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Abstract: Researchers are frequently faced with the analysis of microarray data of a relatively large number of genes using 
a small number of tissue samples. We examine the application of two statistical methods for clustering such microarray 
expression data: EMMIX-GENE and GeneClust. EMMIX-GENE is a mixture-model based clustering approach, designed 
primarily to cluster tissue samples on the basis of the genes. GeneClust is an implementation of the gene shaving methodol-
ogy, motivated by research to identify distinct sets of genes for which variation in expression could be related to a biologi-
cal property of the tissue samples. We illustrate the use of these two methods in the analysis of Affymetrix oligonucleotide 
arrays of well-known data sets from colon tissue samples with and without tumors, and of tumor tissue samples from patients 
with leukemia. Although the two approaches have been developed from different perspectives, the results demonstrate a 
clear correspondence between gene clusters produced by GeneClust and EMMIX-GENE for the colon tissue data. It is 
demonstrated, for the case of ribosomal proteins and smooth muscle genes in the colon data set, that both methods can 
classify genes into co-regulated families. It is further demonstrated that tissue types (tumor and normal) can be separated 
on the basis of subtle distributed patterns of genes. Application to the leukemia tissue data produces a division of tissues 
corresponding closely to the external classifi cation, acute myeloid meukemia (AML) and acute lymphoblastic leukemia 
(ALL), for both methods. In addition, we also identify genes specifi c for the subgroup of ALL-Tcell samples. Overall, we 
fi nd that the gene shaving method produces gene clusters at great speed; allows variable cluster sizes and can incorporate 
partial or full supervision; and fi nds clusters of genes in which the gene expression varies greatly over the tissue samples 
while maintaining a high level of coherence between the gene expression profi les. The intent of the EMMIX-GENE 
method is to cluster the tissue samples. It performs a fi ltering step that results in a subset of relevant genes, followed by 
gene clustering, and then tissue clustering, and is favorable in its accuracy of ranking the clusters produced.

1. Introduction
With the recent advent in DNA array technologies, researchers have recently focused on developing 
methods to cluster gene microarray data, and the analysis of such data has an important role to play in 
the discovery, validation, and understanding of various classes and subclasses of cancer; see, for example, 
Eisen et al. (1998); Ben-Dor et al. (1999, 2000); Alon et al. (2000); Golub et al. (2000); Hastie et al. 
(2000); Moler et al. (2000); and Xing and Karp (2001), among others. Most clustering procedures seek 
a single global re-ordering of the samples or cell lines for all genes, and although they are effective in 
uncovering gross global structure, they are much less effective when applied to more complex clustering 
patterns; for example, where there are overlapping gene clusters; see McLachlan and Basford (1988); 
and Xu and Wunsch (2005). In this paper, we concentrate on the gene shaving method of Hastie et al. 
(2000) and the mixture-model based approach of McLachlan et al. (2002), called EMMIX-GENE. 
EMMIX-GENE is designed primarily to cluster tissue samples on the basis of the genes. It does have 
an intermediate step on which the genes are clustered into groups on the basis of Euclidean distance in 
order to reduce the dimension of the gene space. The reader is referred to the more recent work of Heard 
et al. (2006); Liu et al. (2006); Ng et al. (2006); and Thalamuthu et al. (2006) , among others, for model-
based approaches designed specifi cally for the clustering of gene profi les. Gene shaving is a simple but 
effective method for identifying subsets of genes with coherent expression patterns and large variation 
across samples or conditions. To illustrate the performance of the two methods in their ability to extract 
true clusters, we examine the well-known data sets of Alon and Golub, while taking into account 
knowledge about the genes and tissue samples provided in such sources as Getz et al. (2000) and 
Ben-Dor et al. (2000).
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2. Description of EMMIX-GENE
For a detailed description of the normal mixture 
model and the extensions to mixtures of t distribu-
tions and mixtures of factor analyzers, see McLachlan 
et al. (2002). Very briefl y, we let α1, …, αN, denote 
N p-dimensional observations. We then attempt to 
use the expectation-maximization (EM) algorithm 
of Dempster et al. (1977) to assign the observations 
to g different normal components.

The EMMIX-GENE program uses a three-part 
process: first, the selection of relevant genes; 
second, the clustering of the selected genes; and 
third, the clustering of the tissues of the basis of 
the selected genes or gene clusters. At each step, 
the EMMIX program of McLachlan et al. (1999) 
is used to fi t mixtures of normal components or t 
components to the data. The analysis is to be 
performed on microarray data collected on N genes 
from p experiments, represented in the form of an 
N × p data matrix A whose ith row contains the 
expression levels for the ith gene in the p tissue 
samples.

2.1. Selection of relevant genes
In the fi rst step, consideration is given to the selec-
tion of relevant genes in terms of the likelihood 
ratio statistic −2 log λ for the fi tting of a single t 
distribution versus a mixture of two t components. 
Due to the possible presence of atypically large 
expression values for a particular tissue in the 
microarray data, it is better to use mixtures of t 
components as opposed to mixtures of normal 
components. When assessing the relevance of a 
gene, we examine –2 log λ where λ is the likeli-
hood ratio statistic for testing g = 1 versus g = 2 
components in the mixture model.

However, the use of t components in place of 
normal components still does not eliminate the 
effect of outliers on inference of the number of 
clusters in the tissue samples. For example, suppose 
that for a given gene there is no genuine clustering 
in the tissues, but that there are a small number of 
gross outliers. Then a signifi cantly large value of 
λ might be obtained, with one component repre-
senting the main body of the data (and providing 
robust estimates of their underlying distribution) 
and the other representing the outliers. That is, 
although the t mixture model may provide robust 
estimates of the underlying distribution, it does not 
provide a robust assessment of the number of 
clusters in the data.

In light of the above, the EMMIX-GENE soft-
ware automatically assesses the relevance of each 
of the N genes by fi tting one- and two-component 
t mixture models to the expression data over the p 
tissues for each gene considered individually. If 
−2 log λ is greater than a specifi ed threshold b1

 −2 log λ > b1 (1)

then the gene is taken to be relevant provided 
that

 smin > b2, (2)

where smin is the minimum size of the two clusters 
implied by the two-component t mixture model 
and b2 is a specifi ed threshold.

If (1) holds but (2) does not for a given gene, 
then the three-component t mixture model is fi tted 
to the tissue samples on this gene, and the value of 
−2 log λ calculated for the test of g = 2 versus 
g = 3; see Figure 1. If (1) holds for this value of 
−2 log λ the gene is selected as being relevant. 
Although the null distribution of −2 log λ for 
g = 2 versus g = 3 is not the same as for g = 1 versus 
g = 2 components, it would appear to be reasonable 
here to use the same threshold (1).

For the data discussed in this paper, we took 
b1 = 8 and b2 = 8. In fi tting the two- and three-
component t mixture models to the tissue samples, 
we need to provide a starting point for the param-
eter estimate, or equivalently, the clustering of the 
data. This can be done by the user specifying a 
number of random starts and a number of k-means-
based starts. In EMMIX-GENE, the default choice 
is four random and four k-means-based starts, 
which is used in the analyses presented later.

This fi rst step is responsible for most of the 
time taken to implement EMMIX-GENE. If a less 
formal method of selection of the genes were to 
be used, then the procedure would be very quick. 
For example, one ad hoc method for selecting the 
genes would be to select those genes whose 
sample interquartile range is greater than some 
specifi ed multiplicative factor of the sample stan-
dard deviation.

2.2. Clustering of genes
Concerning the end problem of clustering the tissue 
samples on the basis of the genes considered 
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simultaneously, we could examine the univariate 
clusterings provided by each of the selected genes 
taken individually. But this would be rather tedious 
when a large number of genes have been selected. 
Thus, with the EMMIX approach, the genes are 
clustered into a user-specifi ed number (N0) of 
clusters by fi tting a mixture of g = N0 normal 
distributions with covariance matrices restricted 
to being equal to a multiple of the p × p identity 
matrix. In particular, if the mixing proportions were 
fi xed at 0.5, then it would be equivalent to using 
k-means and clustering the genes in terms of 
Euclidean distance between them. One could 
attempt to make a more objective choice of the 
number N0 of clusters by using, say, the likelihood 
ratio criterion or the Bayesian information criterion 
(BIC), but regularity conditions do not hold for 
this problem. Moreover, there is an extra complica-
tion here since the genes are not independently 
distributed within a tissue sample. The clusters of 
genes are ranked in terms of the likelihood ratio 
statistic calculated on the basis of the fi tted mean 
of a cluster over the tissues for the test of a single 
versus two t-distributions. If the smaller cluster is 
found to be of size less than b2, the test is run for 
two versus three t-distributions.

2.3. Clustering of tissues
In the last step, the tissues are clustered by fi tting 
mixtures of factor analyzers to the genes where 
the information in all the genes has been 
condensed as above. Factor analysis can be used 
for dimensionality reduction by modeling each 
observation Aj as

 aj = μ + BU j + ej (j = 1, …, n), (3)

where Uj is a q-dimensional (q < p) vector of 
latent or unobservable variables called factors and 
B is a p × q matrix of factor loadings (parameters). 
The Uj are assumed to be independent and identi-
cally (i.i.d.) as N (0, I q), independently of the errors 
ej, which are assumed to be i.i.d. as N(0, D), where 
D is a diagonal matrix,

 D = diag( , ),1
2

p
2σ σ�  

and where Iq denotes the q × q identity matrix. 
Thus, conditional on the uj, the aj are independently 
distributed as N(μ + B uj, D). Unconditionally, the 
aj are i.i.d. according to a normal distribution with 
mean μ and covariance matrix

 ∑ = BBT + D. (4)

With model (3), we avoid having to compute the 
inverses of iterates of the estimated p × p covari-
ance matrix ∑ that may be singular for large p 
relative to n. The reason for this is that at each 
iteration the inversion of the current value of the 
p × p matrix (BBT + D) can be undertaken using 
only inverses of q × q matrices. See McLachlan 
et al. (2002) for more details.

3. Description of the Gene Shaving 
Algorithm
Gene shaving (Hastie et al. 2001) searches for 
clusters of genes showing both high variation 
across the samples, and correlation across the 
genes. Both of these important aspects cannot be 
captured by simple clustering of the genes, or 
thresholding of individual genes based on the 
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Figure 1. Histogram of Gene 474 (T70046) with Mixture of g = 3 Fitted t Components.



Cancer Informatics 2007:528

Do et al

variation over samples (such as a simple t –test or 
rank test). The gene shaving procedure involves 
an iterative algorithm based on the principal 
components or the singular value decomposition 
(SVD) of the data matrix. The algorithm starts with 
the N × p matrix A (the entire microarray gene 
expression dataset) and seeks a gene cluster in the 
direction of maximal variation across the tissue 
samples. The simplest form of this function is a 
normalized linear combination of the genes 
weighted by its largest principal component load-
ings, referred to as the super gene. The genes may 
be sorted according to the principal component 
weights. A fraction α of the genes having lowest 
correlation (essentially the absolute inner product) 
with the super gene are then shaved off (discarded) 
from the original data matrix. The process of calcu-
lating the leading principal component and shaving 
off some genes is iterated on the updated/reduced 
data matrix until only two genes remain, which 
generates a nested sequence of clusters A = B0 ⊃ 
B1 ⊃ B2 ⊃ … ⊃ Bs. The method thus requires a 
quality measure for an optimal cluster. A Gap func-
tion was used by Hastie et al. (2001) to select a 
reasonable cluster size from the sequence of nested 
clusters. For a particular gene block Bs of k rows 
with elements αij, defi ne the percent variance 
explained as

 R B
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where VW, VB and VT denote the within, between, 
and total variances for cluster Bs. The range of R2 
is over the interval [0, 1] where values close to 0 
imply no clustering evidence, while values closer 
to one imply tight clusters of similarly expressing 
genes.

Let NumPerm be the pre-defi ned number of 
permutations, and A*1, ..., A* NumPerm denote the 
corresponding permuted data matrices, obtained 
by permuting the elements within each row of A. 
For each generic A*, we form a nested sequence 
of clusters Α* * * * *= ⊃ ⊃ ⊃ ⊃B B B Bs0 1 2 …  with 
corresponding cluster sizes N = k0, k1, ..., ks = 2 
respectively. Under the null hypothesis of indepen-
dence between genes (rows) and samples (columns) 
Rks

2* denote the averaged estimated value of the 
percent variance explained by clusters of size, 
computed from NumPerm permutations. The Gap 
function for cluster Bs of size ks is defi ned as

 
Gap k R B Rs k S kS S

( ) ( ) *= −2 2 . (5)

The optimal cluster size is the value kopt that maxi-
mizes the Gap statistic over all values of ks ∈{2,3, 
..., N}. Implementation of the Gap statistic criterion 
is enhanced by plotting the percent variance curve  
R Bk ss

2 ( ) for the observed data matrix, versus the 
corresponding averaged curve Rks

2*  for the collection 
n of permuted data matrices, as a function of ks ∈ 
{2, ..., N}. Alternatively, one can also include a plot 
of the computed values of Gap(ks) against ks∈{2, 
..., N}. Since the optimal cluster size usually 
assumes a small integer, these plots are more mean-
ingful if depicted on the log scale.

The next step is to remove the effect of genes in 
the optimal cluster, C1 say, from the original matrix 
A. By computing the average gene or the vector of 
column averages for C1, denoted by C1 , we can 
remove the component that is correlated with this 
average. This is equivalent to regressing each row 
of A on the average gene rowC1 , and replacing the 
former with the regression residuals. Such a process 
was referred to as orthogonalization by Hastie et al. 
(2001), from which a modifi ed data matrix Aortho is 
produced. The next optimal cluster C2 then can be 
obtained by using the same procedure with the data 
matrix Aortho, a substitution of A. This sequence of 
operations is iterated until M gene clusters C1, ..., 
CM are found, which can be displayed graphically 
for visual inspection. To allow for negatively corre-
lated genes to be included in a cluster, the average 
gene is actually a signed mean gene, that is a gene 
row has a negative principal component weight, and 
then the signs of the expression values are fl ipped 
before the average is calculated.

A fully supervised shaving for class discrimina-
tion can be carried out if information of the column 
(sample) classifi cation is available. In particular, 
suppose that the p columns (samples) can be clas-
sifi ed by g groups, labeled by G1, ..., Gg with n1, ..., 
ng columns in each group, defi ne a p × g matrix
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It can be easily proven that the cluster Ck of rows 
of the data matrix A with maximal between-group 
variance (with respect to its mean gene) is also the 
cluster that maximizes the sum of squares of the 
mean of the rows of A† = AQ, a matrix with fewer 
columns than A.

The difference between supervised and unsu-
pervised shaving algorithms is that, in order to 
generate the nested sequence of clusters B0 ⊃ B1 
⊃ B2 ⊃... ⊃ BS, the unsupervised shaving algorithm 
calculates the principal component of A, while the 
supervised shaving algorithm calculates the prin-
cipal component of A†. Note that each column of 
A† is a weighted linear combination of the columns 
of A. In particular, the weight is equal to 

1
ni  if the 

ith column belongs to group Gi and zero if other-
wise. Hence each column of A† is the ‘representa-
tive’ of the group of columns (samples) of A; thus, 
supervised shaving maximizes a weighted combi-
nation of column variance. Another advantage is 
that the computing speed of supervised shaving is 
faster than unsupervised shaving since A† has much 
fewer columns than A. In addition, the method can 
be developed to more general situation. For 
example, the amount of supervision can be modi-
fi ed to get a partially supervised algorithm (see 
Hastie et al. 2001). Specifi cally, a partially super-
vised gene shaving algorithm with prior external 
classifi cation knowledge is based on maximizing 
a weighted combination of the column means vari-
ance and an information measure that is the sum 
of squared differences between the class averages. 
That is, the original matrix A is fi rst transformed 
by the projection P (A) = A* = A*Q* where

 Q* Q*T = (1 −ω) I + ωQ*QT ω ∈ [0,1], (6)

and then gene shaving is performed on the trans-
formed matrix A*. Full supervision is equivalent 
to ω = 1; while partial supervision is indicated by 
values of ω between 0 and 1.

When the external information of the p samples 
is in the form of a continuous variable Y, then one 
can defi ne the quality measure for a cluster mean 
by the strength of its regression on Y. For example, 
consider the case when survival times Y for the 
samples are observed, then the relationship of Y 
and A may be represented by a Cox proportional 
hazards model of Y to the covariate represented by 
the column averages of A via the coeffi cient β, 
where β = 0 indicates no relationship. Let the vector 

of score components evaluated at β = 0 be repre-
sented by a p × 1 vector s with components sj(0) 
for j = 1, ..., p. Under this scenario, the projection 
of A is of the form P(A) = A* = A* Q* where

 Q* Q*T = (1 –ω ) I + ωs * sT ω ∈ [0,1]. (7)

Thus under full supervision, gene shaving is 
equivalent to simply ranking the genes in order of 
the size of the Cox model score test.

In many applications, we note that the Gap 
curve of the gene shaving clusters may be fl at near 
the maximum, or may not be unimodal. This 
implies that there are larger cluster sizes that may 
include additional genes highly correlated with the 
super gene in this specifi c cluster with a Gap 
statistic almost as large as the Maximum Gap 
value. An automatic implementation of choosing 
the cluster size according to the Maximum Gap 
statistic usually would end up with smaller cluster 
sizes than other methods, but with much higher 
coherence in the cluster. We devised a simple 
extension to the original gene shaving algorithm, 
by allowing the user to relax the Maximum Gap 
Statistic criterion, that is, the user can pick the 
cluster size within a certain percentage (say 5% or 
10%) of the Maximum Gap Statistic. Perhaps an 
improved version of cluster size selection should 
be based on both the modulus and the slope of 
change of the Gap statistic with respect to cluster 
size. This requires further investigation and is 
beyond the scope of this paper.

The gene shaving algorithm under general 
supervision with the Gap Statistic relaxation option 
has been implemented (and is continuously 
updated) by our group in the Department of Biosta-
tistics at M. D. Anderson Cancer Center. There are 
two versions:
• An implementation (entirely in S and R) of gene 

shaving (including unsupervised and general 
supervision) and documentation can be down-
loaded from http://lib.stat.cmu.edu/S/

• GeneClust (http://odin.mdacc.tmc.edu/~kim/gene-
clust): is a suite of Splus/R functions and C 
routines with a graphical user interface written 
in JAVA. This allows the user the ability to in-
teract directly with the program, to have visu-
alization power of the data and resulting clus-
ters, and to have control of numerous interme-
diate output results.
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In the next section, we present an illustration of 
how the two software GeneClust and EMMIX-
GENE can be applied to the analysis of two 
widely studied cancer data sets. Note that for the 
sake of simplicity, we use the generic term “gene 
ID” here to refer to “Affymetrix Probe Set ID” 
for data collected from Affymetrix oligonucle-
otide arrays.

4. Colon Data
Alon et al. (1999) used Affymetrix oligonucleotide 
arrays to monitor absolute measurements on 
expressions of over 6,500 human gene expressions 
in 40 tumor and 22 normal colon tissue samples. 
These samples were taken from 40 different 
patients so that 22 patients supplied both a tumor 
and normal tissue sample. Alon et al. (1999) 
focused on the 2,000 genes with highest minimal 
intensity across the samples, and it is these 2,000 
genes that comprise our data set. The microarray 
data matrix A for this set thus has N = 2,000 rows 
and M = 62 columns. In Alon et al. (1999), the 
tissues are not listed consecutively, but here we 
have rearranged the data so that the tumors are 
labeled 1 to 40 and the normals 41 to 62. Also, 
since several of the Affymetrix probe sets have 
the same IDs, we differentiate between these IDs 
by the addition of an underscore and a number. 
We use the generic term “gene” to refer to a “probe 
set” in this case. Thus, for example, the fi rst occur-
rence of gene H43908 in the list of 2000 genes is 
still called H43908, but the two subsequent occur-
rences are labeled H43908_2 and H43908_3.

Getz et al. (2000) reported that there was a 
change in the protocol during the conduct of the 
microarray experiments. The 11 tumor tissue 
samples (labeled 1 to 11 here) and 11 normal tissue 
samples (41 to 51) were taken from the fi rst 11 
patients using a poly detector, while the 29 tumor 
tissue samples (12 to 40) and normal tissue samples 
(52 to 62) were taken from the remaining 29 
patients using total extraction of RNA. In the 
following, we fi nd some evidence of this change 
in protocols in the clusterings we discovered.

Before we considered the clustering of this set, 
we processed the data by taking the (natural) 
logarithm of each expression level in A. We subse-
quently normalized the columns of the microarray 
data to have mean zero and unit standard devia-
tion, then standardized the rows of the resulting 
matrix to have mean zero and unit standard 
deviation.

4.1. EMMIX-GENE approach
The gene selection approach of Section 2.1 was 
applied, with thresholds of b1 = b2 = 8, which 
retained 446 genes from the original 2,000 genes. 
The 446 selected genes were split into twenty 
clusters by fi tting a mixture of twenty normal 
distributions with covariance matrices restricted 
to being equal to a multiple of the 62 × 62 identity 
matrix. These twenty clusters ranged in size from 
8 to 41. In McLachlan et al. (2002) it was noted 
that the second Alon cluster as produced by 
EMMIX-GENE gave a clustering of the tissues C2 
as follows.

 C2 = {1−29, 31−32, 34−35, 37−40, 48, 58, 60}
 ∪{30, 33, 36, 41−47, 49−57, 59, 61−62}.

We note that the error rate of C2 compared with 
the external classifi cation is six, the lowest of any 
of the twenty clusters, and that this cluster of genes 
contains the smooth muscle genes and genes 
suspected of being related to smooth muscle that 
were mentioned in Ben-Dor et al. (2000). (Ben-Dor 
et al. noted that the normal colon biopsy included 
smooth muscle tissue from the colon walls and 
consequently smooth muscle-related genes showed 
high expression levels in the normal tissues 
samples compared to the tumor samples.) However, 
it should be noted that the six tissues which are 
misallocated under this clustering occur among 
those tissues which have been misallocated in other 
analyses of this data set. For example, with the 
support vector machine classifi er formed in Moler 
et al. (2000) using the known classifi cation of the 
tissues, these six tissues along with tumor tissue 
35 were misallocated in the (leave-one-out) cross-
validation of this classifi er. Thus the “true” clas-
sification of these six tissues is in doubt. On 
comparing the clustering C2 and the true classifi ca-
tion, the Rand index was found to be 0.82.

In Figure 2, we show two heat maps extracted 
from fi tting twenty clusters using EMMIX-GENE. 
We also note that all the smooth muscle related 
genes and suspected smooth muscle related genes 
mentioned in Ben-Dor et al. (2000) are placed in 
C2 represented by the upper heat map in Figure 2. 
The lower heat map corresponds essentially to a 
dichotomy between tissues obtained under the 
“old” and “new” protocols, note the similarity of 
columns 1–11 and columns 41–51, representing 
the “old” protocol. On a Pentium-4 with a 3.2 GHz 
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Figure 2. Heat maps of EMMIX-GENE clusters for the colon data.

processor, the gene selection step takes 87 minutes 
for the full set of 2000 genes; the gene clustering 
step takes 85 seconds to cluster the reduced set of 
446 genes into twenty clusters; and the tissue clus-
tering step takes two seconds working with the 
mean of one of the clusters.

4.2. Gene shaving approach
The gene shaving algorithm was then applied to 
the same data set of 2000 genes used by the 
EMMIX-GENE approach. On a Pentium-4 with a 
3.2 GHz processor, the overall gene shaving proce-
dure takes less than 2 minutes to extract 4 clusters 
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and using 20 permutations per cluster. Heat maps 
of the fi rst four gene-shaved clusters using 10% 
shaving and 20 permutations are presented in 
Figure 3. Figure 4 shows the percent-variance 
curves for both the original and randomized data 
as a function of size, and the gap curves used to 
select the specifi c cluster sizes in Figure 3. Visual 
examination of the fi rst four unsupervised gene-
shaved clusters reveals some interesting patterns. 
The fi rst cluster of 50 genes group 25 of the tumors 
to the right, indicating that these specifi c genes are 
highly expressed in tumors. The second cluster of 
40 genes can be interpreted similarly, though the 
pattern of high expression is different from that of 
the fi rst cluster. The third cluster of 41 genes corre-
sponds to the clustering of the “old” versus “new” 
protocols where most samples (tumor and normal) 
from the 11 patients using a poly detector are 
mostly under expressed for these genes and are 
grouped towards the left hand side of the heat map. 
Subsequent clusters display coherent patterns of 
expression with high values of VB / VW but do not 
suggest any clear clusterings that resemble either 
the external classifi cation or the change in protocol 
paradigms identifi ed by Getz (2000).

We also reanalyzed the full Alon data set with 
different levels of supervision ranging from 10% 
to 100% supervision using the external classifi ca-
tion of tumor versus normal. With 50% supervi-
sion, the fi rst four gene clusters are presented in 
Figure 5. The fi rst cluster (samples are not reor-
dered) shows 50 genes (including the two smooth-
muscle genes J02854 and T60155) representing 
two distinct groups of negatively correlated genes 
that correspond well to the external classifi cation. 
The third cluster of 5 genes (sorted by the column 
means of the cluster) group the tissues according 
to the old versus new protocols. When 100% super-
vision is used (Figure 6), the most coherent cluster 
that correspond to the external classification 
consists of 9 genes and classifi es the tumors and 
normals with an error rate of 6 (Rand index of 
0.82), as found by other methods. These nine genes 
also correspond to those with the top TNoM scores 
used by Ben-Dor et al. (2000). TnoM is the 
threshold number of misclassification which 
measures the “relevance” of a gene. Inspection of 
the variance and Gap plots under the full super-
vised scenario indicates that only the fi rst cluster 
captures the full external classifi cation.

We relaxed the Maximum Gap Statistic to pick 
the largest cluster size within 5% of the Maximum 

Gap value. Under 50% supervision, the relaxed 
gene shaving method identifi es the fi rst gene-shave 
cluster with 77 genes, capturing the normal versus 
tumor structure and including all the six smooth 
muscle genes (J02854, T60155, M63391, D31885, 
X74295, X12369) as well as two ribosomal genes 
(T95018, T62947).

We further investigated the performance of 
unsupervised gene shaving when applied to the 
reduced Alon data set of 446 genes using a prelim-
inary filtering step similar to the first step in 
EMMIX-GENE. The fi rst four gene shave clusters 
are presented in Figure 7. It can be seen that cluster 
2 (13 genes) captures the normal versus tumor 
structure quite well, while the change in paradigm 
structure is refl ected in cluster 3 (7 genes). Appli-
cation of the relaxed gene shaving method increases 
cluster 2 to 19 genes and cluster 3 to 17 genes while 
maintaining the discovered structures. Further, 
cluster 2 now includes all the smooth muscle 
genes.

5. Leukemia Data
Golub et al. (1999), studied gene expressions on 
two types of acute leukemia: acute lymphoblastic 
leukemia (ALL) and acute myeloid leukemia 
(AML). Gene expression levels were measured 
using Affymetrix high density oligonucleotide 
arrays containing N = 7,129 genes on M = 72 
tissues, comprising 47 cases of ALL (38 B-cell and 
9 T-cell ALL) and 25 cases of AML. We have rear-
ranged the order of the tissues so that the fi rst 47 
columns of the microarray data matrix A refer to 
the ALL cases and the next 25 to the AML cases.

We followed the processing steps of Dudoit 
et al. (2002) of (i) thresholding: fl oor of 100 and 
ceiling of 16,000; (ii) fi ltering: exclusion of genes 
with max/min ≤ 5 and (max–min) ≤ 500, where 
max and min refer respectively to the maximum 
and minimum expression levels of a particular gene 
across a tissue sample; (iii) the natural logarithm 
of the expression levels was taken (Dudoit et al. 
(2002) used base 10 logarithms). This left us with 
3,731 genes.

5.1. EMMIX-GENE approach
Firstly, the approach of Section 2.1 was used, 
retaining 2,015 genes from the original 3,731 
genes. Using the same approach as was applied 
to the Alon data, we clustered the 2,015 genes 
into forty clusters using the EMMIX-GENE 
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program. The sizes of the forty clusters ranged 
from 14 to 137. We observe that the EMMIX-
GENE approach gives an error rate of nine when 
the fi rst or third cluster from the forty Golub 
clusters was used to cluster tissues using a mixture 
of factor analyzers. The clustering is C1 for the 
first cluster and C3 for the third cluster as 
follows:

C1 = { 1–4, 8–43, 45–47, 49, 52–53, 67, 69}
     ∪ {5–7, 44, 48, 50, 51, 54–66, 68, 70–72}.

C3 = { 1–10, 13, 15–16, 19–22, 24–28, 30, 32–43,
         45–47}
         ∪ { 11–12, 14, 17–18, 23, 29, 31, 44, 48–72 }.
Thus, these clusters correspond closely to the 
external classifi cation of ALL versus AML tumors. 
By examining the heat maps, we can see that this 
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Figure 3. Heat maps of the fi rst four unsupervised gene shaving clusters for the colon data, sorted by the column mean gene.
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pattern is evident for the forty clusters in general. 
We measured the Rand index for both of these 
clusters and they both equal 0.78.

We present the heat maps for the two represen-
tative EMMIX-GENE clusters (extracted from 
forty clusters) in Figure 8. Using the second gene 
cluster as a basis for clustering the 72 tissues 
produces the best results; for example, using a 
mixture q = 6 factor analyzers gives a clustering 
in which only six tissues are misallocated (44, 49, 
52, 53, 67 and 69). If the group mean of this cluster 
is used, we arrive at a clustering in which only fi ve 
tissues are misallocated (44, 49, 52, 53 and 69).

5.2. Gene shaving approach
We fi rst applied unsupervised gene shaving to the 
original 3,731 genes in the Golub data set, using 
10% shaving and 20 permutations to calculate the 
Gap statistics. Four of the top six clusters are 
presented in Figure 9. The variance and Gap plots 
for the fi rst four clusters are depicted in Figure 10. 
Cluster 2 consisting of 30 genes depicts a clear 
grouping of the AML versus ALL tumor types, 
with a Rand Index of 0.78. The genes that are 
specifi cally differentially expressed for the ALL-
Tcells alone are captured by the fi fth cluster (30 
genes) which shows two subgroups of positively 
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Figure 4. (a) Variance plots for the original and randomized data. The percent variance explained by each cluster, both for the original data, 
and for an average over twenty randomized versions. (b) Gap estimates of cluster size. The Gap curve corresponds to the difference between 
the pair of variance curves.
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and negatively correlated genes (Rand Index = 1.0). 
Due to the orthogonality property of gene shaving, 
other clusters may show high coherence amongst 
the genes but are not expected to adhere to the 
structures already captured by clusters 2 and 5.

We also applied the relaxed unsupervised gene 
shaving approach to the reduced Golub data set of 
2,015 genes after the preliminary filtering. The 
resulting top four gene-shave clusters are given in 
Figure 11. With this reduced data set, the structure 
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Figure 5. Heat maps of the fi rst four gene shaving clusters for the colon data with 50% supervision. The samples for clusters 2–4 are 
sorted by the column mean gene.
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Figure 6(a). Analysis of the Alon data set (2,000 genes) under full supervision. Heat maps of the fi rst two gene shaving clusters for the 
colon data with full supervision; the samples are sorted by the column mean gene.

Figure 6 (b). Analysis of the Alon data set (2,000 genes) under full supervision. Top two panels: Variance plots for the original and random-
ized data. The percent variance explained by each cluster, both for the original data, and for an average over twenty randomized versions. 
Bottom two panels: Gap estimates of cluster size. The Gap curve corresponds to the difference between the pair of variance curves.
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of AML versus ALL tumor types is captured imme-
diately in the fi rst gene-shave cluster of 69 coherent 
genes (Rand-index = 0.78). Specifi c differentially 
expressing genes for the ALL-Tcells are captured by 
the third cluster of 27 genes (Rand-Index = 1.0).

We observe that the EMMIX-GENE clusters 
which produced C1 and C3 above each contains 
many genes with very high values of −2 log λ. For 
example, the fi rst EMMIX-GENE cluster contains 

eight genes (out of fi fty-nine) with −2 log λ values 
above the highest value found in the gene shaving 
clusters, 62.870. The third EMMIX-GENE cluster 
also contains eight genes above this value.

There is a clear correspondence between the 
clusters produced by the gene shaving method and 
those produced by EMMIX-GENE. The highest 
value of −2 log λ for the selected genes in the Alon 
data is 238.770. In the gene shaving clusters, the 
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Figure 7. Heat maps of the fi rst four unsupervised gene shaving clusters for the reduced colon data (446 genes), sorted by the column 
mean gene.
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highest value of −2 log λ for any gene is 169.954. 
This is the second gene (out of 446) in descending 
order of −2 log λ. For the Golub data, the highest 
value of −2 log λ is 133.394, and the highest in the 
gene shaving clusters is 62.870. This is the 

sixty-third gene, out of 2,015, in descending order 
of −2 log λ .

If we take each pair of genes in each gene 
cluster, we may calculate the correlation coeffi cient 
between such pairs of genes. For the gene shaving 

Leukaemia Genes Group 1 - Genes vs Tissues

Leukaemia Genes Group 3 - Genes vs Tissues
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clusters, the coeffi cient is between 0.39 and 1.00 
for the top three Golub clusters, and between 
0.8581 and 0.9994 in the case of the third cluster. 
Some negative correlation occurs in all these clus-
ters except for numbers 1, 3 and 7. Considering 
the coeffi cients for the Alon clusters, we fi nd that 
these are always positive and lie between 0.157 
and 0.974. If we omit cluster 7, the coeffi cients lie 
between 0.332 and 0.925.

For the Alon clusters, such correlation does not 
exist in the larger EMMIX-GENE clusters; for 
example, for the 59 genes in the fi rst Golub cluster, 
the correlation coeffi cient ranges from 0.01 to 0.88. 
Taking the top 10 by 2 log λ from this cluster changes 
this range to 0.41 to 0.88, and taking the top fi ve 
gives 0.65 to 0.88. In general, for EMMIX-GENE 
clusters, the top genes in terms of −2 log λ are more 
highly correlated than the remaining genes.
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Figure 9. Heat maps of four of the fi rst six unsupervised gene shaving clusters for the leukemia data, sorted by the column mean gene.
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We observe that four of the gene shaving clusters 
in the case of the Alon colon cancer data are subsets 
of exactly one EMMIX-GENE cluster, and three 
clusters are subsets of exactly one EMMIX-GENE 
cluster in the case of the Golub data. Focussing on 
the full Alon cancer data set, we fi nd that the smooth 
muscle genes (J02854, T60155, M63391, D31885, 
X74295, X12369), each has estimated empirical 
Bayes posterior probability of differential expres-
sion that is greater than 0.95. These genes are found 

within the top 66 ranked genes using EMMIX-
GENE and within the top 78 ranked genes using 
t-test with a false discovery rate (FDR) of 0.001. 
For this data set, Do et al. (2005) conducted a full 
Bayesian mixture modeling approach and estimated 
the posterior probability of differential expression 
for each smooth muscle gene to be greater than 
0.998. In their original analysis, Alon et al. (1999) 
identifi ed a ribosomal gene cluster (29 genes), asso-
ciated with over-expression in tumor tissues relative 
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to normal tissues, only 10 which are declared differ-
entially expressed at a threshold of 0.95 posterior 
probability using EMMIX-GENE, supported by 
similar results in Do et al. (2005) and by standard 
t-test with an FDR correction.

6. Discussion
In general, there is no obvious way to compare the 
clusters obtained between the two methods since 
the basic criterion of cluster choice is quite 
different. Extensive surveys of clustering 
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algorithms including rigorous comparisons have 
been addressed in the literature, see for example, 
Yeung et al. (2001); Dudoit et al. (2002); Gibbons 
and Roth (2002); Costa et al. (2004); Xu (2005). 
Our main aim of this article is to demonstrate the 
usefulness of two recent methodology along with 
the available software in the analysis of two 
publicly available data sets. The top-down gene 
shaving method fi nds clusters of genes in which 
the gene expression varies greatly over the tissue 
samples while simultaneously maintaining a high 
level of coherence between the gene expression 
profi les; the cluster size is rigorously governed by 
the Gap statistic. In contrast, the EMMIX-GENE 
method uses the EMMIX program together with 
factor analyzers to fi rst perform a fi ltering step and 
obtain a subset of relevant genes, and subsequently 
perform clustering of genes followed by clustering 
of tissues; there is no rigorous method for the 
choice of cluster size. Another major difference in 
the two methods is the way in which the clusters 
are constructed. An advantage of the gene shaving 
method is that it is totally nonparametric. In addi-
tion, the gene-shave clusters are orthogonal to each 
other and are of varying sizes, so that once a 
specifi c structure is captured in one cluster, the 
same structure will no longer be captured in subse-
quent clusters. However, overlapping genes are 
allowed between clusters if such genes induce 
different groupings of the columns (tissue samples). 
We observe that the maximum Gap statistic is 
useful in identifying the smallest and most coherent 
cluster, and thus is an excellent tool for identifying 
small clusters of genes. However, picking the 
largest cluster within a 5% or 10% of the Maximum 
Gap statistic is recommended in practice; this is a 
reasonable trade-off between coherence and a 
larger cluster size for exploratory purposes.

Gene shaving is also fl exible in allowing the 
user to apply any amount of supervision required 
during the data analysis process. GeneClust is 
implemented with this fl exibility in mind and 
allows interaction with the user to choose the Gap 
tolerance level as well as the amount of supervi-
sion. The advantage of GeneClust is its great 
speed in producing gene clusters. The advantage 
of the EMMIX-GENE method is in its accuracy 
of the ranking of the clusters produced. The disad-
vantage of this method is that it is comparatively 
quite slow, due to the time taken to implement 
the select-genes step. If a less formal approach 
were used to select genes, for example a t-test or 

a simple rank test, then the time required would 
be greatly reduced.

Both methods are treated as exploratory in this 
article. The parameter choices are chosen by a great 
amount of repetitive runs or by consulting existing 
literature, assessing the stability of the genes in the 
clusters with respect to varying parameter values. 
For example, with gene-shaving, the number of 
permutations needed and the percent shaving have 
been studied by Hastie et al. (2000). While with 
EMMIX-GENE, some simulations we performed 
for the Alon data set of g = 1 versus g = 2 for t 
components suggest that the 90th percentile of the 
null distribution of the likelihood ratio test statistic 
for testing a single t component versus a mixture 
of two t components with unrestricted variances is 
around 9. We have decided to act in a conservative 
manner by taking b1 = 8 to have a greater chance 
of not deleting a gene that may have clustering 
potential. The value b2 = 8 for the minimum cluster 
sizes is somewhat arbitrary. Some threshold is 
needed to avoid spurious clusters obtained by 
fi tting a single t-component to a small number of 
observations that are very close together.
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