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Abstract

Imiquimod, a nucleoside analogue of the imidazoquinoline family, is being used to treat various cutaneous cancers
including squamous cell carcinoma (SCC). Imiquimod activates anti-tumor immunity via Toll-like receptor 7 (TLR7) in
macrophage and other immune cells. Imiquimod can also affect tumor cells directly, regardless of its impact on immune
system. In this study, we demonstrated that imiquimod induced apoptosis of SCC cells (SCC12) and A20 was involved in this
process. When A20 was overexpressed, imiquimod-induced apoptosis was markedly inhibited. Conversely, knockdown of
A20 potentiated imiquimod-induced apoptosis. Interestingly, A20 counteracted activation of c-Jun N-terminal kinase (JNK),
suggesting that A20-regulated JNK activity was possible mechanism underlying imiquimod-induced apoptosis of SCC12
cells. Finally, imiquimod-induced apoptosis of SCC12 cells was taken place in a TLR7-independent manner. Our data provide
new insight into the mechanism underlying imiquimod effect in cutaneous cancer treatment.
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Introduction

Squamous cell carcinoma (SCC) is one of epithelial cancers,

which is originated from the upper layers of skin epidermis. The

incidence of SCC is relatively high, ranking as the second most

frequent type among the non-melanoma skin cancers [1].

Ultraviolet (UV) radiation is the best-known cause of SCC, which

primarily affects DNA thereby inducing mutations of many

susceptible genes including p53 [2]. Intracellular signal regulators

such as epidermal growth factor receptor (EGFR), Src-family

tyrosine kinase Fyn, and nuclear factor k-light-chain-enhancer of
activated B cells (NF-kB) are also implicated in the development of

SCC [3–6]. For example, blockade of NF-kB promotes SCC in

both murine and human skins, highlighting its pivotal role in

maintenance of skin homeostasis [5,6].

Imiquimod (R-837) is an immune response modifier, activating

macrophage and other cells via Toll-like receptor 7 (TLR7).

Imiquimod provokes Th1 cell-mediated immune response via

inducing the secretion of proinflammatory cytokines such as

interferon-a (IFN-a), tumor necrosis factor-a (TNF-a), and

interleukin-12 (IL-12) [7,8]. Currently, imiquimod as a 5% cream

is used to treat several skin diseases, including malignant

melanoma, basal cell carcinoma (BCC), and SCC [9–11]. With

respect to SCC treatment, it has been demonstrated that

imiquimod stimulates tumor destruction by recruiting cutaneous

effector T cells from blood and by inhibiting tonic anti-

inflammatory signals within the tumor [12]. Other evidence

shows that topical imiquimod treatment attenuates the de novo

growth of UV-induced SCC through activation of Th17/Th1 cells

and cytotoxic T lymphocytes [13]. In addition to its immune-

modulatory effect, imiquimod has been shown to activate

keratinocytes by binding to adenosine receptors in keratinocytes,

independently of TLR7 [14]. Thus, we hypothesize that

imiquimod has direct effect on SCC cells, regardless of its impact

on immune system.

As notified, NF-kB is the important key player in the control of

keratinocyte growth and carcinogenesis. The activity of NF-kB is

strictly controlled by sophisticated network of negative and positive

regulators. We found that A20, one important negative regulator

for NF-kB, was highly increased in SCC cells. Since imiquimod

affects NF-kB pathway in a TLR-dependent and/or -independent

manner in other systems, we investigate whether the effect of

imiquimod is related with A20 in SCC cells. Our data provide

evidence that imiquimod induces apoptosis of SCC cells via

regulation of A20.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Board of

Chungnam National University Hospital. All human skin samples

were obtained under the written informed consent of donors.

Reagents and Antibodies
Imiquimod was purchased from Santa Cruz Biotechnologies

(Santa Cruz, CA). The following primary antibodies were used in
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this study: A20 (Calbiochem, La Jolla, CA), PARP (BD

Biosciences, San Jose, CA), caspase-3, ERK, phospho-ERK,

JNK, phospho-JNK, p38 MAPK, phospho-p38 MAPK (Cell

Signaling Technology, Beverly, MA), TLR7 (Enzo Life Science,

Farmingdale, NY), GFP (Santa Cruz Biotechnologies), actin

(Sigma-Aldrich, St. Louis, MO).

Immunohistochemistry
Paraffin sections were dewaxed, rehydrated, then washed three

times with phosphate-buffered saline (PBS). After treatment with

proteinase K (1 mg/ml) for 5 min at 37uC, sections were treated

with H2O2 for 10 min at room temperature, blocked in 0.1%

Tween-20, 1% bovine serum albumin (BSA) in PBS for 30 min,

and followed by reaction with appropriate primary antibodies.

Sections were incubated sequentially with peroxidase-conjugated

secondary antibodies and visualized with Chemmate envision

detection kit (Dako, Carpinteria, CA).

Cell Culture
SV40-transformed human epidermal keratinocytes (SV-HEK),

melanocytes and fibroblasts were cultured according to the

methods previously reported [15]. SCC12 and SCC13 cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) (Life Technol-

ogies Corporation, Grand Island, NY). For viability test, SCC12

cells were seeded in 6 well plate at a density of 26105, treated with

imiquimod for 24 h, then MTT assay was performed.

Western Blotting
Cells were lysed in Proprep solution (Intron, Daejeon, Korea).

Total protein was measured using a BCA Protein Assay Reagent

(Pierce Biotechnology, Rockford, IL). Samples were run on SDS-

polyacrylamide gels, transferred onto nitrocellulose membranes

and incubated with appropriate antibodies. Blots were then

incubated with peroxidase-conjugated secondary antibodies,

visualized by enhanced chemiluminescence (Intron).

Detection of Apoptosis
Apoptosis was detected using FITC annexin V apoptosis

detection kit (BD Biosciences). After treatment of imiquimod,

cells were washed twice with cold PBS and stained with FITC

annexin V and propidium iodide (PI). Cells were then analyzed by

flow cytometry.

Adenovirus Creation
Total RNA was isolated from human embryonic kidney cells

293A and used for cloning of A20 cDNA fragment. The primer set

for A20 is as follows: forward 59-AGATCTATGGCTGAA-

CAAGTCCTTCC-39, and reverse 59-CTCGAGTTAGCCATA-

CATCTGCTTG-39. The amplified full-length cDNA for A20 was

subcloned into the pENT/CMV-GFP vector that had attL sites

for site specific recombination with a Gateway destination vector.

Replication-incompetent adenoviruses were created using the

Virapower adenovirus expression system (Invitrogen). The adeno-

virus was purified with cesium chloride [16].

Knockdown of Gene Expression
For knockdown of A20 expression, we used lentivirus expressing

short hairpin RNA (shRNA). The shRNA plamid DNA stocks

(SHCLNG-NM_006290) were purchased from Sigma-Aldrich (St

Louis, MO), and recombinant lentivirus was produced as

previously reported [17]. The shRNA sequences were as follows:

#1, 59-CCGGCACTGGAAGAAATACACATATCTCGAGA-

TATGTGTATTTCTTCCAGTGTTTTTG-39; #2, 59-

GTACCGGAGTTGGATGAAGCTAACTTACCTCGAGG-

TAAGTTAGCTTCATCCAACTTTTTTTG-39. SCC12 cells

were transduced with lentivirus, then stable cells expressing

shRNA-A20 were selected by puromycin treatment. In parallel,

stable cells expressing shRNA-scrambled (shRNA-Scr) was also

established as a negative control.

For microRNA (miR) specific for TLR7, target sequences were

designed using Invitrogen’s RNAi Designer. The double-stranded

DNA oligonucleotides were synthesized and cloned into the

Figure 1. Expression of A20 in skin cells. (A) Expression of A20 was detected using Western blot analysis. High expression of A20 is observed in
squamous carcinoma cell line SCC12 and SCC13. (B) Expression of A20 was detected in skin tissues by immunohistochemistry. In normal skin, A20
expression is increased in upper layers of epidermis. In SCC, high expression of A20 is detected in cancer lesions. In negative control, primary
antibody was omitted.
doi:10.1371/journal.pone.0095337.g001
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parental vector pcDNA6.2-GW/EmGFP-miR (Invitrogen, Carls-

bad, CA). The expression cassette for miR was moved into pENT/

CMV vector, and then adenovirus was made as previously

reported [18]. The miR sequence was as follows: 59-

TGCTGTGAAATCGATCTCTACCAGATGTTTTGGC-

CACTGACTGACATCTGGTAGATCGATTTCA-39.

Results

Expression of A20 in SCC
NF-kB is a regulator for antiapoptotic and proinflammatory

responses, and recognized as an important player in SCC [19,20].

In a preliminary experiment, we found that large number of NF-

kB target genes was up-regulated in SCC cell line SCC12, as

compared with normal human epidermal keratinocytes (NHEK)

(Figure S1). We focused on one interesting target molecule A20

(also known as TNFAIP3), which is a feedback inhibitor for NF-kB
activation [21,22]. We first compared the A20 expression in

cultured skin cells, and found that protein level for A20 was

markedly increased in SCC cell lines, such as SCC12 and SCC13

cells (Figure 1A). In immunohistochemistry analysis, A20 expres-

sion was not detected in basal layer of normal epidermis, while

increased expression of A20 was observed in upper layers of

normal epidermis. In SCC lesions, high level A20 was detected by

immunohistochemistry (Figure 1B). We observed moderate to high

Figure 2. Imiquimod-induced apoptosis of SCC12 cells. (A) Cells were treated with imiquimod at the indicated concentrations for 24 h. Cell
viability was determined by MTT assay. Data are expressed as percentage of control (0 mg/ml imiquimod). The mean values 6 SD are averages of
triplicate measurements. (B) To determine whether imiquimod induces apoptosis of SCC12 cells, cleavage of PARP, a prominent feature of the
apoptotic execution phase, was checked by Western blot. Anti-actin antibody was used as a loading control. Imiquimod induces cleavage of PARP in
a dose-dependent manner. (C) Cells were treated with imiquimod at the indicated concentrations and/or for the indicated time points. Expression of
A20 was detected by Western blot. Imiquimod induces down-regulation of A20 in a dose- and time-dependent manner. (D) Cells were pretreated
with MG132 then treated with imiquimod (150 mg/ml) for the indicated time points. MG132 blocks imiquimod-driven A20 down-regulation.
doi:10.1371/journal.pone.0095337.g002
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expression of A20 in more than 70% patient samples by tissue

array analysis (Figure S2).

Imiquimod Induces Apoptosis of SCC12 Cells by
Suppressing A20 and Activating JNK
Imiquimod is being successfully used for treatment of SCC. As

notified, imiquimod can affect keratinocytes independently of

immune system, we investigated direct effect of imiquimod on

SCC cells. When SCC12 cells were treated with imiquimod, cell

death was occurred in a dose-dependent manner (Figure 2A).

Western blot showed that imiquimod treatment resulted in

cleavage of poly (ADP-ribose) polymerase (PARP), confirming

the imiquimod-induced apoptosis of SCC12 cells (Figure 2B). In

addition, imiquimod treatment led to cleavage of caspase-9, but

not caspase-8, suggesting that imiquimod induces activation of

intrinsic apoptotic pathway (Figure S3). Interestingly, imiquimod

treatment led to marked down-regulation of A20 in a dose- and

time-dependent manner (Figure 2C). This imiquimod-driven A20

down-regulation, however, was markedly prevented by pretreat-

ment with proteasome inhibitor MG132, indicating that imiqui-

mod induces the degradation of A20 in a proteasome-dependent

fashion (Figure 2D). Together, these data suggest that imiquimod-

induced apoptosis of SCC12 cells may occur via the regulation of

A20.

To address a question whether A20 exerts antiapoptotic role, we

exogenously overexpressed green fluorescent protein-tagged A20

Figure 3. Effect of A20 overexpression on imiquimod-induced apoptosis of SCC12 cells. (A) Cells were transduced with 10 multiplicity of
infection (MOI) of adenovirus expressing GFP-tagged A20 (Ad/GFP-A20) or control adenovirus (Ad/GFP) for 6 h. Cells were replenished with fresh
medium, and incubated for a further 2 d. Then, cells were treated with imiquimod (150 mg/ml) for 16 h. Apoptosis was determined by flow
cytometry. Annexin V high and propidium iodide (PI) dim cells (bold box) represent apoptotic cells. Imiquimod-induced apoptosis is markedly
reduced in GFP-A20 overexpressed group (Ad/GFP-A20) compared to GFP overexpressed control group (Ad/GFP). (B) Cleavages of PARP and caspase-
3 were detected by Western blot. In GFP-A20 overexpressed cells, imiquimod-driven PARP and caspase-3 cleavages are reduced compared to control
group. (C) After adenoviral transduction, cells were treated with imiquimod (150 mg/ml) for the indicated time points, and phosphorylation of MAPKs
was detected by Western blot. Imiquimod induces phosphorylation of JNK, which is inhibited by overexpression of GFP-A20.
doi:10.1371/journal.pone.0095337.g003
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Figure 4. Effect of A20 knockdown on imiquimod-induced apoptosis of SCC12 cells. (A) The stable SCC12 cells expressing shRNA were
established, and phosphorylation of MAPKs was detected by Western blot. In A20-knockdowned cells (shRNA-A20 (#1), shRNA-A20 (#2)),
phosphorylation of JNK is increased compared to control cells (shRNA-Scr). (B) Cells were treated with imiquimod (150 mg/ml) for 16 h and apoptosis
was determined by flow cytometry. Bold boxes represent apoptotic cells. Imiquimod-induced apoptosis is markedly potentiated in A20-
knockdowned cells (shRNA-A20 (#2)) compared to control cells (shRNA-Scr).
doi:10.1371/journal.pone.0095337.g004

Figure 5. Effect of TLR7 knockdown on imiquimod-induced apoptosis of SCC12 cells. (A) Cells were transduced with 10 multiplicity of
infection (MOI) of adenovirus expressing miR-TLR7 or control adenovirus (miR-Scr) for 6 h. Cells were replenished with fresh medium, and incubated
for a further 2 d. Endogenous expression of TLR7 is markedly decreased by miR-TLR7. (B) After adenoviral transduction, cells were treated with
imiquimod (150 mg/ml) for 16 h and apoptosis was determined by flow cytometry. Bold boxes represent apoptotic cells. There is no difference in
apoptotic cell populations between TLR7-knockdowned group (miR-TLR7) and control group (miR-Scr). (C) Cleavages of PARP was detected by
Western blot. TLR7 knockdown does not affect imiquimod-driven PARP cleavage.
doi:10.1371/journal.pone.0095337.g005
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(GFP-A20) using a recombinant adenovirus. Flow cytometry

analysis showed that overexpression of A20 inhibited markedly the

imiquimod-induced apoptosis (Figure 3A). Consistent with this

data, imiquimod-induced cleavage of PARP and caspase-3 was

significantly decreased by overexpression of A20 (Figure 3B).

These results support the idea that down-regulation of A20 by

imiquimod is linked to the apoptosis of SCC12 cells.

Recently, it has been demonstrated that A20 suppresses

activation of c-Jun N-terminal kinase (JNK) by degrading

apoptosis signal-regulated kinase 1 (ASK1), eventually leading to

inhibition of apoptosis [17]. We wondered if similar signaling

event occurs in imiquimod-induced apoptosis of SCC12 cells.

Imiquimod treatment did not affect significantly the phosphory-

lation of extracellular signal-regulated kinase (ERK). On the

contrary, imiquimod clearly activated JNK in terms of phosphor-

ylation, while overexpression of A20 markedly inhibited activation

of JNK by imiquimod (Figure 3C, Figure S5).

To further address the role of A20 in imiquimod-induced

apoptosis of SCC12 cells, we established the stable cell lines in

which A20 expression was knockdowned by shRNA. Western blot

showed that endogenous A20 expression was efficiently knock-

downed by shRNA (Figure 4A). Consistent with previous data,

knockdown of A20 led to increase of JNK phosphorylation. In

addition, knockdown of A20 resulted in slight increase of phospho-

p38 MAPK. Imiquimod treatment of A20 knockdowned-cells

resulted in higher activation of JNK compared to control group

(Figure 4A). As anticipated, knockdown of A20 potentiated the

imiquimod-induced apoptosis (Figure 4B).

Collectively, these data strongly suggest that imiquimod-

induced apoptosis is mediated through the suppression of A20

and activation of JNK. In line with this, pretreatment of SCC12

cells with JNK inhibitor (SP600125) significantly inhibited

imiquimod-induced cell death (Figure S4), potentiating the idea

that JNK activation mediates imiquimod-induced apoptosis in

SCC12 cells.

Imiquimod-induced Apoptosis of SCC12 Cells is
Independent of TLR7
Since imiquimod is a specific TLR7 ligand, we wondered if

imiquimod-induced apoptosis of SCC12 cells was dependent of

TLR7. To this end, we knockdowned TLR7 expression using a

recombinant adenovirus expressing miR-TLR7 (Figure 5A). When

TLR7 was knockdowned, imiquimod-induced apoptosis was not

affected as compared with control group (Figure 5B). Consistent

with this data, western blot showed that there was no difference in

PARP cleavage between control and TLR7 knockdowned group

(Figure 5C). These data suggest that imiquimod-induced apoptosis

is not linked to the activation of TLR7 in SCC12 cells.

Discussion

Imiquimod activates immune system thereby stimulating tumor

destruction and/or preventing cancer growth. Besides its potential

for inducing anti-tumor immunity, imiquimod can also affect

cancer cells directly. In this study, we demonstrated that

imiquimod induced apoptosis of SCC cells and antiapoptotic

regulator A20 was involved in this process.

A20 is a negative regulator in NF-kB signaling pathway. A20

ubiquitinates receptor interacting protein 1 (RIP1), a critical

signaling intermediate protein in tumor necrosis factor (TNF)-

mediated NF-kB activation, resulting in proteasomal degradation

of RIP1 and termination of NF-kB activation [23]. In this study,

we showed that imiquimod treatment led to down-regulation of

A20 in SCC12 cells. Thus it can be easily speculated that the

modulation of NF-kB signaling is a putative underlying mecha-

nism of imiquimod-induced apoptosis of SCC12 cells. NF-kB is

normally present in almost all animal cells as an inactive form,

however it is activated by various stimuli such as UV radiation,

free radicals and microbial antigens [24–26]. It has been reported

that constitutive activation of NF-kB occurs in colorectal,

pancreatic and liver cancers, suggesting NF-kB is a causative

player in progression of diverse malignant neoplasms [27–29]. On

the contrary, NF-kB shows opposite effect in skin epithelial cells.

For example, SCC occurs spontaneously when NF-kB signaling is

selectively inhibited by overexpression of IkB-a super-repressor

form [5]. In other example, overexpression of active p50 and p65

NF-kB subunits in transgenic epithelium produces hypoplasia and

growth inhibition, while functional blockade of NF-kB by

expressing dominant-negative NF-kB inhibitory proteins in

transgenic murine and human epidermis produces hyperplastic

epithelium in vivo [30]. Thus, it is tempting to explain that

activation of NF-kB signaling negatively affects the proliferation of

skin keratinocytes, eventually leading to apoptosis. Since A20 is a

well-established feedback inhibitor for NF-kB activation, it can be

suggest that imiquimod-induced down-regulation of A20 contrib-

utes to NF-kB activation, thereby leading to cell growth inhibition

and apoptosis of SCC12 cells.

In this study, imiquimod induced activation of JNK, which was

effectively inhibited by overexpression of A20. Conversely,

knockdown of A20 resulted in JNK activation. Thus it can be

suggested that JNK activation is a consequence of imiquimod-

driven A20 down-regulation. Interestingly, it has been demon-

strated that A20 degrades ASK1, an upstream kinase for JNK

activation [17]. Thus, there is a possibility that ASK1 can be a link

between imiquimod and JNK activation. In our preliminary

experiment, imiquimod treatment led to significant increase of

phsopho-ASK1, and overexpression of A20 markedly inhibited the

imiquimod-induced phosphorylation of ASK1 (Figure S5), sup-

porting the idea that ASK1 is involved in imiquimod-induced JNK

activation. Since it has been shown that persistent JNK activation

contributes to TNF-induced apoptosis [31], it is likely that A20-

regulation on JNK activity is a key process in imiquimod-induced

apoptosis of SCC12 cells.

It is thought that imiquimod-induced apoptosis of SCC12 cells

is independent of TLR7, a well-established receptor for imiqui-

mod. Interestingly, previous report indicates that imiquimod

induces activation of NF-kB and the downstream production of

proinflammatory cytokines in the absence of TLR7. TLR-

independent effects of imiquimod have been suggested to stem

from its interference with adenosine receptor signaling mediated

by adenylyl cyclase. In addition, imiquimod exerts direct or

indirect adenosine receptor-independent inhibition of adenylyl

cyclase activity [32]. Because that knockdown of TLR7 did not

block imiquimod-driven apoptosis in our study, it is assumption

that other transmembrane receptors, such as adenosine receptor,

are involved in imiquimod-induced apoptosis of SCC12 cells.

Elucidation of TLR-independent mechanism will be an interesting

further study.

In summary, we demonstrate that imiquimod induces apoptosis

of SCC cells, and that A20 is a critical player in this process. Our

results may contribute to a better understanding of action

mechanism of imiquimod on cutaneous cancers, and may help

to develop new target for SCC.

Supporting Information

Figure S1 Expression of NF-kB target genes in squamous cell

carcinoma (SCC) cells. Cellular extracts were prepared and
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expression of NF-kB target genes was validated using Western

blot. As compared to normal human epidermal keratinocytes

(NHEK), SCC12 cells show higher expression of several NF-kB
target genes.

(PDF)

Figure S2 Expression of A20 in squamous cell carcinoma (SCC)

tissues. For simultaneous detection of A20 expression, tissue array

analysis was performed. The moderate to high expression of A20

(P 1,P 11) is observed in about 78% (11/14) patient samples.

(PDF)

Figure S3 Effect of A20 overexpression on imiquimod-induced

apoptosis of SCC12 cells. Cells were transduced with adenovirus

expressing GFP-tagged A20 (Ad/GFP-A20) or control adenovirus

(Ad/GFP), then treated with imiquimod. Caspase activation was

determined by Western blot. Cleavage of caspase-9, but not

caspase-8, was detected, suggesting that imiquimod induces

activation of intrinsic apoptotic pathway.

(PDF)

Figure S4 SCC12 cells were pretreated with JNK inhibitor

SP600125 (20 mM), then treated with imiquimod (150 mg/ml).

After 24 h incubation, cell viability was determined by MTT

assay. Data are expressed as percentage of control. The mean

values 6 SD are averages of triplicate measurements. (*P,0.01).

(PDF)

Figure S5 SCC12 cells were transduced with adenovirus

expressing GFP-tagged A20 (Ad/GFP-A20) or control adenovirus

(Ad/GFP), then treated with imiquimod (150 mg/ml) for the

indicated time points. Phosphorylation of ASK1 and MAPKs was

detected by Western blot. Imiquimod induces phosphorylation of

ASK1 and JNK, which is inhibited by overexpression of GFP-A20.

(PDF)
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