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Abstract

Heterochromatic regions of eukaryotic genomes contain multiple functional elements involved in chromosomal dynamics,
as well as multiple housekeeping genes. Cytological and molecular peculiarities of heterochromatic loci complicate genetic
studies based on standard approaches developed using euchromatic genes. Here, we report the development of an RNAi-
based knockdown transgenic construct and red fluorescent reporter transgene for a small gene, Tim17b, which localizes in
constitutive heterochromatin of Drosophila melanogaster third chromosome and encodes a mitochondrial translocase
subunit. We demonstrate that Tim17b protein is required strictly for protein delivery to mitochondrial matrix. Knockdown of
Tim17b completely disrupts functions of the mitochondrial translocase complex. Using fluorescent recovery after
photobleaching assay, we show that Tim17b protein has a very stable localization in the membranes of the mitochondrial
network and that its exchange rate is close to zero when compared with soluble proteins of mitochondrial matrix. These
results confirm that we have developed comprehensive tools to study functions of heterochromatic Tim17b gene.
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Introduction

Despite ongoing intensive research since the nineteenth century,

heterochromatin remains a mysterious domain of the genome. In

1933, Emil Heitz described distinct blocks of chromatin in the

nuclei of Drosophila cells that he termed ‘‘heterochromatin’’ [1].

Over the years, it has become clear that heterochromatin is a

ubiquitous component of all eukaryotic genomes [2], and, in some

cases, heterochromatic DNA encompasses up to 90% of the

genome. Genetic analysis and sequencing of heterochromatin have

shown that the major portion of heterochromatin consists of the

so-called satellite repeats [3,4,5] or tandem arrays that have a

specific short sequence ranging in length from two pairs to several

hundred pairs of nucleotides. Extensive circuits of such satellites

are located in centromeric regions. Moderate repeats are another

abundant class of elements that are also associated with

heterochromatin. This large subclass consists of mobile genetic

elements (ME) [6,7]. Besides satellite arrays and mobile elements,

heterochromatin contains ‘‘infrequent’’ unique genes [8], which

can be amplified and assembled into tandem arrays [9]. However,

the abundance of such repeated DNA and the ‘‘highly diluted’’

amount of unique sequences complicate standard structural and

genetic analysis of heterochromatin [10], making these areas of the

genome ‘‘terra incognita’’ for molecular genetics. Furthermore,

heterochromatin seems to have earned a reputation as ‘‘junk

genomic DNA’’ in the scientific community, thus making the study

of heterochromatin unpopular. Notwithstanding these drawbacks,

a growing body of evidence indicates that heterochromatin plays a

crucial role in a cell’s life cycle [11,12]. Heterochromatin contains

functional elements of chromosomes, centromeres, and telomeres

[13,14,15], as well as ribosomal DNA arrays [16]. Moreover, most

of the unique heterochromatic genes appear to be the housekeep-

ing genes [17,18]. Therefore, the study of heterochromatin,

though technically complicated, is important.

In Drosophila, heterochromatin takes up about 30% of the

genome [3,5] (Figure 1A). These genomic areas have suppressed

meiotic homology-dependent recombination [19,20]. Therefore,

homology-targeted mutagenesis [21] cannot be applied for

heterochromatic genes. The high level of dilution by repeated

DNA and transcriptional silencing within heterochromatin also

complicate standard random insertional mutagenesis [22,23].

Therefore, the most obvious method of targeting specific genes

within heterochromatin would use an RNAi knockdown strategy

[24,25].

In this study, we applied a snap-back transgenic RNAi approach

[24,25] to target a small heterochromatic gene, Tim17b, which is

located in constitutive heterochromatin of the third chromosome

near the previously characterized Parp1 locus (Figure 1B and C).

Tim17b is a typical heterochromatic locus located in a previously

well-characterized region [18], where unique exonic sequences are

separated by tandem arrays of repeated DNA (Figure 1C). Tim17b

is a relatively small locus which spans less than 5.5 kb of genomic

DNA, whereas exons take up only 0.5 kb, and promoter elements

characteristic of euchromatic genes are not detectable. Thus, it is
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unrealistic to suggest that random insertional mutagenesis projects

[22,23] will ever target it. Tim17b encodes a mitochondrial

translocase subunit, which is involved in the delivery of proteins to

the mitochondrial matrix [26]. The Tim17b protein superfamily

demonstrates high evolutionary conservation in eukaryotes (Figure

S1A), suggesting that the functions performed by Tim17b in

mitochondria are also conserved and very important. In addition

to the Tim17b gene in heterochromatin of third chromosome, the

Drosophila genome contains two more Tim17b-like genes (Figure

S1B), CG1158 and CG15257, encoding Tim17b1 and Tim17b2

proteins and correspondingly localized in euchromatin of 3R and

2L chromosomal arms. However, we found that only Tim17b

expresses ubiquitously (Figure S1C), while the other two are

produced only in adult male tissues. Since Tim17b most likely

plays a major functional role in the translocase complex, we have

focused our research on this protein. Studies of mitochondria, in

general, and mitochondrial translocase complexes, in particular,

are very important because they allow us to understand the roles of

mitochondria in longevity, apoptosis, cellular senescence, and

tumorigenesis [27–30], as well as permit the development of new

therapeutic drugs. Therefore, the reagents and techniques

generated and characterized in this study will be useful for

analyzing mitochondrial function and regulation, as well as for

studying mechanisms of apoptosis.

Results

Tim17b-DsRed recombinant protein is localized to
mitochondria

Previously, we designed transgenic Drosophila expressing a

Tim17b-DsRed fluorescent reporter protein [18] (Figure 1D).

To analyze further Tim17b expression and protein localization,

Figure 1. Tim17b gene is located within constitutive heterochromatin of third chromosome. A. Schematic illustration of Drosophila
melanogaster chromosomes. Heterochromatic regions are shown in black. B. An ideogram of chromosome 3 heterochromatin. C. A scheme
summarizing the sequence organization around Tim17b locus. Retrotransposable and transposable repeated DNA are shown by black arrows
(arrowhead – 39 end). Genes identified by homology to known cDNAs are shown below (blue boxes correspond to exons). Distance to closest
characterized locus (Parp) is indicated. D. Generation of UAS-Tim17b-DsRed and UAS-Tim17bRNAi transgenes. Structure of transgenic constructs is
shown. Nucleotide positions of Tim17b cDNA are indicated.
doi:10.1371/journal.pone.0025945.g001

Mitochondrial Translocase Knockdown
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we expressed a UAS::Tim17b-DsRed transgene using ubiquitous

GAL4 drivers (described in Materials and Methods). We found

that Tim17b-DsRed was enriched in cytoplasmic network-like

structures in all Drosophila tissues tested in our experiments

(Figure 2A). The distribution of Tim17b-DsRed in the cytoplasm

precisely matches the localization of mitochondrial protein ATP-

synthase (Figure 2B), but it does not overlap with Golgi or

endoplasmic reticulum markers (Figure 2C and D). Flies

expressing Tim17b-DsRed are viable and do not exhibit any

defects in development or fertility. These results allow us to

conclude that our transgenic reporter Tim17b-DsRed has proper

localization in mitochondria and causes no disruptive effects on

mitochondrial functions. Therefore, the Tim17b-DsRed recombi-

nant protein should function properly as an in vivo marker of

mitochondrial translocase complex.

Co-expression of Tim17b-DsRed and Tim17bRNAi

transgenes diminishes the amount of Tim17b-DsRed
protein and disrupts mitochondria

In order to disrupt Tim17b function, we employed a transgenic

RNAi strategy described in [31]. We cloned full-length 0.5 kb

Tim17b cDNA in direct and reverse orientation separated by

0.9 kb spacer DNA into pUASt vector (Figure 1D) and used this

Figure 2. Tim17b-DsRed recombinant protein is localized to mitochondria. A. Tim17b-DsRed (red) recombinant protein labels
mitochondria in all Drosophila tissues. MI – mid-intestine; BR – brain; SG – salivary glands; M – body wall muscles. DNA is stained with OliGreen dye
(green). B–D. Tim17b-DsRed recombinant protein is co-localized with mitochondrial protein ATP-synthase (B), but not with Golgi (C) or Endoplasmic
Reticulum (ER) (D) markers. The dissected larval salivary glands expressing Tim17b-DsRed (red) were stained with anti-ATP-synthase antibody (green)
and DNA binding dye Draq5 (blue) (B). The dissected larval salivary glands co-expressing Tim17b-DsRed (red) and CFP-Golgi (green) (C) or CFP-ER
(green) proteins (D) were stained with DNA binding dye Draq5 (blue).
doi:10.1371/journal.pone.0025945.g002

Mitochondrial Translocase Knockdown
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construct to transform Drosophila. The amount of Tim17b-DsRed

protein is significantly diminished in animals co-expressing the

resultant Tim17bRNAi transgene with Tim17b-DsRed when com-

pared with animals of the same developmental stage expressing

only Tim17b-DsRed (Figure 3A). Moreover, expression of intrinsic

Tim17b is also abolished by Tim17bRNAi (Figure 3B). Most of the

animals expressing Tim17bRNAi were arrested early in the

embryonic stage and died; less than 5% of the remaining embryos

survived up to later second-instar or third-instar. These results

confirm the effectiveness of the Tim17bRNAi transgene. Therefore,

we tested further the effects of Tim17bRNAi on mitochondria. We

dissected mid-intestine from Tim17bRNAi–expressing surviving

second-instar larvae prior to lethal stage and examined these

tissues by transmission electron microscopy (TEM) analysis.

Strikingly, typical mitochondria (Figure 3C) were scarce in

Tim17bRNAi-expressing cells. Instead, we often observed an

abnormal structure surrounded by double membrane with residual

cristae inside (Figure 3D). Moreover, we found that expression of

Tim17bRNAi stimulates apoptosis (Figure 3E and F). These results

suggest that our Tim17bRNAi transgene is effective in disrupting

mitochondrial function, thereby demonstrating, for the first time,

the essential role of the Tim17b protein in mitochondria.

Expression of Tim17bRNAi transgene abolishes protein
delivery to mitochondrial matrix

According to previous studies, the Tim17b protein belongs to

the inner membrane translocase complex Tim23, which is

involved in the delivery of protein with specific cleavable N-

terminal peptide signal to the mitochondrial matrix and inner

membrane [26] (Figure 4A). Therefore, we tested whether the

expression of Tim17bRNAi transgene would disrupt this pathway.

To track protein delivery into mitochondrial matrix, we used a

transgenic Drosophila expressing UAS::mito-GFP reporter [32].

This recombinant protein carries the N-terminal signal of

delivery into mitochondria [32]; upon expression in wild-type

Drosophila, it accumulates in mitochondria and co-localizes with

mitochondrial protein ATP-synthase (Figure 4B). However,

using inducible heat shock hs::GAL4 driver (see Materials and

Methods for details), co-expression of Tim17bRNAi and mito-GFP

in third-instar larvae resulted in the accumulation of mito-

GFP in the cytosol, but not colocalization with ATP-synthase

(Figure 4C). ATP-synthase is a stable intrinsic transmembrane

mitochondrial protein expressed early during the larval devel-

opment. Therefore, when hs::GAL4 driver induces co-expression

of both Tim17bRNAi and mito-GFP in third-instar larvae, ATP-

synthase is already localized properly inside the mitochondrial

membrane. While disruption of Tim17b protein production by

Tim17bRNAi expression precludes mito-GFP delivery into mito-

chondria, the localization of ATP-synthase, which is expressed

earlier during the larval development, is not affected. Therefore,

even though expression of Tim17bRNAi in third-instar larvae

blocks delivery of new mitochondrial proteins (mito-GFP), proper

localization of ATP-synthase demonstrates that the mitochon-

drial structure itself was not affected (Figure 4D and E). This

last finding suggests that expression of Tim17bRNAi can allow

analyzing Tim23 translocase in a spatially and temporally

controlled manner, without broad cytotoxic effects.

Tim17b-DsRed fluorescent protein represents a useful
tool for the study of in vivo mitochondrial dynamics

The results described above indicate that the fluorescent

reporter protein Tim17b-DsRed and Tim17bRNAi transgene are

sufficient for both the detection of translocase protein localization

Figure 3. Expression of Tim17bRNAi transgene disrupts Tim17b
protein production. A. Co-expression of Tim17b-DsRed recombinant
protein with Tim17bRNAi eliminates Tim17b-DsRed protein production.
Western blot hybridization was used to compare the amount of
Tim17b-DsRed protein in Gal4 69B; UAS-Tim17b-DsRed and Gal4 69B;
UAS-Tim17b-DsRed; UAS-Tim17bRNAi larvae. Anti-Actin antibody was
used as a loading control. B. Expression of Tim17bRNAi disrupts intrinsic
Tim17b mRNA production. RT-PCR using intrinsic Tim17b-specific
primers demonstrates that accumulation of Tim17b mRNA is abolished
in Tim17bRNAi-expressing animals. The numbers 2 and 3 indicate age of
animals collected for analysis after egg laying. Primers specific to
Tubulin mRNA were used as a loading control. C–D. Expression of
Tim17bRNAi disrupts mitochondria. The structure of wild-type mitochon-
dria detected by TEM (C) is affected in Tim17bRNAi-expressing animals
(D). Arrows indicate mitochondria. E–F. Expression of Tim17bRNAi

increases apoptosis in larval brain. WT – wild- type first-instar larvae
(E). Tim17bRNAi-expressing first-instar larvae (F). Dissected larval brains
were stained using ApopTag (red), which detects apoptotic cells. DNA
visualized using OliGreen dye (blue).
doi:10.1371/journal.pone.0025945.g003

Mitochondrial Translocase Knockdown
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Figure 4. Elimination of Tim17b function by RNAi expression disrupts protein delivery to mitochondrial matrix. A. Model of
organization and function of mitochondrial translocase complexes TOM, TIM9-10, TIM23 and TIM22. Arrow shows pathway of protein with cleavable
N-terminal signal translocation through TOM-TIM23 into matrix. Position of Tim17b protein (red) in TIM23 complex is shown. OM – outer membrane;
IMS – intermembrane space; IM – inner membrane. Green – protein of mitochondrial matrix. Blue – cleavable N-terminal signal peptide. B–C. Tim17 is
required for mito-GFP delivery to mitochondria. The dissected larval mid-intestine expressing mito-GFP (green) (B) or co-expressing mito-GFP (green)
with Tim17bRNAi (C) were stained with anti-ATP-synthase antibody (red) and TOTO3 DNA binding dye (blue). Displacement of mito-GFP from
mitochondria is clearly seen in Tim17bRNAi–expressing tissues. D–E. TEM analysis of tissues shown in B–C panels demonstrates that mitochondrial
structure has still not been compromised by the time mito-GPF delivery to mitochondria is disrupted. Red arrows indicate mitochondria.
doi:10.1371/journal.pone.0025945.g004

Mitochondrial Translocase Knockdown
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and functional analysis of the translocase complex. Further, we

tested the capability of Tim17b-DsRed reporter for in vivo assays.

In developing Drosophila, mitochondria have been studied

using immunohistochemical approaches [33], as well as GFP-

tagged reporters [32]. Here, we developed a method to visualize

live mitochondria using a red fluorescent reporter and high

resolution confocal microscopy. By visualizing mitochondria

within living tissue dissected from strains expressing Tim17b-

DsRed, we can study dynamic mitochondrial behavior. Time-

lapse confocal microscopy, as shown in Figure 5A, demonstrates

the ability to track the migration of a single mitochondria in the

cytoplasm of larval salivary glands. In many metabolically active

tissues, mitochondria form a network where individual mito-

chondria are interconnected [34]. In order to find these mega-

organelles, we examined live larval tissues expressing the

Tim17b-DsRed reporter. We found that cells of the larval

intestine contain such interconnected mitochondria (Figure 5B

and C). The interconnection of organelles to a single network

suggests the ability of individual mitochondria to exchange

soluble proteins of nucleoplasm. To test this hypothesis, we

employed the Fluorescence Recovery After Photobleaching

Assay (FRAP). We compared recovery rates for a soluble protein

of the mitochondrial matrix (mito-GFP) and the transmembrane

protein Tim17b-DsRed (Figure 6). Although mito-GFP rapidly

recovered after photobleaching in part of the mitochondrial

network (Figure 6B), Tim17b-DsRed protein showed almost no

recovery (Figure 6A). These results indicate that transmembrane

proteins of translocase complexes are stably positioned in the

individual mitochondrial unit and that the exchange rate for

these proteins is very low.

Figure 5. Use of Tim17b-DsRed fluorescent reporter for time-lapse microscopy of mitochondria, 3D reconstruction of
mitochondrial network and mitochondrial proteins dynamics assay. A. Time-lapse microscopy of live Drosophila tissue. Tim17b-DsRed is
shown in red color. DNA is detected using Draq5 dye (green). B–C. 3D-mitochondrial network within mid-intestinal cells. 1–9 represent individual
confocal sections. PR – X-Y projection. C. 3D reconstruction of the mitochondrial network is presented. Tim17b-DsRed is shown in red color. DNA is
detected using TOTO3 dye (green).
doi:10.1371/journal.pone.0025945.g005
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Discussion

Heterochromatic regions comprise a considerable portion of

eukaryotic genomes. This compartment of the genome contains a

number of genetic loci that are just as important as euchromatic

genes [12,35,36], yet they are inaccessible for study by more

conventional methods. One of the hallmark features of hetero-

chromatic DNA is its strong enrichment in repetitive sequences.

This property of heterochromatin complicates further the

functional and structural analysis of heterochromatic loci. In

Drosophila melanogaster, approximately 30% of genomic sequences

are heterochromatic. Heterochromatin includes the entire Y-

chromosome and 50% of the X-chromosome, as well as 25% of

peri-centromeric chromatin of autosomes 2 and 3 (Figure 1A) [10].

With complete sequencing of the Drosophila genome, it has become

extremely important to develop and test strategies for targeting

specific genes located in heterochromatin. In this study, we

described the molecular genetics tools which target a small protein

encoding gene, Tim17b, located in centromeric heterochromatin of

the third chromosome.

Taken together, our findings demonstrate that an RNAi

knockdown strategy based on designing a snap-back transgene

can be successfully applied for targeting heterochromatic genes. By

ubiquitous expression of Tim17bRNAi transgene, we were able to

disrupt mitochondria in an organism-wide manner (Figure 3),

using inducible driver functions of mitochondrial translocase

which could be affected at specific age-dependent developmental

stages (Figure 4). Collection of tissue-specific GAL4 drivers affords

the capability to express the UAS::Tim17bRNAi transgene in specific

tissues or even in specific cells, thereby allowing the study of

mitochondrial function. Depletion of Tim17 protein by Tim17bRNAi

transgene expression leads to lethality and apoptotic-like pheno-

Figure 6. Fluorescence Recovery After Photobleaching (FRAP) assay for Tim17b-DsRed and mito-GFP proteins. A. Tim17b-DsRed (red).
B. mito-GFP (green). White circle shows position of photobleached area (A–B). In contrast to soluble GFP protein of mitochondrial matrix, assay
demonstrates that Tim17b, which is a transmembrane protein, has a very slow replacement/dynamic rate (C).
doi:10.1371/journal.pone.0025945.g006

Mitochondrial Translocase Knockdown
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types (Figure 3). Therefore, the combination of Tim17bRNAi

transgene with tissue-specific GAL4 drivers offers tools for

eliminating targeted cells. This technique may be useful in a wide

range of studies targeting development and organogenesis, as well as

mitochondrial biology.

Mitochondria contain highly complex translocase machinery

involved in the transport of proteins through the double

membrane bilayer. Metabolic and genetic disorders in mitochon-

drial structure and/or function have been linked to a number of

human diseases including cancer [27–29,37]. In fact, out of 4

million children born each year in the United States, 4000 develop

diseases which can be correlated with mitochondrial dysfunction

[27]. Cancerous cells, in particular, have been shown to have a

range of distinct defects in mitochondrial structure and metabo-

lism. Various cancer cell lines show major differences in terms of

the number, size, shape, and overall metabolism of mitochondria

[38,39,40]. Mitochondria found in rapidly growing tumors show a

tendency to present fewer and smaller mitochondria with fewer

cristae, suggesting a disruption in structure at the molecular level.

In fact, changes to the molecular structure of the mitochondrial

inner membrane have been found in cancer cell lines, including a

shortfall of ATPase components.

Although disruption of mitochondrial structure and metabolism

has been linked to cancer, no universal metabolic alteration

characteristic of all tumor lines has been identified in mitochondria

[27]. As demonstrated by TEM data, our RNAi knockout of the

Tim17b subunit of the Tim23 complex shows significant disruption

of inner membrane structure and cristae formation of mitochondria.

In addition, this disruption completely eliminates protein transport

into the mitochondrial network. When combined with the red

fluorescent reporter transgene for Tim17b, this technique becomes

a highly useful tool for studying the Tim23 translocase complex

directly. We propose that this tool can be also applied for analysis of

mitochondrial metabolism in cancer cells, eventually leading to the

development of more targeted therapeutic treatments of cancer.

Materials and Methods

Drosophila strains and genetics
Flies were cultured on standard cornmeal-molasses-agar media

at 22–25uC. The fly stocks were generated by the standard genetic

methods or obtained from the Bloomington Drosophila Stock

Center, except as indicated. Genetic markers are described in

Flybase [41]. pP{w1, UAS::Tim17-DsRed}, called UAS:: Tim17-

DsRed, was described in [18]. pP{w1, UAS::mito-GFP}, called

mito-GFP, was described in [32]. The following GAL4 driver

strains were used: arm::GAL4 (Bloomington stock #1560), 69B-

GAL4 [42], and hs::Gal4, which was a gift from the G. Cavalli lab.

To induce expression from the hs::Gal4 driver, Drosophila larvae

were heat-shocked for 1 hr at 37uC twice daily for three days prior

to the late third-instar stage; then tissues were dissected for protein

localization and dynamics analysis.

Construction of transgenic Drosophila
To construct the anti-Tim17b RNAi transgene, we cloned a

693-bp fragment of Tim17b cDNA (from CK01513 clone) in

direct and inverted orientation within the pUASt vector. As a

spacer between inverted repeats, we used a 720-bp fragment of

DsRed sequence (Clontech) (Figure 1D). Transformation was as

described [43], with modifications [44].

Western blot
The following antibodies were used for immunoblotting assays:

anti-DsRed (rabbit, 1:1000, Clontech # 8370-1) and anti-Actin

(mouse, 1:1000, Chemicon). Western blotting was done using the

detection kit from Amersham/GE Healthcare (#RPN2106),

according to manufacturer’s instructions.

Electron microscopy (as described in [45]).

Immunostaining of Drosophila larval tissues
Larval tissues were dissected in Grace’s medium brought to

room temperature. Samples were then moved directly into fixative

solution of 4% formaldehyde in PBS containing 1% Triton X-100

(PBT) (in a 1.5 mL Eppendorf tube) and rotated at room

temperature for 30 minutes. After washing twice for 5 minutes

each in PBT, blocking solution of PBT containing 10% bovine

serum albumin (10% BSA) was applied to samples and rotated at

room temperature for 1 hour. Samples were washed in PBT

containing 1% bovine serum albumin (1% BSA) for 5 minutes.

Primary Rabbit anti-ATP-synthase antibody was then applied at a

dilution of 1:400. Samples were incubated in primary antibody

overnight at 4 degrees on nutator. After that, samples were washed

in PBT with 1% BSA solution three times for 10 minutes each.

Samples were incubated with appropriate secondary antibody at

room temperature on rotator for two hours. The following

secondary antibodies were used: Goat Anti-Rabbit Alexa 568,

Goat Anti-Rabbit Alexa 488 and Alexa 633 (from Molecular

Probes) at a dilution of 1:400. Next, samples were washed twice in

PBT buffer for 5 minutes and then subjected to chromatin staining

using Draq5 (Biostatus) at a dilution 1:500 in PBT buffer for

1 hour at room temperature on nutator or OliGreen (Invitrogen)

at a dilution of 1:10,000 in PBT buffer solution for 10 minutes at

room temperature. Samples stained with OliGreen were then

washed twice for 5 minutes in PBT buffer solution and fixed to

microscope slide. Images were obtained using the Leica (DM-IRB)

Confocal System.

Apoptosis detection
We used the ApopTagH Fluorescein In Situ Apoptosis Detection

Kit (Millipore # S7110) to detect the occurrence of cell death in

first instar larvae brains. Tissues from wild type or larvae

expressing Tim17bRNAi were dissected in Grace’s, fixed as described

above, and washed 10 min in PBT. Tissues were processed

according to the manufacturer’s recommendations, then rinsed

with PBS, and immunostained as described above.

Imaging of Live Drosophila larval tissues, as described in

[32].

Fluorescence Recovery After Photobleaching (FRAP) assay
FRAP experiments on live Drosophila tissues were performed as

described in [46]. To conduct these experiments, we used a Leica

TCS SP2 confocal microscope with capacity for FRAP. To avoid

oxidative stress and other damage sometimes caused by lasers, we

used only the minimal level of laser power. This step extended the

‘‘bleaching’’ phase, but it did not affect our results. To collect

FRAP data, we employed the ‘‘FlyMode’’ program, which allows

data collection, even during the bleaching phase. Recordings were

performed via a 6361.4 NA oil immersion objective. Previously,

we found that all the fluorescent epitopes we tested (ECFP, EYFP

(Venus), EGFP, and DsRed) were appropriate for FRAP assays

[47], as well as for regular confocal analysis. We did not detect

epitope-specific biases in the function, expression dynamics or

localization of any fused moiety. We used transgenic fly stocks that

expressed appropriate fluorescent epitope-tagged protein. Tissues

were dissected in Grace’s Media, and dynamic movement of

fluorescent proteins was analyzed for 20–30 minutes following

dissection.

Mitochondrial Translocase Knockdown
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Supporting Information

Figure S1 Evolutionary conservation for Tim17b pro-
tein in eukaryotes. A. Comparison of amino acid sequences of

Tim17 proteins from yeast (TIM17_YEAST), C. savinguvi (EN-

SCSAVT00000007450_CIOSA), D. persimilis (dper_GLEANR_

15855_ caf1_DROPE), C. briggsae (CBG01742_CAEBR), Rat

(Timm17b_predicted_RAT), Mouse (Timm17b_MOUSE), Bovine

(TI17B_BOVIN), Canis familiaris (TIMM17B_CANFA), Horse

(TIMM17B_HORSE), Human (TIMM17B_HUMAN), Chicken

(NP_001026197_CHICK) and D. melanogaster (gi|32330112|

gb|ADX35898.1). Evolutionary conservation and consensus se-

quence are shown below. B. Alignment of three Tim17b homo-

logues from Drosophila melanogaster genome: Tim17b (gi|323301112|

gb|ADX35898.1| MIP28909p); Tim17b1 (gi|24644195|ref|NP_

649526.2|); and Tim17b2 (gi|24584449|ref|NP_524746.2|). C.
Expression profiles of three Tim17b homologous proteins during

Drosophila development. RT-PCR using gene-specific primers

demonstrates that Tim17b1 and Tim17b2 express predominantly

in adult males, while Tim17b is ubiquitous in each tested

developmental stage. Primers specific to Tubulin mRNA were used

as a loading control.

(TIF)

Acknowledgments

We thank Dr. Rachel Cox for providing materials. Alana O’Reilly,

Maureen Murphy and David Martin contributed valuable comments on

the manuscript. We also thank members of the FCCC Fly Working Group

for helpful discussions on the paper.

Author Contributions

Conceived and designed the experiments: MG MJ AVT. Performed the

experiments: MG MJ AVT. Analyzed the data: MG EK AVT.

Contributed reagents/materials/analysis tools: MG MJ EK AVT. Wrote

the paper: MG EK AVT.

References

1. Heitz E (1933) Das geterochromatinder moose. J Jh Wiss 69: 762–818.

2. Blower MD, Sullivan B, Karpen GH (2002) Conserved Organization of

Centromeric Chromatin in Flies and Humans. Dev Cell 2: 319–330.

3. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD et al (2000) The

Genome Sequence of Drosophila melanogaster. Science 287: 2185–2195.

4. Gatti M, Pimpinelli S (1983) Cytological and genetical analysis of the Y
chromosome of Drosophila melanogaster. Chromosoma 88: 593–617.

5. Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping Simple Repeated DNA

Sequences in Heterochromatin of Drosophila melanogaster. Genetics 134:

1149–1174.

6. Nurminsky DI, Shevelyov YY, Nuzhdin SV, Gvozdev VA (1994) Structure,
molecular evolution and maintenance of copy number of extended repeated

structures in the X-heterochromatin of Drosophila melanogaster. Chromosoma 103:
277–285.

7. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonnacorsi S, et al. (1995)
Transposable elements are stable structural components of Drosophila melanogaster

heterochromatin. Genetics 92: 3804–3808.

8. Hilliker AJ, Appels R, Schalet A (1980) The genetic analysis of D. melanogaster

heterochromatin. Cell 21: 607–619.

9. Tulin AV, Kogan GL, Filipp D, Balakireva MD, Gvozdev VA (1997)
Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and

molecular evolution. Genetics 146: 253–262.

10. Gatti M, Pimpinelli S (1992) Functional Elements in Drosophila melanogaster

Heterochromatin. Ann Rev Genet 26: 239–275.

11. Rossi F, Moschetti R, Caizzi R, Corradini N, Dimitri P (2007) Cytogenic and
Molecular Characterization of Heterochromatin Gene Models in Drosophila

melanogaster. Genetics 175: 595–607.

12. Sinclair DAR, Schulze S, Silva E, Fitzpatrick KA, Honda BM (2000) Essential

genes in autosomal heterochromatin of Drosophila melanogaster. Genetics 109:
9–18.

13. Cryderman DE, Morris EJ, Biessmann H, Elgin SCR, Wallrath LL (1999)

Silencing at Drosophila telomeres: nuclear organization and chromatin structure
play critical roles. EMBO J 18: 3724–3725.

14. Grewal SIS, Elgin SCR (2002) Heterochromatin: new possibilities for the
inheritance of structure. Curr Opin Genet Dev 12: 178–187.

15. Grewal SIS, Moazad D (2003) Heterochromatin and Epigenetic Control of

Gene Expression. Science 301: 798–802.

16. Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA (1988) Complete

sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol 5:
366–376.

17. Dimitri P, Caizzi R, Giordano E, Accardo MC, Lattanzi G, et al. (2009)

Constitutive heterochromatin: a surprising variety of expressed sequences.

Chromosoma 118: 419–435.

18. Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene
encoding poly(ADP-ribose) polymerase (PARP) is required to modulate

chromatin structure during development. Genes Dev 16: 2108–2119.

19. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nature Reviews Genetics 8:

35–46.

20. Ellermeier C, Higuchi EC, Phadnis N, Holm L, Geelhood JL, et al. (2010) RNAi
and heterochromatin repress centromeric meiotic recombination. Proc Natl

Acad Sci U S A 107: 8701–8705.

21. Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, et al. (2002) Targeted

mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16:
1568–1581.

22. Sondek J, Shortle D (1992) A general strategy for random insertion and

substitution mutagenesis: Substoichiometric coupling of trinucleotide phoshor-
amidites. Biochemistry 89: 3581–3585.

23. Cooley L, Kelley R, Spradling A (1988) Insertional Mutagesis of the Drosophila

Genome with Single P Elements. Science 239: 1121–1128.

24. Tavernarakis N, Wang SL, Dorovkov, M, Ryazanov A, Driscoll M (2000)

Heritable and inducible genetic interference by double-standed RNA encoded

by transgenes. Nature Genetics 24: 180–183.

25. Fortier E, Belote JM (2000) Temperature-Dependent Gene Silencing by an

Expressed Inverted Repeat in Drosophila. Genesis 26: 240–244.

26. Baker MJ, Frazier AE, Gulbis JM, Ryan MT (2007) Mitochondrial protein-

import machinery: correlating structure with function. Trends in Cell Biology

17: 456–464.

27. Modica-Napalitano J, Singh KK (2002) Mitochondria as targets for detection

and treatment of cancer. Expert Reviews in Molecular Medicine 4: 1–19.

28. Peluso G, Nicolai R, Reda E, Benatti P, Barbarisi A, et al. (2000) Cancer and

anticancer therapy-induced modifications on metabolism mediated by carnitine

system. Journal of Cellular Physiology 182: 339–350.

29. Chang LO, Schnaitman CA, Morris HP (1971) Comparison of the

Mitochondrial Membrane Proteins in Rat Liver and Hepatomas. Cancer

Research 31: 108–113.

30. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and

mitochondrial decay in aging. Proc Natl Acad Sci U S A 91: 10771–10778.

31. Giordano E, Rendina R, Peluso I, Furia M (2002) RNAi Triggered by

Symmetrically Transcribed Transgenes in Drosophila melanogaster. Genetics 160:

637–648.

32. Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate

mitochondrial inheritance during Drosophila oogenesis. Development 130:

1579–1590.

33. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, et al. (2006) Drosophila pink1 is

required for mitochondrial function and interacts genetically with parkin. Nature

441: 1162–1166.

34. Westermann B (2002) Merging mitochondria matters; Cellular role and

molecular machinery of mitochondrial fusion. EMBO reports 3: 527–531.

35. Schulze S, Sinclair DAR, Silva E, Fitzpatrick, KA, Singh M, et al. (2001)

Essential genes in proximal 3L heterochromatin of Drosophila melanogaster. Mol

Gen 264: 782–789.

36. Coulthard AB, Alm C, Cealiac I, Sinclair DA, Honda BM, et al. (2010) Essential

Loci in Centromeric Heterochromatin of Drosophila melanogaster. I: The Right

Arm of Chromosome 2. Genetics 185: 479–495.

37. Irwin CC, Malkin LI (1978) Differences in Total Mitochondrial Proteins and

Proteins Synthesized by Mitochondria from Rat Liver and Morris Hepatomas.

Cancer Research 38: 1584–1588.

38. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells.

Prog Exp Tumor Res 22: 190–274.

39. Weinhouse S (1955) Oxidative metablism of neoplastic tissues. Adv Cancer Res

3: 269–325.

40. Carafoli E (1980) Mitochondria and disease. Mol Aspects Med 3: 295–429.

41. FlyBase (1999) The FlyBase database of the Drosophila genome projects and

community literature. Nucl Acids Res 27: 85–88.

42. Manseau L, Baradaran A, Brower D, Budhu A, Elefant F, et al. (1997) GAL4

enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary

of Drosophila. Dev Dyn 209: 310–322.

43. Spradling AC, Rubin GM (1982) Transposition of cloned P elements into

Drosophila germ line chromosomes. Science 218: 341–347.

44. Prokhorova AV, Voloshina MA, Shostak NG, Barskii VE, Golubovskii MD

(1994) Preparation and primary genetic analysis of Drosophila melanogaster

transformants line w9lz(b)/XXywf, containing mini-white genes, integrated in

the genome during P-element-dependent transformation. Genetika 30: 874–878.

Mitochondrial Translocase Knockdown

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e25945



45. Kotova E, Jarnik M, Tulin AV (2009) Poly (ADP-ribose) Polymerase 1 is

required for protein localization to Cajal body. PLoS Genetics 5(2): e1000387.
46. Phair RD, Misteli T (2000) High mobility of proteins in mammalian cell nucleus.

Nature 404: 604–609.

47. Pinnola A, Naumova N, Shah M, Tulin AV (2007) Nucleosomal core histones

mediate dynamic regulation of PARP1 protein binding to chromatin and

induction of PARP1 enzymatic activity. J Biol Chem 282: 32511–32519.

Mitochondrial Translocase Knockdown

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e25945


