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Confounders can be identified by one of two main strategies: empirical or theoretical. Although confounder
identification strategies that combine empirical and theoretical strategies have been proposed, the need for
adjustment remains unclear if the empirical and theoretical criteria yield contradictory results due to
random error. We simulated several scenarios to mimic either the presence or the absence of a confounding
effect and tested the accuracy of the exposure-outcome association estimates with and without adjustment.
Various criteria (significance criterion, Change-in-estimate(CIE) criterion with a 10% cutoff and with a
simulated cutoff) were imposed, and a range of sample sizes were trialed. In the presence of a true
confounding effect, unbiased estimates were obtained only by using the CIE criterion with a simulated
cutoff. In the absence of a confounding effect, all criteria performed well regardless of adjustment. When the
confounding factor was affected by both exposure and outcome, all criteria yielded accurate estimates
without adjustment, but the adjusted estimates were biased. To conclude, theoretical confounders should be
adjusted for regardless of the empirical evidence found. The adjustment for factors that do not have a
confounding effect minimally effects. Potential confounders affected by both exposure and outcome should
not be adjusted for.

M
ost evidence-based medical studies of causal relationship between an exposure and an outcome are based
on observational data. However, the true causal effect between exposure and outcome is affected by
confounders1, defined as variables that are associated with both exposure and outcome, but influenced

by neither2. Without proper adjustment for confounders, the crude exposure-outcome association will be a biased
estimate of the true association. Once identified, a confounder may be adjusted for by controlling it via appro-
priate study design techniques, such as restriction and matching of risk factors3, or by analyzing the exposure-
outcome association with appropriate statistical techniques, such as regression4. The issue of confounding is not
only limited to observational studies, as some researchers have even suggested that confounders should be
adjusted for in analysis of randomized controlled trials data5,6. Therefore, confounder identification is an import-
ant issue in medical research.

Confounders can be identified by either empirical or theoretical strategies. Empirical strategies select a con-
founder based on objective criteria in the current working dataset. Examples of this strategy include forward,
backward, and stepwise regression4, and change-in-estimate (CIE) criterion7,8. With forward, backward, and
stepwise regression techniques, confounders are defined as those variables with a regression b on the outcome at a
level of significance below a pre-specified. Popular choices for the pre-specified level of significance include 0.05,
0.10, and 0.201. With the CIE criterion, confounders are defined as those variables for which the percent difference
between the values of the regression b when the variable is adjusted for compare with when it is not adjusted for is
larger than a pre-specified value, usually 10%9. Use of the CIE criterion with a fixed cutoff level has been found
inappropriate10, and some researchers recently proposed using a data-driven, simulated cutoff that yields a 5% of
type I error rate10. Theoretical confounder identification strategies select the confounders from the results of
previous studies or expert knowledge. This strategy is exemplified by directed acyclic graphs (DAGs)11.

In confounder identification, some researchers have relied on empirical criteria only when theoretical evidence
is not available12, but other researchers have identified a need for combining empirical and theoretical criteria9,13.
Simulation studies have shown that the CIE criterion combined with DAGs more accurately estimates exposure-
outcome associations than do DAGs alone14. However, the decision of whether to adjust for remains unclear if the
results from empirical and theoretical criteria are contradictory due to random error. These contradictions can be
further divided into two cases, analogous to type I and type II errors. First, a variable without a confounding effect
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may show empirical confounding evidence in a particular dataset due
to random error. Second, a true confounder may show no empirical
confounding evidence. Most researchers have recommended first
listing all theoretically possible confounders identified by DAGs
and then selecting those that should be adjusted for by empirical
methods13,14. However, these studies have provided no guidelines
for handling confounders that are identified by empirical criteria
but excluded in the DAGs; that is, potential confounders without
theoretical background. How to handle these variables, and, equally,
confounders suggested by DAGs that cannot be empirically vali-
dated, is a natural question. This study aims to answer the following
research question ‘‘Should we adjust for a confounder if empirical
and theoretical criteria yield contradictory results?’’ We simulated
several scenarios in which a potential confounder exerted no con-
founding effect, and other scenarios in which a true confounder
exerted a confounding effect. Simulations were performed for differ-
ent sample sizes and exposure-confounder correlations. By compar-
ing the accuracy of exposure-outcome associations under different
scenarios, we could determine when an adjustment for a potential
confounder was required.

Results
Table 1 summarizes the results of Simulation 1, in which a true
confounding effect was present. In a simulation of size N5200, the
average probability of accurately detecting a confounding effect
under the significance criterion (p , 0.05), significance criterion
(p , 0.20), CIE criterion with a 10% cutoff, and CIE criterion with
a simulated cutoff was 9.77%, 29.32%, 12.32%, and 59.14%, respect-
ively. The probability decreased with increasing sample size under
the CIE criterion with a 10% cutoff and increased with sample size
under the significance criteria and the CIE criterion with a simulated
cutoff. The significance criteria and the CIE criterion with a 10%
cutoff underestimated the true OR, even when correctly identifying
the confounding effect, although the performance of the significance
criterion was better using the cutoff p-value of 0.20 compared with
0.05. Confounder adjustment led to underestimates as large as 16.63%
(N5500, CIE criterion with 10% cutoff, exposure-confounder
association50.2), while no adjustment yielded overestimates as
large as 6.64% (N5200, CIE criterion with 10% cutoff, exposure-
confounder association50.5). Under the significance criteria, how-
ever, these biases reduced as the sample size increased. While the
significance criteria and the CIE criterion with a 10% cutoff per-
formed poorly, the CIE criterion with a simulated cutoff provided
accurate estimates. Under this criterion, the absolute percentage
errors of the adjusted OR were all within 0.98% (the largest absolute
percentage error was attained at N5200, exposure-confounder
association50.1). At a sample size of 1,000, all absolute percentage
errors were within 0.2%. If no confounding effect was identified,
the estimates were positively biased under all criteria. Under the
significance criteria and the CIE criterion with a 10% cutoff, this
bias was reduced by adjusting for the confounder, which reduced
the percentage error by 4.28% at most (N51,000, CIE criterion
with a 10% cutoff, exposure-confounder association50.5). To visu-
alize the simulation results, the percentage error in the simulated
OR for the case of N5200 is shown in Figure 1.

Table 2 shows the results of Simulation 2, in which the potential
confounder exerted no causal effect on the outcome. In a simulation
of size N5200, the average probability of accurately determining a
null confounding effect under the significance criterion (p , 0.05),
significance criterion (p , 0.20), CIE criterion with a 10% cutoff, and
CIE criterion with a simulated cutoff was 95.24%, 80.02%, 92.15%,
and 46.21%, respectively. This probability was independent of sam-
ple size under the significance criteria, decreased with increasing
sample size under the CIE criterion with a 10% cutoff, and increased
with sample size under the CIE criterion with a simulated cutoff.
Under all criteria, if no confounding effect was identified, the

accuracy of the ORs was essentially unaltered by adjustment. The
absolute differences in the percentage errors were all within 0.43%
(the largest absolute difference in the percentage error was attained at
N5200, CIE criterion with 10% cutoff, exposure-confounder asso-
ciation50.5). However, if a confounding effect was identified, con-
founder adjustment increased the percentage error and RMSE. The
percentage error in the simulated OR for the case of N5200 is shown
in Figure 2. Not surprisingly, the accuracy of the estimation
improved with increasing sample size.

Table 3 shows the results of Simulations 3 and 4, in which the
exposure and the potential confounder were uncorrelated. The aver-
age probability of accurately determining a null confounding effect
was high under all four criteria (significance criterion (p , 0.05),
significance criterion (p , 0.20), CIE criterion with a 10% cutoff, and
CIE criterion with a simulated cutoff). Provided that the potential
confounder exerted no causal effect on the outcome (Simulation 3),
these probabilities were independent of sample size; otherwise
(Simulation 4), the probabilities reduced as sample size increased.
As in the the results of Simulation 2, if no confounding effect was
identified, the accuracy of the ORs was highly independent of
imposed criterion and confounder adjustment. The percentage
errors were all within 1.58% (the largest absolute percentage error
was attained at N5200, significance criterion, no confounder-
outcome effect, confounder adjusted). Similarly, if a confounding
effect was identified, no difference was found whether the confoun-
der was adjusted for or not. Again, the accuracy of the estimation
improved with increasing sample size.

Table 4 shows the results of Simulation 5, in which the potential
confounder was affected by both the exposure and the outcome. The
probability of correctly determining a null confounding effect was
low under all criteria. Despite their poor performance in identifying a
non-confounding effect, under all criteria the estimated OR for the
exposure-outcome association were of acceptable accuracy. Even
with a small sample size (N5200), the absolute percentage error
differences in the unadjusted ORs were all within 1.43% (the largest
absolute difference was attained under all criteria, slope of regression
line relating exposure to the potential confounder 5 0.4). However,
all adjusted ORs were positively biased and the biases increased with
the slope of the regression line relating exposure to the potential
confounder. The percent error in the simulated OR for the case of
N5200 is shown in Figure 3. As in Simulations 2 through 4, accuracy
improved with increasing sample size.

Discussion
Five different scenarios, based on various empirical and theoretical
criteria, were simulated to evaluate the accuracy of exposure-
outcome association estimates. Simulations containing a confound-
ing effect and simulations without a confounding effect will be
discussed in turn.

In the presence of a confounding effect, the OR estimates were
biased under the significance criteria and the CIE criterion with a
10% cutoff. In simulations that indicated a confounding effect, the
unadjusted OR was overestimated, but an adjustment for the con-
founding effect yielded underestimates of the true OR in subsequent
logistic regression. These biases increased with increasing exposure-
confounder correlation. The absolute percentage errors were largely
unaffected by confounder adjustment. However, using the CIE cri-
terion with a simulated cutoff yielded unbiased OR estimates. In
simulations that indicated no confounding effect, adjustment only
reduced part of the bias (the adjusted OR was less biased than the
unadjusted OR). This result is expected under the significance cri-
terion, which is subject to multi-collinearity effects. Under this cri-
terion, adjusting for confounding is beneficial. However, we should
note that the exposure-outcome association obtained from the data-
set is biased regardless of confounder adjustment. The RMSEs
yielded by all criteria were similar, and were reduced with increasing
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sample size, as expected. Our simulation results agreed with previous
simulation studies showing that a significance criterion using a p-
value cutoff of 0.20 yielded better outcomes than that using a cutoff of
0.051.

To summarize the results of Simulation 1, theoretical confounders
should be adjusted for regardless of the empirical evidence found in
the dataset. This is consistent with previous simulation results, in
which biases of estimates of exposure-outcome associations with

uncontrolled confounders were reported15,16. Our simulation results
showed that if a well-established confounding effect is not observed
in a dataset, the results should be interpreted with caution, because
the exposure-outcome association obtained from the dataset is likely
to be biased.

In the absence of any confounding effect, all estimates were insens-
itive to the confounder identification criterion, to the adjustment for
potential confounding, and to the exposure-outcome association,

Figure 1 | Percentage error in the simulated odds ratio (OR) with confounder (simulation size 5 10,000, sample size 5 200).
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although the biases increased with increasing exposure-confounder
correlation. However, the RMSE increased when the confounding
effect was identified and adjusted for. Under all criteria, the accuracy
improved with increasing sample size. Under the significance criteria
and the CIE criterion with a 10% cutoff, adjusting for the confound-
ing effect induced marked increases in the RMSE. Under the signifi-
cance criterion, the likelihood of adjustment was independent of
sample size and exposure-confounder correlation, although these

parameters affected the adjustment likelihood under the CIE
criterion.

The results of Simulations 2, 3, and 4, in summary, suggested that
the adjustment for factors that do not exert a confounding effect has a
minimal impact on the accuracy of exposure-outcome estimates.
Furthermore, all confounder identification criteria perform equally
well in terms of percentage error and RMSE, except for the CIE with
a 10% cutoff, which may yield a large percentage error in the

Figure 2 | Percentage error in the simulated odds ratio (OR) without confounding effect (simulation size 5 10,000, sample size 5 200).
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estimation if a confounding effect is mistakenly identified. This min-
imal impact of adjusting for a factor without no confounding effect is
unexpected; according to some researchers, variables that cause nei-
ther the exposure nor the outcome should not be adjusted for9,11,
because empirical strategies for confounder identification cannot
prove the existence of any casual effect between the confounder
and the exposure or the outcome.

If a potential confounder is affected by both exposure and out-
come, it is erroneously identified as a true confounder by all empirical

identification criteria. This is expected because the potential confoun-
der is associated with both exposure and outcome, which renders it
indistinguishable from a true confounder if data-driven identification
strategies are used. Therefore, to summarize the results of Simulation
5, we should not adjust for a potential confounder that is affected by
both exposure and outcome. Instead, we should implement a priori
confounder selection by DAGs9,11.

The simulation results showed us that adjusting for a non-
confounder has a minimally adverse impact in the estimation of

Figure 3 | Percentage error in the simulated odds ratio (OR) without confounding effect (simulation size 5 10,000, sample size 5 200).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6085 | DOI: 10.1038/srep06085 12



the exposure-outcome association. Therefore, we should adjust for a
potential confounder even if there is little or no theoretical back-
ground knowledge of its confounding effect. However, cautions must
be taken in adjusting for variables that are associated with both
exposure and outcome because adjusting for such variables will lead
to a biased estimation of the exposure-outcome association.

Previous simulation studies have shown that while both signifi-
cance criteria and CIE criteria can be implemented for confounder
identification, CIE criteria works better than significance criteria8,17.
Similar conclusions can be drawn in this study. Comparing the per-
centage errors and RMSEs across different simulations shows that
the CIE criterion with a simulated cutoff clearly outperformed the
other three criteria in detecting a confounding effect while yielding
the highest accuracy in estimating the true association between expo-
sure and outcome. The CIE criterion with a fixed cutoff of 10%
showed diminishing power for determining confounding effects as
the sample size increased; at a sample size of 1,000 and an exposure-
confounder correlation of ,0.2, the power dropped to almost zero.
However, the CIE criterion with a simulated cutoff achieved a power
of 80% in most of the scenarios. The cutoff point of 10% appeared to
be too high, as the simulations yielded cutoff points of 0.4% to 2.5%
for an OR of 1.1, and cutoff points of 0.9% to 5.4% for an OR of 1.6.

This study was not without limitations. One such limitation was
that we implemented adjustment by including only a linear term in
the logistic regression. Other forms of confounding, for instance
confounding by a categorical variable, could have different effects
and such effects should be simulated in future studies. Because
adjustment for the confounder with a linear effect model yielded
satisfactory estimates of the true exposure-outcome association in
prior simulation studies18, we did not consider other forms of con-
founding here. A second limitation arises from the fact that evidence-
based medical studies often involve ordinal, continuous, and survival
outcomes. Although only the stimulation results of binary outcomes
were studied here, further simulation studies using other types of
outcomes and different exposure-outcome effects are warranted,
because the confounder adjustment properties differ among regres-
sion models10,19. Additionally, the conclusions in this study were
drawn based on a limited range of parameters, and it remains
unknown what the results will be for parameters out of the range
this study tested. Such simulations could be performed by modifying
the R code provided in Additional file 1. A third limitation is that

several less common empirical confounder identification strategies,
including Akaike information criterion and Bayesian information
criterion1, have not been tested in this simulation study. Again, inter-
ested readers could test these strategies with a slight modification of
the provided R code. A final limitation is that the causal effect of an
outcome, especially a health-related outcome, often involves the
interaction of several causal exposures and is seldom due to a single
exposure20. The scenarios simulated in this study were simplifica-
tions of real situations, and the conclusions should not be generalized
to multiple-exposure effects.

Methods
Confounder adjustment: theory. Here, we denote exposure, outcome and the
possible confounder by X, Y, and Z, respectively. Z is a confounder if it satisfies the
following conditions2: (a) X is associated with Z, (b) Y is associated with Z, and (c) Z is
not caused by both X and Y.

In what follows, we will assume the effects of Z and X on Y are linear and compare
the estimated effect of X on Y using linear regression with and without adjusting for Z.
Note that the relationships between X, Y, and Z can be stated mathematically as
Y5bX,YX 1 bY,ZZ 1 e, where e is the error term. If a linear regression is fitted on Y
with only X as the independent variable, that is, Y5bX,Y’X 1 e’, then the maximum
likelihood estimator (MLE) of bX,Y’, bX,Y’*, equals

bX,Y ’�~Cov X,Yð Þ=Var Xð Þ~Cov(X,bX,Y XzbY,Z Zze)=Var Xð Þ

~½bX,Y Var Xð ÞzbY,Z Cov X,Zð ÞzCov(X,e)�=Var Xð Þ

~bX,Y zbY,Z Cov X,Zð Þ=Var Xð Þ,

assuming that X and e are uncorrelated. Hence, bX,Y’* is an unbiased estimator of bX,Y

if and only if Cov(X, Z)50 or bY,Z50 (making the second term in the right hand side
of the equation zero). Thus, bX,Y’* is an unbiased estimator of bX,Y if and only if either
condition (a) or (b) is not satisfied, or in other words, Z is not a confounder of the
association between X and Y. This result shows that a true confounder should be
adjusted for, otherwise the estimation of exposure-outcome association will be biased.
This result also shows that adjusting for a variable with no association with either the
exposure or the outcome has no effect on the bias of the exposure-outcome asso-
ciation estimate. Of course, the standard error of bX,Y’* may be higher than that of
bX,Y*, which is the MLE of bX,Y, depending on the correlation between X and Z. It is
clear that a potential confounder should not be adjusted for based only on its asso-
ciation with the outcome because if Cov(X,Z) 5 0 the unadjusted MLE bX,Y’* is an
unbiased estimator of bX,Y.

The CIE criterion with a 10% cutoff to determine whether a potential confounder
should be adjusted for can be restated as bY,ZCov(X, Z)/bX,YVar(X) . 10%. If there
exists a confounding effect but the estimate of bY,ZCov(X, Z)/bX,YVar(X) is less than
10%, the bias could be due to the underestimation of bY,Z and/or Cov(X, Z) or to the
overestimation of Var(X), and we cannot determine which. Hence, we cannot
determine which estimator, bX,Y’* or bX,Y*, is a better estimate of bX,Y; therefore we
use simulations to answer this question.

Furthermore, the aforementioned theory only applies to linear regressions.
However, for logistic regression and other types of regression in which that the MLEs
have no closed-form solution, the biased of the MLEs due to an unadjusted con-
founding effect could not be determined using the above proof, therefore we try to
answer the above questions using simulations.

Disagreement of empirical and theoretical confounder adjustment criteria due to
random error. This study aims to investigate whether to adjust for a potential
confounder or not when empirical and theoretical confounder adjustment criteria
disagree due to random error. This is not uncommon, as is illustrated with the
following simulation. A total of 10,000 datasets were simulated with sample sizes of
N5500. In these datasets, a random variable Z, which followed a normal distribution
with a mean of zero and a variance of one, was generated, and Y was generated

according to the equation
Pr (Y~1)

Pr (Y~0)
~ exp (0:1)Z. The p-values of the fitted odds

ratios (OR)s are plotted as a histogram in Figure 4. It can be deduced that the power of
the logistic regression was small. Even under the least stringent significance criterion
of p , 0.20, the association between Z and Y was identified empirically in less than
50% of the simulated datasets. While it is obvious that we should adjust for Z
(according to the significance criterion and/or prior knowledge that Z and Y are
correlated) within those datasets where Z and Y were associated, the decision to adjust
for Z in those datasets where Z and Y were not associated, is yet to be determined.
Previous studies on confounder adjustment did not consider such a problem, and this
study aims to provide guidelines for this situation and for other similar situations
where empirical and theoretical confounder adjustment criteria yield conflicting
results due to random error.

Model simulation. In the following simulations, we assumed no selection bias, that
all errors were random and that there were no systematic errors such as measurement
errors. We simulated the case for logistic regression, and the accuracy of the estimated
OR for the effect of X on Y with and without confounder adjustment was compared in

Figure 4 | Histogram of the p-values of the odds ratios fitted from the
generated data (n510,000).
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five simulations with different correlation patterns between X and Z and between Y
and Z imposing different objective criteria. In the first four simulations, X and Z were
both normally distributed with zero mean and variance of one. X and Z were drawn to
satisfy specific Pearson correlations. In Simulation 1, Y was a binary variable

generated according to the equation
Pr (Y~1)

Pr (Y~0)
~ exp (0:1)Xz exp (0:1)Z. In

Simulation 2, Y was generated according to the equation
Pr (Y~1)

Pr (Y~0)
~ exp (0:1)X. In

both simulations, X and Z were correlated to varying extents (0.1, 0.2, 0.3, 0.4, and
0.5). The data for Simulations 3 and 4 were generated similarly but with no correlation
between X and Z. In Simulation 5, X was normally distributed with a mean of zero and

a variance of one, Y was generated according to
Pr (Y~1)

Pr (Y~0)
~ exp (0:1)X, and Z was

specified by bX 1 Y 1 e, where e is a random variable drawn from a normal
distribution with a mean and variance of zero and one, respectively. Different levels of
b (0.1, 0.2, 0.3, 0.4, and 0.5) were simulated. We noted that Z was a true confounder in
Simulation 1, while Simulations 2, 3 and 4 mimicked a logistic regression in which Z
was not a confounder. Z was affected by both X and Y in Simulation 5. Simulations
were conducted at different sample sizes (200, 500, and 1,000), and 10,000 datasets
were simulated in each scenario.

The OR of the above simulations were set to exp(0.1) , 1.1. Additionally, both the
exposure and the confounder were continuous. An additional set of simulations were
performed with ORs 5 exp(0.5) , 1.6, and both the exposure and the confounder
were dichotomized with positive values and negative values set to 1 and 0, respect-
ively. The conclusions drawn from the two sets of simulations were similar, therefore
only the first set of simulations with ORs 5 exp(0.1) were reported here. The results of
the additional set of simulations were provided in the Supplementary Information.

Estimation of the OR. Under all five scenarios, the 10,000 simulated datasets were
divided into two groups. The first group was composed of those simulated datasets
that showed empirical evidence of a need for confounder adjustment. This evidence
was based on significance (a potential confounder was adjusted for if the p value of its
OR was below 0.05 or 0.20), on the CIE criterion with a 10% cutoff (a potential
confounder was adjusted for if the adjustment changed the OR by more than 10% of
the unadjusted OR), or on the CIE criterion with a simulated cutoff 10 yielding a 5%
level of type I error (that is, a variable without confounding effect has a probability of
5% to be identified as a confounder). Each of these adjustments was performed
separately. Those datasets that showed no empirical evidence of a need for
confounder adjustment belonged to the second group. We reported the percentage of
the simulated datasets showing evidence of confounder adjustment. Two regression
models were fitted to both groups. Both models treated Y as the dependent variable
(denoted by ORx and ORx’ for datasets in the first and second group respectively).
However, one model assumed that X was the sole independent variable, while the
other further adjusted for Z (denoted by ORx,z and ORx,z’ for datasets in the first and
second group, respectively).

Performance assessment. The estimation accuracy was assessed from the percentage

error, given by

Pk
i~1

OR̂i{ exp (0:1)

exp (0:1)
, and the root-mean-square error (RMSE), given

by
Xk

i{1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(OR̂i{ exp (0:1))2

q

k
, where k and OR̂i are the total number of simulations and

the estimated OR for the ith simulation respectively. All simulations were carried out
using R version 3.0.0 and the simulation syntax is given in the Supplementary
Information.
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