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Abstract: Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of kidney cancer
and up to 40% of patients submitted to surgery with a curative intent will relapse. Thus, the aim of
this study was to analyze the applicability of an Extracellular vesicle (EV) derived miRNA profile as
potential prognosis biomarkers in ccRCC patients. We analyzed a nine-miRNA profile in plasma
EVs from 32 ccRCC patients with localized disease (before and after surgery) and in 37 patients
with metastatic disease. We observed that the levels of EV-derived hsa-miR-25-3p, hsa-miR-126-5p,
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hsa-miR-200c-3p, and hsa-miR-301a-3p decreased after surgery, whereas hsa-miR-1293 EV-levels
increased. Furthermore, metastatic patients presented higher levels of hsa-miR-301a-3p and lower
levels of hsa-miR-1293 when compared to patients with localized disease after surgery. Functional
enrichment analysis of the targets of the four miRNAs that decreased after surgery resulted in
an enrichment of terms related to cell cycle, proliferation, and metabolism, suggesting that EV-miRNA
enrichment in the presence of the tumor could represent an epigenetic mechanism to sustain tumor
development. Taken together, these results suggest that EVs content varies depending on the presence
or absence of the disease and that an increase of EV-derived hsa-miR-301a-3p, and decrease of
EV-derived hsa-miR-1293, may be potential biomarkers of metastatic ccRCC.

Keywords: clear cell renal cell carcinoma; extracellular vesicles; microRNAs; biomarkers

1. Introduction

Renal cell carcinoma (RCC) is the most common solid cancer of the adult kidney and one of
the most lethal urologic malignancies [1–3]. The most common histological subtype is clear cell RCC
(ccRCC), which arises from the proximal tubular epithelial cells of the nephron and accounts for
approximately 80% of all RCC cases [4]. CcRCC development is associated with two key cancer
hallmarks: induction of angiogenesis and metabolic reprogramming, with several studies implying
that ccRCC can be considered a metabolic disease [5–8]. In fact, the majority of known ccRCC related
genes interact with cell metabolism pathways and are involved in energy, nutrient, iron and oxygen
sensing [9]. One of the most well characterized pathways involved in the development of ccRCC,
and the most studied as well, is the VHL/HIF pathway [10,11]. The loss or inactivation of pVHL
function in ccRCC leads to a state of “pseudohypoxia” where stabilized HIF-1α and HIF-2α induce
the transcription of hypoxia responsive genes, resulting in alterations such as increased glucose
and ribose metabolism, pH deregulation, cell proliferation, and angiogenesis, giving ccRCC a high
metastatic potential [1,9,12–14].

Actually one third of ccRCC patients present metastatic disease at the time of diagnosis, and up
to 40% of patients submitted to surgery with a curative intent, will relapse within a five-year period [15].
The therapeutic options for ccRCC patients are limited since the hypoxic microenvironment makes
these tumors chemo- and radio- resistant, leaving targeted therapies and immunotherapies as the only
options available. However, patients submitted to these therapies tend to develop resistance to
therapy within a short period of time [16,17]. Despite the fact that metastatic ccRCC remains incurable,
the prognosis for recurrent ccRCC is variable and the detection of early relapse could have an impact on
patients’ prognosis [18]. Thus, there is an urgent need for the definition of reliable biomarkers that can
help stratify patients according to their metastatic risk. In the recent years, it became clear that one of
the key players of tumor microenvironment modulation are the extracellular vesicles (EVs). EVs consist
of a mixed population of microvesicles with different sizes, shed by cells, that enable cell-to-cell
communication through the transport of active biomolecules from one cell to another [19,20]. Cancers
have been found to highjack EV-mediated communication to facilitate several features of the multi-step
metastatic process, including cell proliferation, immune suppression, epithelial-to-mesenchymal
transition, migration, invasion, angiogenesis, and metastasis [5,21,22]. The release of EVs can be
induced by several factors including, hypoxia, pH alterations, injury, platelet activation, irradiation
and cellular stress, some of them involved in ccRCC progression [23]. One of the most studied classes
of biomolecules carried by EVs are the microRNAs (miRNAs), which consist of small non-coding RNAs
that are able to regulate gene expression at a post-transcriptional level, resulting in the attenuated
translation of target mRNAs [24,25]. Thousands of protein-coding genes are regulated by miRNAs,
and miRNAs are master regulators of diverse biological systems and have an impact in the body
physiological responses [26,27]. Several EV-derived miRNAs have been studied and proposed as
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potential biomarkers in ccRCC [28–38]. However, due to the novelty of the field, most of the studies
have been performed in cell lines and only a few used samples from ccRCC patients.

Therefore, the aim of this study is to analyse the impact of EV-derived miRNA profiles of 9 miRNAs
(hsa-miR-25-3p, hsa-miR126-5p, hsa-miR-200c-3p, hsa-miR-210-3p, hsa-miR-301a-3p, hsa-miR-519d-3p,
has-miR-1233-5p, hsa-miR-1246, and hsa-miR-1293) related to hypoxia and metabolism regulation in
plasma EVs from ccRCC patients with localized disease and also in patients with metastatic disease.

2. Results

2.1. EVs Characterization

The EVs were characterized according to size, shape and purity. The NTA analysis indicated that
the vast majority of isolated EVs presented a size range between 50 and 200 nm, which is consistent with
the size of exosomes and small microvesicles (Figure 1A). A transmission electron microscopy (TEM)
image (Figure 1B) shows the variability of sizes and morphology present in EVs from purified PFP.
We also utilized EVs flow cytometry to confirm the purity of our EV isolates [39]. In all cases, more than
80% of particles present in our isolates corresponded to CFSE+ vesicular structures (Figure 1C).
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Figure 1. (A) Nanoparticle tracking analysis (NTA) of EVs derived from plasma of ccRCC patients.
The red error bars indicate ± 1 standard error of the mean. (B) Transmission electron microscopy
(TEM) of EVs from purified platelet-free plasma (PFP). The TEM image was acquired in the Histology
and Electron Microscopy platform from I3S Porto using a Transmission Electron Microscope Jeol
JEM 1400. (C) Proportion of fluorescent EVs as observed by flow cytometry from a sample EV isolate
derived from a patient, either previously stained with CFSE (left panel) or without previous staining
(right panel).

2.2. EV-Derived miRNA Levels in ccRCC Patients’ Plasma Samples

Two patients from Group A relapsed during the follow-up and were removed from the analysis.
The remaining 30 patients from group A are currently alive with no evidence of disease. In addition
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to that, two EV-derived miRNAs were excluded from the analysis. Hsa-miR-519d-3p was only
detected in a small number of samples and hsa-1233-5p was not detected at all, which did not allow
a statistical analysis.

The expression levels of the remaining eight miRNAs are represented in Figure 2. Focusing
on the patients from Group A, we observed that the levels of EV-derived hsa-miR-25-3p (p = 0.003),
hsa-miR-126-5p (p < 0.001), hsa-miR-200c-3p (p < 0.001) and hsa-miR-301a-3p (p = 0.006) decreased
after surgery (Figure 2A–C,E). Hsa-miR-210-3p also decreased after tumor removal but the decrease
was lower and only statistically significant when the localized disease samples were compared with
the follow-up samples (p = 0.010) (Figure 2D). On the other hand, we observed that hsa-miR-1293
(p = 0.002) EV-levels increased after tumor removal (Figure 2G). Hsa-miR-1246 EV-levels also increased
after tumor removal, but at a slower rate since the levels were only statistical significantly higher when
we compared the localized and follow-up samples (p = 0.044) (Figure 2F).

When we compare the patients from Group A with the patients from Group B, we observe two
scenarios. First, we see that some miRNAs have differences in their expression levels when comparing
the samples from localized disease (Group A) with the metastatic disease (Group B). This is the case
for hsa-miR-126-5p and hsa-miR-200c-3p that are downregulated in the metastatic patients (p < 0.001
and p < 0.001, respectively), (Figure 2B,C). On the other hand, we observed differences in miRNA
levels when we compare the follow-up samples with the metastatic samples, with the metastatic
samples presenting higher levels of hsa-miR-301a-3p (p = 0.026) and lower levels of miR-1293 (p = 0.004)
(Figure 2E,G). In addition to that, hsa-miR-210-3p presented a tendency for being upregulated (p = 0.053)
and hsa-miR-1246 presented a tendency for being downregulated (p = 0.053), both in the metastatic
samples, when compared with the follow-up group (Figure 2D,F).

Regarding the other clinical pathological characteristics, we observed that patients with localized
disease with tumors larger than 7 cm presented higher levels of hsa-miR-126-5p (p = 0.013)
(Table S1). Additionally, patients who smoke presented higher levels of hsa-miR-1293 (p = 0.006)
and hsa-miR-210-3p (p = 0.034) when compared to non-smokers and ex-smokers, respectively.
We did not observe any statistical differences between the EV-derived miRNAs and hypertension
and diabetes mellitus.

Figure 2. Cont.
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Figure 2. EV-derived miRNA expression (-∆Cq) in pre-surgery, post-surgery, and follow-up samples (Group
A) and metastatic disease samples (Group B) of ccRCC patients. (A) hsa-miR-25-3p plasmatic EV-expression;
(B) hsa-miR-126-5p plasmatic EV-expression; (C) hsa-miR-200c-3p plasmatic EV-expression; (D) hsa-miR-210-3p
plasmatic EV-expression; (E) hsa-miR-301a-3p plasmatic EV-expression; (F) hsa-miR-1246 plasmatic EV-expression;
(G) hsa-miR-1293 plasmatic EV-expression; * p < 0.05, ** p < 0.001.

2.3. EV-Derived miRNAs Impact on Overall Survival of Metastatic ccRCC Patients

Since the patients from group A were alive with no evidence of disease on their last observation,
we carried out the survival analysis on the patients from group B (Figure 3). The patients were divided
in tertiles according the EV-derived miRNA levels using the –∆Cq values of each miRNA (high,
intermediate and low levels). Regarding the 8 EV-derived miRNAs analyzed, only the hsa-miR-200c-3p
presented statistical significant differences. Patients with a high or low expression level had a lower
overall survival compared to patients with intermediate levels of hsa-miR-200c-3p (log rank Mantel Cox
test, p = 0.025) (Figure 3C). In addition to that, patients with lower levels of has-miR-25-3p presented
a tendency for a lower overall survival (log rank Mantel Cox test, p = 0.054) (Figure 3A).

2.4. Hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, hsa-miR-301a-3p Overlaping Target Genes

Hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, and hsa-miR-301a-3p significantly decreased
after tumor removal, suggesting that their expression may be related to the presence of the tumor.
As such, we used miRTarBase (version 8.0), the largest known online database of validated
miRNA:mRNA target interactions, to establish a network of the target mRNAs of this miRNA
profile and further evaluate its impact on ccRCC [40]. According to miRTarBase there are a total
of 1381 validated target genes for these four miRNAs, but we only focused on the the 135 whose
miRNA:mRNA interaction was validated according to strong validation methods (such as luciferase
reporter assay, western blot and qPCR) (Table S2). From the 135 validated target genes, PTEN, VEGFA,
TIMP2, and BCL2L11 were common to more than one of the miRNAs (Figure 3B). PTEN was the most
common target, being regulated by hsa-miR-25-3p, hsa-miR-200c-3p, and hsa-miR-126-5p (Figure 4).
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Figure 3. Overall survival analysis of metastatic ccRCC patients according to EV-derived
miRNAs expression. Comparison of survival curves was made with Log-rank (Mantel-Cox) test.
(A) hsa-miR-25-3p (low levels–12 patients; intermediate levels–11 patients and high levels–12 patients).
(B) hsa-miR-125-5p (low levels–12 patients; intermediate levels–13 patients and high levels–11 patients).
(C) hsa-miR-200-3p (low levels–12 patients; intermediate levels–12 patients and high levels–12 patients).
(D) hsa-miR-210-3p (low levels–11 patients; intermediate levels–13 patients and high levels–12 patients).
(E) hsa-miR-301a-3p (low levels–11 patients; intermediate levels–10 patients and high levels–11 patients).
(F) hsa-miR-1246 (low levels–11 patients; intermediate levels–11 patients and high levels–12 patients).
(G) hsa-miR-1293 (low levels–12 patients; intermediate levels–11 patients and high levels–12 patients).

2.5. Functional Annotation and Pathway Enrichment Analysis of has-miR-25-3p, hsa-miR-126-5p,
hsa-miR-200c-3p and hsa-miR-301a-3p Targets Network

In order to explore the biological impact of the four-miRNA signature in patients with localized
disease, we analyzed their 135 target genes with the STRINGapp from Cytoscape software (v3.7.2).
A total of 134 of the 135 protein coding genes were filtered into a protein-protein interaction (PPI)
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network with 134 nodes and 889 edges that presented significant enrichment (p = 1.0 × 10−16).
For a deeper understanding of the protein interactions we performed a Markov clustering (MCL),
which resulted in the clustering of the proteins into 26 clusters according to their STRING interaction
score (Figure 5, Table S3).
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For the functional enrichment analysis, we focused on the largest cluster, which reduced the initial
network of 134 proteins to 53 proteins. This cluster contained 53 nodes, with PTEN and BCL2L11
among them, and 328 edges and retained the significant PPI enrichment (p = 1.0× 10−16). The functional
enrichment analysis was performed with an FDR threshold of 1%, and the redundant terms were
eliminated using a redundancy cutoff of 0.5, which resulted in a total of 549 functional enriched terms
among the Reactome, KEGG, and GO categories (Tables S4–S8). The top 20 enriched terms for each
category are represented in Figure 6.
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Among the functionally enriched terms in the Reactome and KEGG pathways we can find AKT,
BCL-2, PTEN and p53 signaling. Regarding the GO terms, we can observe that terms related with
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the Biological Processes were mostly about cellular metabolic processes and also regulation of cell
cycle and cell proliferation.

3. Discussion

It is now well established that the formation and maintenance of a cancer niche deeply relies in
the surrounding microenvironment that is composed by different cell types such as endothelial cells,
stem cells, fibroblasts and immune cells [41]. Moreover, EVs play an important role in the complex
network of communication that occurs inside the tumor microenvironment and also between the tumor
microenvironment and the rest of the human body. This is due to the bioactive molecules they
transfer between cells that are able to make a biological impact through the alteration of the recipient
cell phenotype.

In our study, we observed that patients with localized ccRCC presented an alteration of the pattern
of plasmatic EV-derived miRNAs after tumor removal, with a decrease of hsa-miR-25-3p, hsa-miR-126-5p,
hsa-miR-200c-3p, and hsa-miR-301a-3p, and an increase of hsa-miR-1293 approximately four months
after surgery, suggesting that the presence of the tumor has a key role in the EV network that is established
in the patients’ body. In fact, hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, and hsa-miR-301a-3p
have already been reported in EVs, with an impact on cell proliferation, pre-metastatic niche formation,
invasion, and metastization in other tumor models [42–45]. When we looked into the validated target
genes of the four miRNAs that decreased after tumor removal, we observed that PTEN was the most
common target, being regulated by hsa-miR-25-3p, hsa-miR-200c-3p and miR-301a-3p. Since one
miRNA is capable of regulating several targets, and the same mRNA can be regulated by multiple
miRNAs, some authors defend that the repressing capability of a single miRNA is quite modest and not
capable of inducing significant changes on protein expression [46]. However, the fact that PTEN is
repressed by three of the studied miRNAs suggests that this gene might be under a stronger repressing
environment in the patients with localized disease. PTEN is a tumor suppressor gene whose major
function relies on the inhibition of the PI3K/Akt pathway and consequent regulation of pathways related
to cell growth and proliferation [47,48]. This gene is frequently altered in ccRCC and recent data from
The Cancer Genome Atlas (TCGA) showed that PTEN loss of function in ccRCC patients was associated
with a more vigorous cell metabolism and cell growth and also with a worse prognosis in survival
and disease recurrence [49,50]. Moreover, a study performed by Zhang and colleagues demonstrated
that astrocyte-derived EVs transferred PTEN-targeting miRNAs to metastatic cells, with an impact on
mRNA and protein downregulation [51]. This epigenetic silencing of PTEN in metastatic cells leads
to CCL2 secretion and myeloid cell recruitment, which promoted metastatic cell expansion through
reduced apoptosis and enhanced proliferation through PI3K/Akt pathway activation [51].

Our functional annotation analysis on the validated target genes of hsa-miR-25-3p, hsa-miR-126-5p,
hsa-miR-200c-3p and hsa-miR-301a-3p showed that the most enriched terms were related to cell growth,
proliferation and metabolism, with PTEN, AKT, BCL-2 and p53 signalling among the most enriched
terms. Since these EV-derived miRNAs decrease after tumor removal, our hypothesis is that their
EV-enrichment in the presence of the tumor could represent an epigenetic silencing mechanism used by
ccRCC to sustain tumor development and growth through activation of the PI3K/Akt pathway. In fact,
despite the fact that the overall mutation rate of PI3K/Akt pathway in ccRCC is relatively low, the overall
activation of PI3K/Akt in ccRCC is high compared to other cancers, suggesting that the dyregulation
of the PI3K/Akt pathway in ccRCC could be a consequence of epigenetic mechanisms mediated by
EVs [52–54]. However, additional studies are necessary in order to validate this hypothesis.

Regarding the metastatic patients, EV-derived hsa-miR-301a-3p and hsa-miR-1293 were the most
promising miRNAs to differentiate patients in follow-up with no evidence of disease from patients
with metastatic disease. Hsa-mir-301a-3p presented a decreasing expression pattern after tumor
removal and its levels kept decreasing until follow-up. However, the expression levels were
significantly increased in the metastatic group, suggesting that this miRNA could play an important
role in the metastization process and might have the potential to be used as prognostic biomarker.
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To support this hypothesis, a study performed by Wang and colleagues showed that, under
a hypoxic microenvironment, pancreatic cancer cells generate EVs enriched in hsa-miR-301a-3p that
induce M2 macrophages polarization through the PTEN/PI3K/Akt signalling pathway and promote
metastization [43]. In addition to that, Yan and colleagues described an oncogenic role for
hsa-miR-301a-3p in Laryngeal Squamous Cell Carcinoma development through inhibition of Smad4
and participation in the EMT process [55]. Regarding hsa-miR-1293, we observed the opposite effect
since its EV-derived levels started to gradually increase after tumor removal until follow-up, but were
significantly decreased in the metastatic group, suggesting a tumor suppresser role for this miRNA.
In fact, Takagawa reported that hsa-miR-1293 was able to suppress in vivo tumor growth in a xenograft
mouse model through the inhibition of BRD4 and DNA repair genes, and hypothesized that this miRNA
could be a candidate for the development of miRNA-based therapeutics [56]. In addition to that,
TIMP-1 is also a validated target of hsa-miR-1293 and its increased expression is associated with a worse
prognosis in ccRCC patients, which reinforces the tumor suppressor role of hsa-miR-1293. [57,58].

Regarding the impact of the EV-derived miRNA profile in the metastatic patients’ overall survival,
only hsa-miR-200c-3p presented significant, but contradictory, results since both its high and low levels
were associated with a worse survival. Although based on a limited number of cases, our results may
highlight the importance of a balance in EV-derived miRNA abundance and how disruption of that
balance can have an impact on the patients’ prognosis. To the best of our knowledge this is the first
study monitoring the differences of EV-derived miRNAs in several time points during the course of
a one-year follow-up period of ccRCC patients with localized disease. This type of study is useful for
a better understanding of the disease impact on the host EV dynamics and search for potential new
prognosis biomarkers, such as hsa-miR-301a-3p and hsa-miR-1293. However, the small samples size in
our study may limit the ability to distinguish meaningful differences, especially in terms of the survival
analysis in the metastatic group, being essential to the replication of the associations reported in a larger
sample size. In addition to that, the patients included in this study should continue to be monitored in
order to get a deeper understanding of EV-miRNA enrichment during the course of the disease.

4. Materials and Methods

4.1. Ethics Statment

This study was conducted according to the principles of the Helsinki Declaration, having been
approved by the ethics committee of the Portuguese Oncology Institute of Porto (IPO-Porto) (project
reference: 251/015). All individuals signed a written informed consent in order to participate in
the study.

4.2. Study Population

The analysis of the EV-derived miRNA profile was conducted through a hospital-based study
involving a total of 69 ccRCC patients. All individuals were Caucasian from the north of Portugal, with
histopathological diagnosis of ccRCC, and admitted and treated at the IPO-Porto between November
2015 and June 2019. The patients were divided into two groups: 32 patients diagnosed with localized
disease that underwent surgical intervention composed Group A; and Group B was composed of 37
patients with metastatic disease. Clinical characteristics of patients were obtained from their medical
records (Table 1). Blood from Group A patients was collected three times during the study: before
undergoing surgery, approximately 4 months after surgery, and approximately 1 year after surgery,
while from Group B, patients’ blood was collected once. All blood collections were performed during
the morning period and stored at 4 ◦C immediately until sample processing.
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Table 1. Clinical-pathological characteristics of the study population. Group A is constituted by
the patients with localized disease and Group B is constituted by the patients with metastatic disease.

Clinical-Pathological Characteristics
Group

A (N = 32)
Group B
(N = 37)

N % N %

Gender
Male 24 75.0 26 70.3

Female 8 25.0 11 29.7

Age
Average ± SD 61.9 ± 12.4 62.4 ± 9.9

Type of surgery
Partial nephrectomy 18 56.3 0 0.0
Radical nephrectomy 14 43.8 34 91.9

No surgery 0 0 3 8.1

Tumor size
<7 cm 24 75.0 9 24.32
≥7 cm 8 25.0 22 59.46

Undetermined 0 0 6 16.22

T
T1 17 53.1 10 27.03
T2 1 3.1 6 16.22
T3 13 40.6 16 43.24
T4 0 0 3 8.12
Tx 1 3.1 2 5.40

N
N0 0 0 15 40.54

N1–N2 0 0 5 13.51
Nx 0 0 17 45.95

M
M0 27 100 22 59.46
M1 0 0 15 40.54
Mx 5 0 0 0.0

Clinical Stage
I 17 53.1 10 27.03
II 1 3.1 6 16.22
III 13 40.6 16 43.24
IV 0 0 3 8.12

Not available 1 3.1 3 5.40

ISUP classification
1 2 6.3 1 2.70
2 18 56.3 14 37.84
3 11 34.3 8 21.62
4 1 3.1 9 24.32

Not available 0 0 5 13.51

Smoking status
Smoker 6 18.8 3 8.11

Ex-smoker 11 34.4 7 18.92
Non-smoker 14 43.8 27 72,97
Not available 1 3.1 0 0.0

Hypertension
Yes 20 62.5 15 40.54
No 11 34.4 22 59.45

Not available 1 3.1 0 0.0

Diabetes mellitus
DM I 0 0.0 0 0.0
DM II 9 28.1 13 35.14

No 22 68.8 23 62.16
Not available 1 3.1 1 2.70
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Tumor classification and staging was established according to the tumor-node-metastasis
(TNM) classification system of the American Joint Committee on Cancer (AJCC) 8th edition (2018)
and the International Society of Urological Pathology (ISUP) Classification of Renal Neoplasia [59].

4.3. EVs Isolation

EVs were isolated from the plasma fraction using the Total Exosome Isolation from Plasma Kit
(InvtrogenTM, Waltham, MA, USA) with additional protocol optimizations. Firstly, 8 mL of peripheral
blood was collected from the patients in EDTA tubes and centrifuged 5 min at 1800× g to obtain
the plasma fraction. The plasma fraction was then centrifuged 3 additional times at increasing speeds
(300× g, 2100× g and 10,000× g) for a period of 15 min each in order to obtain platelet-free-plasma
(PFP). After centrifugation, the supernatant was recovered and filtered through a 0.22 µM filter
(GE Healthcare WhatmanTM, Chicago, IL, USA). After a 10-min treatment with proteinase K, the Total
Exosome Isolation (TEI) reagent was added to 200 µL of PFP and the solution was incubated for 30 min
at 4 ◦C. The precipitated EVs were recovered by 5 min centrifugation at 10,000× g at room temperature.
The pellet containing the pre-enriched EVs was resuspended in filtered PBS (0.22 µm membrane filters)
and stored at −80 ◦C until further analysis.

4.4. EVs NTA Analysis

Samples were analyzed for particle concentration and size distribution by the NS300 Nanoparticle
Tracking Analysis (NTA) system (NanoSight–Malvern Panalytical, Malvern, UK). Samples were
pre-diluted in filtered PBS to achieve a concentration within the range for optimal NTA analysis.
Video acquisitions were performed using a camera level of 16 and a threshold between 5 and 7. Five
to nine videos of 30 s were captured per sample. Analysis of particle concentration per mL and size
distribution was performed with NTA software v3.4.

4.5. Quantification of Vesicular Structures by EVs Flow Cytometry

We employed EVs flow cytometry procedure for quantification of vesicular structures in our EV
isolates, as recently described by Maia and colleagues [39]. Briefly, 2× 109 particles of purified EVs were
mixed with 40 µL of PBS containing Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE – Thermo
Fisher Scientific-LTI C34554, Waltham, MA, USA) in a final concentration of 40 µM and incubated
for 90 min at 37 ◦C. For removal of unbound CFSE, size exclusion chromatography (SEC) columns
(iZON - qEV original columns SP1, Oxford, UK) were used. Samples containing unstained or stained
EVs, and appropriate controls, were diluted up to 500 µL of PBS and processed by qEV following
manufacturer’s instructions. EVs-enriched fractions #7, #8 and #9 were then compiled and retrieved
for analysis with the Flow Cytometer Apogee A60-Micro-Plus (Apogee Flow Systems, London, UK).
The A60-Micro-Plus machine is equipped with three spatially separated lasers (488 nm – Position C,
405 nm – Position A and 638 nm–Position B), 7 fluorescence color detectors (525/50, LWP590, 530/30,
574/26, 590/40, 695/40, 676/36), and 3 light scatter detectors (SALS, MALS and LALS). For internal control
across assays, before each FC experiment, we used two mixes of beads (Apogee–1493 and Apogee-1517).
Before being loaded, samples were diluted in filtered PBS (0.22 µm membrane filters) to bring their
concentration within the operational range of the equipment (maximum of 3000 events/second).
All samples were run at a flow rate of 1.5 µL/minute using a 405 nm LALS threshold of 70. The 405 nm
LALS PMT noise level was monitored and always maintained below 0.35. For the experiments depicted,
the stopping criteria utilized was the number of events acquired, so samples were run until a minimum
of 250,000 events was reached. The acquired data were exported and analyzed with FlowJo software
v10.4.2 (FlowJo LLC, Ashland, OR, USA).

4.6. miRNA Extraction and cDNA Synthesis

MiRNA isolation and purification of cell-derived EVs was done using the Plasma/Serum RNA
Purification Mini Kit from NORGEN (Norgen Biotek Corporation, Therold, ON, Canada) according
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to the manufacturer supplementary protocol for EV RNA purification from EVs already isolated
from precipitation methods. RNA concentration and purity were measured using the NanoDrop
Lite spectrophotometer (Thermo Scientific®, Waltham, MA, USA) and served as template for
cDNA synthesis using a TaqManTM Advanced miRNA cDNA Synthesis Kit (Applied Biosystems®,
Foster City, CA, USA) according to the manufacturer protocol.

4.7. Quantitative Real Time PCR

MiRNA expression levels were analyzed by quantitative real-time PCR. The reactions were
carried out in a StepOnePlusTM qPCR Real-Time PCR machine, in a volume of 10 µL containing
1× TaqManTM Fast Advanced Master mix (Applied Biosystems), with 1X TaqManTM Advanced
miRNA Assays probes (hsa-miR-25-3p 477994_mir; hsa-miR-126-5p 477888_mir; hsa-miR-200c-3p
478351_mir; hsa-miR210-3p 477970_mir; hsa-miR-301a-3p 477815_mir; hsa-miR-519d-3p 478986_mir;
hsa-miR-1233-5p 479549_mir; hsa-miR-1246 477881_mir, and hsa-miR-1293 478692_mir-Applied
Biosystems), and 2.5 µL cDNA. For miRNA expression normalization two housekeeping controls
were used: hsa-let7a-5p (478575_mir-Applied Biosystems) and hsa-miR-16-5p (477860_mir-Applied
Biosystems). These housekeeping miRNAs were chosen based on the fact that they are reported as
typical EVs cargo [60]. The amplification conditions were as follows: holding stage 95 ◦C for 20 s,
followed by 45 cycles of 95 ◦C for 1 s and 60 ◦C for 20 s. Three technical replicates were made for each
sample. Data analysis was done using StepOneTM Sofware v2.2 (Applied Biosystems) with the same
baseline and threshold set for each plate, in order to generate quantification cycle (Cq) values for all
the miRNAs in each sample.

4.8. Statistical Analysis

Statistical analyses were done using IBM SPSS Statistics software for Windows (Version 22.0).
According the mRNAs levels distribution, the Student t´test or Mann–Whitney U test were used
in order to evaluate any statistical differences in the normalized expression of the EV-derived
miRNAs. The quality of the housekeeping miRNAs was tested using the BestKeeper software [61].
Only hsa-let-7a-5p presented a stable behavior among all samples and was used to data normalization.
The Kaplen Meier method and Log Rank test were used to establish the association of the EV-derived
mRNA levels (low, intermediate, and high) to the overall survival.

4.9. Protein-Protein Interaction (PPI) Network and Cluster Analysis

The Search Tool for the Retrieval of Interacting Genes (STRING) database is an online tool
that is used to develop protein-protein interaction (PPI) networks [62]. We used the STRINGapp in
the Cytoscape software (v3.7.2) to construct the protein interaction relationship of the selected target
genes encoding proteins. Those with a combined score of >0.4 were selected as significant. In order
to get a better understanding of the resulting PPI network, we grouped the proteins according to
the strength of their STRING interaction score using the clusterMaker app for Cytoscape to perform
Markov clustering (MCL) [63,64].

4.10. Functional Annotation and Pathway Enrichment Analysis

Gene ontology analysis (GO) is a common useful method for annotating genes and gene products,
allowing the identification of characteristic biological attributes for transcriptome data. The functional
enrichment analysis of GO, Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways was performed with the enrichment anaylsis tool of the STRINGapp, with a False Discovery
Rate (FDR) of p < 0.01 as significance threshold. The enrichment results were filtered in order to
remove redundant terms. The redundancy filtering takes the list of enriched terms sorted by FDR
value and removes the terms that are too similar to any of the previous, better scoring terms that were
not themselves removed. The similarity between two terms is measured by the Jaccard índex of the sets
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of genes annotated by the two terms. A term is added to the filtered list only if it has Jaccard similarity
less than the used specified redundancy cutoff to any other term already in the filtered list.

5. Conclusions

Taken together, these results suggest that EVs content varies depending on the presence or absence
of the disease and an increase of EVs enriched in hsa-miR-301a-3p, and decrease of EVs enriched in
hsa-miR-1293, may be potential biomarkers of metastatic disease in ccRCC patients.
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(PPI) network clusters according to Marckov Clusterring (MCL) analysis, Table S4: Reactome pathway enrichment
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