land-use site was randomly selected and baited 
with a synthetic human-derived odour, 3-Methyl-1-bu-
tanol (Fisher Scientific, Waltham, MA, USA catalog # 
5001438080) [15] to improve capture of human malaria 
vectors, and field produced CO2 [14]. Each trap had a 
light sensor (LCS-2 Photo Switch, John W. Hock Com-
pany, Gainesville, FL, USA) attached that triggered 
the fan and light to turn on at sunset and off at sunrise, 
ensuring consistency among trapping sessions. Approxi-
mate distance of mosquito traps from the nearest live-
stock pen was also recorded.

Adult mosquitoes were identified morphologically 
on-site according to [16, 17] and stored in vials con-
taining the desiccant Drierite (Fisher Scientific catalog 
# 075783B). All collected female Anopheles mosquitoes 
were dissected, and the head/thorax were separated to 
test for the presence of P. falciparum, P. vivax-210 and 
P. vivax-247 circumsporozoite proteins to determine 
malaria infection using the standard csELISA protocol as 
outlined in [18, 19]. These specific Plasmodium species 
were chosen because P. falciparum and P. vivax are the 
two most prevalent species of malaria in Madagascar [2].

Statistical analysis
Data analysis was performed using SAS 10.1 ® (SAS, 
Inc., Cary, North Carolina). General exploratory data 
analyses and bivariate relationships of variables of inter-
est were examined. Poisson Regression models were 
used to examine the relationship between the prevalence 
of Anopheles and variables in the study that may influ-
ence mosquito prevalence. The independent variables 
included in the model were: land-use, village, odour, 
moon illumination, precipitation, temperature and 

Fig. 1  Examples of trapping sites in and around six villages near 
Ranomafana National Park, Madagascar. a Forest-trapping site. b 
Village-trapping site. c Agricultural-trapping site
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elevation (Table 1). The dependent variable was Anoph-
eles abundance. To examine whether land-use variability 
was altering overall mosquito captures or Anopheles spe-
cifically, the model was run to investigate the ratio of the 
number of Anopheles to the total number of mosquitoes 
by setting the total number of mosquitoes as the “offset” 
variable and Anopheles as the dependent variable in the 
model. Some data that were “missing at random” was left 
out of the analysis.

Results
The total number of female Anopheles mosquitoes cap-
tured in 36 sites (two traps in each land-use site, agri-
culture, village, and forest site, in six villages) was 414. 
The number of Anopheles mosquitoes captured in agri-
cultural sites, village sites, and forest sites was 272, 124, 
and 18, respectively (Table 2). The most Anopheles mos-
quitoes and known vectors were captured in the village of 
Manoakoakora (n = 173) (Table 3).

Five Anopheles species were determined morpho-
logically on-site, four of which are recognized malaria 
vectors: An. funestus s.l., An. gambiae s.l., An. masca-
rensis, and a recently recognized vector, An. coustani [3]. 
Anopheles squamosus, a non-vector was also identified, 
and the remaining Anopheles specimens were identified 
to the genus level, but not species (Tables 2, 3). Most of 
the Anopheles mosquitoes captured at agricultural sites 
were An. gambiae s.l. (62.1 %, n = 169), followed by An. 
funestus (22.4 %, n = 61).

The average percent of Anopheles of the total number 
of mosquitoes trapped each night in each village were 
ranged from 2.8 % (SE = 1.26) in Vohiparara, to 53.7 % 
(SE = 12.45) in Menarano (Table 4). The average percent 
of Anopheles of the total number of mosquitoes trapped 
each night at each land-use site was 1.6 % (SE = 0.91) in 
forest sites, 31.4 % (SE = 6.74) in village sites, and 41.4 % 
(SE = 7.96) in agricultural sites (Figs. 2, 3).

A regression model was run with the number of cap-
tured Anopheles mosquitoes as the outcome, and a type 
3 analysis indicates that land-use is a significant predic-
tor (p  < 0.0001). A full Poisson regression model was run 
with all seven independent variables (land-use, odour, 
village, moon illumination, temperature, precipitation 
and proximity to animal pens), and the following were 
significant: land-use (p  <  0.0001), village (p  <  0.0001), 
odour (p  <  0.0001), and proximity to livestock pens 
(p  <  0.0001). When examining each land-use site sepa-
rately, all categories (forest, village, agriculture) were 
significantly different from one another. The expected 
log counts of Anopheles for village and forest sites were 
0.63- and 1.95-fold lower than those from agricultural 
sites. When examining the relationship between the ratio 
of Anopheles to total number of mosquitoes captured 
and the independent variables listed above, the following 
variables were significant: land-use (p  <  0.0001), village 
(p < 0.0001), proximity to animals (p < 0.0001) and moon 
illumination (p = 0.0047). Traps located in close proxim-
ity (<3 m) to livestock pens were 2.62 times more likely 

Table 2  Summary of Anopheles species captured, including known malaria vectors, in each land-use site in RNP, Mada-
gacar

a  Known malaria vectors

Land-use site Anopheles 
gambiae s.l.a

An. funestusa An. mascarensisa An. squamosus An. coustania An. unknown Total Other  
mosquitoes

Agricultural 169 61 15 0 2 25 272 610

Village 83 21 2 5 4 9 124 472

Forest 3 1 0 0 3 11 18 974

Table 3  Summary of Anopheles species captured, including known malaria vectors, in each of the six village-associated 
sites sampled in RNP, Madagacar

a  Known malaria vectors

Site Anopheles 
gambiae s.l.a

An. funestusa An. mascarensisa An. squamosus An. coustania An. unknown Total Other  
mosquitoes

Ambatolahy 9 0 1 3 6 0 19 85

Ambodiaviavy 45 25 1 2 0 0 73 164

Bevohazo 27 9 2 0 0 2 40 730

Manokoakora 106 24 9 0 0 34 173 554

Menarano 68 22 3 0 3 6 102 190

Vohiparara 0 3 1 0 0 3 7 334
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(p < 0.0001) to capture Anopheles mosquitoes than those 
traps that were not in close proximity to animal pens.

All 414 female Anopheles mosquitoes were individually 
screened for the circumsporozoite protein using the well-
established csELISA protocol [17, 18]. Three mosquitoes 
(0.7 % of total captured), were found positive for P. vivax-
210 circumsporozoite proteins. These mosquitoes were 
found in An. gambiae s.l. and An. funestus and trapped 
in three different locations: An. funestus in Manokoakora 
agricultural site, An. gambiae s.l. in Manokoakora village 
site, and An. gambie s.l. in Bevohazo village site.

Out of a total of 305 study participants, 272 individu-
als consented to malaria RDTs. 3.7  % were positive for 
P. falciparum (Table  5). No individuals tested positive 
for PAN Plasmodium (P. vivax, P. ovale, P. malariae). All 
positive individuals were from different households, and 
P. falciparum infection was detected in five of the six vil-
lages surveyed (Table  6). None of the positive individu-
als were febrile during the health assessments; however, 
several did report low-grade symptoms (i.e., body aches). 

Seven of the ten positive individuals were females aged: 2, 
2.5, 8, 16, 23, 26, and 35 years. One female was post-par-
tum. The three males that tested positive were 7, 9, and 
21 years of age.

When questioned about ITN ownership, 94.3  % of 
individuals lived in households with ITNs (Table  5). 
When asked how often individuals slept under a bed net 
over the past four weeks (Additional file  2), 70 (23.3 %) 
reported never sleeping under a bed net. Of the individu-
als that never sleep under ITNs, 10 (14.3 %) were children 
under the age of 5, and 18 (25.7 %) were women over the 
age of 18 (Table 5).

Discussion
In forested areas of Madagascar, land-use plays a criti-
cal role in Anopheles abundance, with highest Anopheles 
abundance in agricultural sites followed by village and 
forested sites. More malaria vectors, An. gambiae s.l. 
(62.1  %, n =  169), were trapped in agricultural sites in 
this study than in any other land-use site. Certain agri-
cultural practices, such as the irrigation of rice fields in 
our agricultural study sites, may increase the number of 

Table 4  Summary and  comparison of  Anopheles and  total mosquitoes trapped in  each village per  night in  six villages 
near Ranomafana National Park, Madagascar

Village # Trap nights Average # Anopheles  
trapped per night (SE)

Average # mosquitoes  
trapped per night (SE)

Average % Anopheles among total 
mosquitoes trapped per night (SE)

Ambatolahy 4 7.8 (0.73) 27.3 (1.42) 28.4 (5.90)

Vohiparara 4 1.8 (0.23) 63.5 (5.02) 2.8 (1.26)

Ambodiaviavy 3 24.3 (6.21) 63.0 (9.04) 38.6 (13.20)

Menarano 4 25.5 (4.35) 47.5 (5.96) 53.7 (12.45)

Manokoakora 3 57.7 (5.39) 193.3 (12.63) 29.8 (9.00)

Bevohazo 3 13.3 (2.20) 253.3 (23.66) 5.3 (4.84)
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Fig. 2  Average number of mosquitoes and Anopheles trapped each 
night by land-use type, with standard error bars, in six villages near 
Ranomafana National Park, Madagascar
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night by land-use type, with standard error bars, in six villages near 
Ranomafana National Park, Madagascar
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breeding of mosquitoes [9], which can lead to an increase 
in malaria prevalence [3]. It is possible that when con-
verting land from forests into rice cultivation sites Mada-
gascar, the irrigation structure using rainfall to flood rice 
fields creates pools of stagnant water with small amounts 
of surface vegetation, creating ideal breeding habitats for 
Anopheles [20, 21].

Mosquito traps set within <3 m of livestock pens were 
significantly more likely (p  <  0.0001) to capture Anoph-
eles mosquitoes than those far from livestock pens. In a 
previous study in Madagascar, An. gambiae and An. ara-
biensis showed an innate preference for calf odour over 
human odour [22], perhaps providing an explanation for 
our capture numbers near livestock pens. Another study 
suggested that An. arabiensis exhibits a high degree of 
zoophily in Madagascar [23], which may also explain 
these livestock associated capture numbers. In this 
study, however, An. gambiae s.l. and An. arabiensis were 
not differentiated, so it cannot be assumed that Anoph-
eles caught near livestock pens were indeed An. arabien-
sis. Even if zoophilic, An. arabiensis, a well-recognized 
malaria vector, is a threat to human health, and may pose 
risk to humans tending to livestock.

The large number of cattle in Madagascar may also 
increase the number of dead end hosts for human 
malaria, and therefore actually decrease overall malaria 
transmission in the area. This concept is known as zoo-
prophylaxis [24]. Further research investigating the role 
of cattle and human Plasmodium spp. infection in this 
region will elucidate whether or not cattle ownership has 
potential use as a form of malaria vector control, or if it 
increases human exposure to malaria vectors. Whether 
protecting human inhabitants through zooprophylaxis, 
or attracting malaria mosquitoes to human inhabitants 
as found in [25], livestock placement and husbandry 
practices should be incorporated into malaria preven-
tion and intervention strategies. Targeted insecticide 
control for humans as well as livestock may provide addi-
tional protection against malaria carrying mosquitoes in 
Madagascar.

In this study, known malaria vectors (An. gambiae s.l., 
An. funestus, An. mascariensis, and An. coustani) were 
found to make up 90.1 % of Anopheles spp. captured in 
agricultural land-use sites during the months of June–
August, suggesting that these sites may be high-risk areas 

Table 5  Summary of  human population demograph-
ics, nurse assessments, and  ITN ownership and  usage 
as recorded in this study

a  Not all individuals were willing to participate in all components of survey and 
health assessments, therefore total n is listed
b  BMI reported for the ≥18 year-old population who completed the physical 
assessment
c  Stunting and underweight reported for <5 year-old population

Characteristic N (%) Total Na

Demographics

 Sex 305

 Female 174 (57.0)

 Male 131 (43.0)

 Age (years) 303

 <5 50 (16.5)

 5 to 17 113 (37.3)

 ≥18 142 (46.9)

Nurse assesments

 BMIb (<18.5) 13 (11.8) 110

 Stuntingc (< −2 SD) 10 (20.0) 50

 Underweight2 (< −3 SD) 17 (34.0) 50

 Febrile (temp > 100.4° F) 3 (1.1) 265

 Positive malaria RDT 10 (3.7) 272

Insecticide Treated Net (ITN) ownership

 Live in house with ITN 315 (94.3) 334

 If yes, number of ITNs

  1 36 (11.4) 315

  2 115 (36.5) 315

  3 125 (39.7) 315

  4 31 (9.8) 315

  5 0 (0.0) 315

  6 8 (2.5) 315

ITN Usage

 Never 70 (23.3) 301

  Children <5 10 (3.3)

  Females ≥18 18 (6.0)

 Not every night 15 (5.0) 301

  Children <5 2 (0.07)

  Females ≥18 4 (1.3)

 Every night 216 (71.8) 301

  Children <5 37 (1.2)

  Females ≥18 59 (2.0)

Table 6  Summary of  human cases of  P. falciparum found 
in  six villages sampled near  Ranomafana National Park, 
Madagascar

Village Positive  
P. falciparum (%)

Household 
members (n)

Malaria RDTs 
administered (%)

Ambatolahy 2.2 (n = 1) 56 80.3 (n = 45)

Ambodiaviavy 2.1 (n = 1) 53 71.7 (n = 38)

Bevohazo 5.1 (n = 3) 58 94.8 (n = 55)

Manokoakora 2.1 (n = 1) 52 88.5 (n = 46)

Menarano 8.5 (n = 4) 68 69.1 (n = 47)

Vohiparara 0.0 (n = 0) 47 87.2 (n = 41)
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for malaria. Such geographic data on parasite vectors can 
inform and greatly improve malaria control and elimina-
tion programmes [26].

When screening captured mosquitoes for malaria 
parasites, 0.7  % were positive for malaria species P. 
vivax-210. One of the villages sampled, Manokoakora, 
differed from the others in that gold extraction has 
become common practice in this village and its sur-
rounding agricultural fields. The method of extraction 
involves digging deep holes that often remain full of 
still standing water, and vegetation from rice cultiva-
tion, which may create an optimal Anopheles habitat. 
This land-use modification may explain why 41.8  % 
(n = 173) of all Anopheles in this study were caught in 
Manokoakora (Table  3), and two of the three mosqui-
toes that tested positive for P. vivax-210, were captured 
in and around this village. While this is a low number, 
and may be due to a larger Anopheles sample size in this 
village, with the expansion of gold-mining practices 
in RNP, further research examining the significance of 
gold mining on mosquito-borne diseases in the region 
is necessary.

Unlike the P. vivax-210 detected in mosquitoes, when 
using RDTs, only P. falciparum was detected in associ-
ated human populations. Historically, it was thought 
that erythrocyte Duffy blood group negative individuals, 
mainly of African ancestry, are resistant to P. vivax infec-
tion [27], due to the Duffy protein acting as an entrance 
point into erythrocytes. Previous studies have identified 
Duffy negative individuals in Madagascar infected with 
P. vivax, suggesting that in some regions of Madagas-
car, P. vivax is no longer dependent on the Duffy anti-
gen for establishing human infection and disease [27]. 
Future work in the RNP region has the potential to reveal 
whether or not the populations in this region are Duffy 
negative and hence “resistant” to P. vivax infection, per-
haps explaining why P. vivax infection was identified in 
mosquito vectors in this study, but not in the human pop-
ulations. Other potential explanations for this discrepancy 
between human and mosquito infections could be due to 
false positives in mosquitoes [28], missed P. vivax human 
infections due to low sensitivity (possibly due to low 
detection level limits) of the RDT used, or that the num-
ber of people tested was so low that P. vivax could not be 
detected.

Most individuals surveyed in this study reported own-
ership and usage of ITNs (Table  5), which likely plays 
an important role in the protection of humans in the 
region from malaria; however, not all individuals in target 
demographics (children under the age of five and women 
over the age of 18) reported sleeping under ITNs regu-
larly (Table 5). Since malaria has the highest fatality rates 
in women and children under the age of five, it is crucial 

to emphasize the importance of regular ITN usage in the 
region, especially for these individuals.

Conclusions
By combining human health assessments and surveys 
with environmental vector sampling in varying land-use 
sites in rural Madagascar, this study revealed that malaria 
vectors are abundant in agricultural land-use sites, in 
particular in proximity to animal pens, and that humans 
in the region test positive for P. falciparum in the win-
ter months (Jun–Aug), while P. vivax 210 is detected in 
mosquitoes, and 23.3 % of individuals report never using 
ITNs. A deeper understanding of the locations where 
malaria vectors are prevalent, such as the agricultural 
land-use sites or near livestock pens presented in this 
study, is necessary to improve targeted malaria preven-
tion strategies in the region.
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