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Abstract: Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora
of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis
is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange
is mediated by appositions, termed endoplasmic reticulum–mitochondria-associated membranes
(MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the
mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial
dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the
development of multiple human diseases, including neurological disorders, such as amyotrophic
lateral sclerosis, Friedreich’s ataxia, and Charcot–Marie–Tooth. A common hallmark in these disorders
is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes
to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria
and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and
cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different
therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for
neurological diseases.

Keywords: calcium; mitochondria; endoplasmic reticulum; neurological; sigma-1 receptor; mitochondrial
calcium uniporter; amyotrophic lateral sclerosis; Charcot–Marie–Tooth; Friedreich’s ataxia

1. Introduction

Calcium (Ca2+) is the most ubiquitous secondary messenger in intracellular signaling
of most living cells, acting as a key connection between extracellular signals and intracellu-
lar responses [1]. The most remarkable property of Ca2+ is that such a simple bivalent ion
is involved in a plethora of different signaling pathways. Its versatility is achieved by its
rich dynamics in concentration changes, which can be caused either by Ca2+ entry from the
extracellular space or Ca2+ release from intracellular storage compartments [2] or by other
side pumping Ca2+ out of the cell or to intracellular organelles. The main Ca2+ storage
in mammal cells is, depending on the cell type, the sarcoplasmic–endoplasmic reticulum
(SR/ER) [3]. Intracellular concentration of Ca2+ is in the range of nM, whereas extracellular
Ca2+ is in the range of mM [1]. Changes in intracellular Ca2+ levels are required for dif-
ferent structures, cell compartments, receptors, channels, Ca2+-binding proteins, pumps,
transporters, enzymes, and transcription factors [4]. In addition, when intracellular levels
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rise above physiological concentration, a number of deleterious cellular processes can be
triggered [5].

In non-excitable cells, the pathways regulated by these Ca2+ signals encompass a wide
variety of processes, including from gene expression to fertilization, secretion, protein
folding, energy metabolism, and cell cycle regulation [6–8]. In excitable cells, the signal
depends on Ca2+ entry through voltage or ligand-operated channels, which regulates
muscle contraction, postsynaptic potentials, memory formation in neurons (long term
potentiation), and insulin secretion from beta cells [9].

Due to the huge amount of Ca2+-dependent events occurring in cells, alteration of its
signaling pathways contributes to the development of multiple human disorders. Therefore,
the study of Ca2+ signaling is essential for understanding the pathophysiology of many
diseases, including diabetes, carcinogenesis, cardio- and cerebrovascular diseases including
endothelial dysfunction, as well as neurodegenerative disorders [4,10–16].

In this review, we describe the importance of Ca2+ signaling in mitochondria and how
the mechanism of communication between the ER and the mitochondria is pivotal to the
mitochondria. Lately, we address different therapeutic strategies targeting mitochondrial
Ca2+ uptake as an emergent therapeutic approach for neurological disorders.

2. MAMs’ Composition and Function

Mitochondria and the ER are structures that experience continuous remodeling to
coordinate complex mechanisms of signal transduction and gene expression, generating
physical interactions that facilitate a fast and efficient regulation of these processes [17].
Termed endoplasmic reticulum–mitochondria-associated membranes (MAMs), the contact
sites between the two compartments are dynamic structures that are highly sensitive to the
physiological changes of the cell [18].

The association between the ER and the mitochondria was described in the 1950s,
when Copeland and Dalton observed a precise orientation of the ER with respect to the
mitochondria [19]. The distance between membranes in this region is 10–30 nm depending
on the cell type and cell conditions [20]. Besides, it is estimated that, in physiological
conditions, 5–20% of the mitochondrial surface is transiently connected to the ER and these
contacts are signaling-dependent [21].

MAMs encompass an extensive variety of different proteins. The first independent
proteomic studies identified 911 and 1212 proteins [22,23] localized in the tethers, but only
44% of them were common. During the last decade, different authors have contributed to
increment the list by different molecular approaches, such as microscopy or subcellular
fractionation [24–26]. The development of new techniques has facilitated the proteomic
analysis of subcellular domains in-depth. The group of Alice Y Ting has recently identified
more than 100 new proteins located in MAMs by means of TurboID technique. This
approach was developed to study the interactome of a protein of interest in a specific
cell compartment [27]. This emphasizes the complexity of these structures, specialized
in each cell type and organism. Indeed, the set of proteins involved in MAMs provides
important information about the functions regulated in this domain. As proteins involved
in essential cellular processes belong to both the ER and the mitochondrial membranes, the
contacts between the organelles enable a coordinated regulation of events, such as lipid
biosynthesis [28,29], mitochondrial biogenesis [30–33], mitochondrial dynamics [34,35],
and Ca2+ transfer [21,36].

Ca2+ exchange between the ER and the mitochondria requires the formation of a pro-
tein bridge composed by proteins of both compartments [37]. In particular, the formation
of microdomains localized in the ER–mitochondria contact sites promotes a rapid and
efficient exchange of Ca2+, fundamental for mitochondrial function, dynamics, and the
regulation of apoptosis [38]. In 1993, Rosario Rizzuto and colleagues reported the increase
in mitochondrial Ca2+ upon the cation mobilization through the ER channel IP3R (inositol
1,4,5-trisphosphate receptor). Recently, the spatial relation between the ER and the mito-
chondria was described by the same group [39]. They observed numerous close appositions
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between these two organelles that contributed to Ca2+ entry into the mitochondria in Hela
cells [21].

The lumen of the ER is one of the main storages of free Ca2+ in the cell (about
100–500 µM) compared to the cytosol (~100 nM). Ca2+ is released to the cytosolic space
upon the input signals from the ER through the IP3R and through the RyR (ryanodine
receptor) in the case of the SR [40]. Furthermore, Sig-1R (Sigma non-opioid intracellular
receptor 1 or shortly Sigma 1R), located in the ER, is also involved in Ca2+ signaling regula-
tion. Sig-1R is enriched in MAMs and stabilizes activated IP3R, promoting Ca2+ influx into
the mitochondria [41,42].

For the mitochondria, Ca2+ must cross both mitochondrial membranes. The outer
mitochondrial membrane (OMM) is Ca2+ permeable due to VDAC (voltage-dependent
anion channel), which enables different metabolites (succinate, malate, pyruvate, NADH,
ATP, and phosphate) to cross from the cytosol to the mitochondria [36]. In connection with
the inner mitochondrial membrane (IMM), Ca2+ enters the mitochondrial matrix through
the mitochondrial calcium uniporter (MCU) since this layer is ion-impermeable [43].

In addition, another key protein that stabilizes the connections of both compartments is
glucose-regulated protein 75 (GRP75), which chaperones IP3R and VDAC, maintaining the
junction and ensuring an efficient transfer of Ca2+ to the mitochondria [36,44]. Altogether,
all these attributes highlight MAMs as a coordinated domain that requires an optimal
communication between the ER and the mitochondria.

3. Ca2+ Regulates Mitochondrial Functions

IP3R-GRP75-VDAC-MCU is one of the complexes in MAMs that is not only essential
for the regulation of Ca2+ homeostasis, but also for the control of mitochondrial function in
the regulation of bioenergetics, mitochondrial dynamics, and cell death [45,46]. Mitochon-
dria are considered the powerhouse of the cell, providing at least 90% of energy in most
cell types. In this context, energy requirements and, thus, mitochondrial function depend
on the function of each tissue, as well as developmental and physiological conditions.
Mitochondria mainly orchestrate the metabolic profile of tissues with high energy demand,
such as heart, liver, kidney skeletal muscle, and brain [47]. In particular, neurons consume
70–80% of the total energy of the brain, being the remaining spent by glial cells [48]. Thus,
disruption of bioenergetic pathways compromise mitochondrial function, contributing to
pathological features displayed in neurological disorders.

The mechanism of ATP production depends on oxidative phosphorylation, and it is
dynamically and promptly regulated by mitochondrial Ca2+ levels. Enzymes of the tricar-
boxylic acid cycle and the electron transport chain require an increase in mitochondrial
Ca2+ uptake to promote ATP synthesis [49,50]. For instance, isocitrate dehydrogenase
and oxoglutarate dehydrogenase are activated upon Ca2+ increase in the mitochondrial
matrix [51,52]. Furthermore, pyruvate dehydrogenase is a key complex of oxidative
metabolism that links glycolysis with the tricarboxylic acid cycle and is influenced by
mitochondrial Ca2+ concentration. In this way, when energy demand increases, different
neurotransmitter and hormone receptors increase mitochondrial Ca2+ through IP3R [17,53].

Mitochondrial Ca2+ uptake is also influenced by mitochondrial dynamics. Several
properties of mitochondria, in terms of network, orientation, and shape, regulate the
amounts of Ca2+ that reach the mitochondrial matrix and, thus, the subsequent functions
regulated by these events [54].

1. The first is distribution, because clustered mitochondria are able to buffer Ca2+ more
efficiently than disperse mitochondria. Mitochondrial fusion/fission events require
elevated amounts of cytosolic Ca2+ to be transferred to the mitochondria [33,55]. In
this way, Ca2+ can activate the cytosolic GTPase dynamin-related protein (Drp-1),
which is recruited to form a ring around mitochondria to promote mitochondrial
fission [31]. On the other hand, mitofusin 2 (MFN2), the GTPase responsible for
the OMM fusion, also participates as a key regulator of MAMs, contributing to
intracellular Ca2+ homeostasis [33].
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2. Connectivity, because elongated mitochondria are better Ca2+ conductors, distributing
the cation along the fused network. It has been described that, while fragmented mi-
tochondria buffer Ca2+ from the ER in a heterogeneous manner, tubular mitochondria
incorporate Ca2+ in an equilibrated and connected way [54,56].

3. Vicinity is a dynamic property that also affects Ca2+ buffering, since elevated concen-
trations of Ca2+ near mitochondria are required to promote mitochondrial Ca2+ uptake.
In this context, Csordás et al. demonstrated the importance of spacing distance in
MAMs for an efficient Ca2+ transfer, outlining that it is essential that the tethered
bridge is properly assembled to ensure Ca2+ influx into the mitochondria [44,57].

4. Last but not least, the volume of mitochondria is also crucial for mitochondrial Ca2+

buffering, as forced mitochondrial expansion [57] and fragmentation reduce Ca2+

uptake capacity [58].

Furthermore, abnormal Ca2+ accumulation in the mitochondria normally precedes cell
death driven by necrosis and apoptosis [59,60]. Under physiological and pathological condi-
tions, impaired Ca2+ handling can lead to mitochondrial Ca2+ overload, thus activating the
opening mitochondrial permeability transition pore. This causes mitochondrial swelling,
which leads to release of cytochrome c and caspase cofactors into the cytosol [60,61].

4. Ca2+ and Oxidative Stress

Mitochondria is considered the main source of reactive oxygen species (ROS) in cells
with high metabolic rates. In circumstances of mitochondrial dysfunction, an uncontrolled
production of ROS would lead to an imbalance in the cellular redox state which, in turn,
might likely contribute to pathogenesis [62]. Oxidative stress occurs when ROS production
exceeds detoxification, causing cell damage. Thus, a balance between ROS production and
antioxidant systems is crucial to maintain cell homeostasis and survival [63,64]. The elec-
tron transport chain located in mitochondrial cristae generates ROS, such as the superoxide
anion (O2

−), which are converted to the diffusible redox signaling molecule hydrogen
peroxide (H2O2) by superoxide dismutase 2 (SOD2). There is mounting evidence about the
role of H2O2 as a messenger located in redox nanodomains in MAMs [65]. H2O2, mainly
generated in the mitochondria, can modulate the activity of IP3R and RYR channels, pro-
moting the release of Ca2+ from the ER to the mitochondria. This event can, in turn, induce
redox signaling through the activation of mitochondrial metabolism, further inducing the
accumulation of additional H2O2. This positive feedback mechanism attenuates when Ca2+

returns from the mitochondrial matrix to the ER [66,67]. This process can be beneficial or
detrimental, depending on the cellular context and the levels of ROS generated. Indeed,
excessive amounts of mitochondrial Ca2+ lead to high ROS levels, which may trigger cell
death [65]. In addition, it has been reported that mitochondrial Ca2+ overload can inhibit
H2O2 clearance, promoting its accumulation in the mitochondria [68].

Hence, this outstands the necessity of an equilibrate Ca2+ exchange ER–mitochondria
through proper contacts between the two compartments. Nonetheless, a growing knowl-
edge and a better understanding about the translational and clinical role of Ca2+ homeosta-
sis and oxidative stress in the physiopathology of neurological diseases are required to find
novel therapeutic strategies.

5. MAMs’ Communication and Neurological Diseases

As it has been discussed above, the regulation of MAMs is crucial to maintain a proper
Ca2+ exchange and regulate key mechanisms in cell homeostasis. These processes (lipid
metabolism, Ca2+ homeostasis, mitochondrial dynamics, and axonal maintenance) are
usually involved in the physiopathology of neurodegeneration. Mitochondrial dysfunction
results in abnormal Ca2+ handling, leading to alterations in axonal transport, bioenergetics,
redox status, contractility, and cell viability [69–71]. It is clear that ER–mitochondria
communication is very important for axonal survival and degeneration. In fact, MAMs
are functionally implicated in axons, dendrites, and neuronal soma, modulating and
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maintaining synaptic activity [72–75]. For this reason, ER–mitochondria assembly has been
proposed as a common mechanism in neurodegenerative disorders [76–79].

The first proteomic description of MAMs detected proteins involved in mitochondrial
dysfunction as well as in neuromuscular and degenerative diseases, including Huntington’s
disease (HD), Parkinson’s disease (PD), and Alzheimer’s disease (AD) [23]. Nowadays, it
is well described that the proteins involved in these diseases are resident in MAMs [80–83].
Specifically, these diseases exhibit increased ER–mitochondria contacts, leading to toxic
mitochondrial Ca2+ uptake, reduced cell viability, and dysfunction in the subsequent
mechanisms regulated in this domain [77–79].

Conversely, several neuropathies exhibit reduced ER–mitochondria connections and
Ca2+ accumulation in the cytosol, impairing the communication between the two com-
partments and displaying mitochondrial alterations. Several forms of amyotrophic lateral
sclerosis (ALS) are characterized by mitochondrial disruption and abnormal mitochondrial
Ca2+ handling. This includes ALS forms with mutations in superoxide dismutase 1 (SOD1),
in which mouse models exhibit mitochondrial defects and deficits in mitochondrial Ca2+

uptake [84,85]. Homozygous mutations in the ER protein Sig-1R are the cause of the juve-
nile form of ALS16 [86], showing ER–mitochondria dissociation in motor neurons, as well
as a reduction in mitochondrial Ca2+ influx via IP3R, and lower ATP production. These
defects lead to neuron vulnerability, directly associated with the physiopathology of the
disease [87].

Accordingly, dominant cerebellar ataxias are multifactorial and progressive diseases
with common mechanisms of mitochondrial dysregulation, Ca2+ handling defects, and
oxidative stress that contribute to neurodegeneration [88]. Specifically, spinocerebellar
ataxias type 2 and 3 (SCA2/3) have been found to exhibit mutations in the IP3R channel,
which leads to the abnormal Ca2+ release to the cytoplasm, potentially inducing Ca2+

buffering defects in mitochondria [89]. Interestingly, different models of the recessive
neuromuscular disorder Friedreich’s ataxia (FRDA) exhibit cytosolic Ca2+ accumulation, as
well as impaired mitochondrial Ca2+ uptake and decreased inter-organelle interactions in
MAMs. The protein involved in the disease, frataxin, has recently been found as a member
of the protein network of MAMs, interacting with GRP75 and IP3R [90–92]. Charcot–Marie–
Tooth (CMT) is an inherited neuropathy caused by mutations in an important number
of proteins related to mitochondrial function. Specifically, the causative genes for CMT
type 2 are ganglioside-induced associated protein 1 (GDAP1) and MFN2 [93], which encode
proteins located in the OMM that contribute to MAM’s function. Deficiency in GDAP1
leads to neuronal Ca2+ and mitochondrial defects, coupled with altered interplay between
ER–mitochondria and Ca2+ accumulation in the cytosol [71,94,95]. Hereditary spastic
paraplegia is associated with alterations in genes related to the ER that also affect the
axonal transport of mitochondria, including IP3R, suggesting impaired ER–mitochondria
communication [96–98].

6. Therapeutic Approaches Targeting MAMs

Mitochondrial Ca2+ modulation is fundamental to maintain the physiological mech-
anisms that regulate metabolism, mitochondrial dynamics, and cell death. Therefore,
MAMs emerge as potential therapeutic targets of neurological disorders. In this review we
will focus on different therapeutic approaches (see Figure 1 for further information [99])
aimed to stabilize the ER–mitochondria assembly and, thus, promote Ca2+ influx into
the mitochondria.
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Figure 1. Schematic representation showing the effects of mitochondrial Ca2+ uptake promoters. The
ER is the main Ca2+ storage in the cell and Ca2+ exchange between the ER and the mitochondria
requires the formation of tethers composed by proteins of both compartments. Sig-1R resides in the
ER membrane, in a dormant, Ca2+-dependent state. Upon activation by agonists, Sig-1R dissociates
from BiP/GRP78 and reallocates within the ER membrane, interacting with IP3R and chaperoning the
protein complex that transfers Ca2+ to the mitochondria. This complex formed by IP3R-GRP75-VDAC
ensures a rapid Ca2+ flux to the mitochondrial intermembrane space, which triggers MCU opening
and Ca2+ to cross the mitochondrial inner membrane. Several models of neurological disorders such
as ALS, CMT and FRDA have exhibited alterations in mitochondrial Ca2+ buffering by defective
appositions between the two organelles. Both Sig-1R agonists and MCU enhancers promote Ca2+

exchange between the ER and the mitochondria, exerting beneficial effects in different models of
neurological diseases. On the one hand, Sig-1R agonists (pridopidine, SA4503, Blacarmesine, PRE-084,
and fluvoxamine) have been demonstrated to exert neuroprotective effects, improving mitochondrial
dysfunction, preventing cells from apoptosis, activating the antioxidant response, ameliorating ER
stress, and improving axonal defects. On the other hand, the MCU enhancer, Kaempferol, has
helped to improve mitochondrial dysfunction, activate the oxidative stress response, modulate
autophagy, regulate ER stress, and prevent cells from apoptosis. This figure has been created using
Creative Commons resources from Servier Medical Art [99]. ALS: amyotrophic lateral sclerosis;
Bip/GRP78: binding immunoglobulin protein/glucose-regulated protein 78; CMT: Charcot–Marie–
Tooth; ER: endoplasmic reticulum; FRDA: Friedreich’s ataxia; GRP75: glucose-regulated protein 75;
IP3R: inositol 1,4,5-trisphosphate receptor; MCU: mitochondrial calcium uniporter; Sig-1R: sigma
non-opioid intracellular receptor 1; VDAC: voltage-dependent anion channel.

6.1. Sigma-1 Receptor as a Therapeutic Target

Sig-1R is a Ca2+-sensitive chaperone located in the ER membrane, specifically in
MAMs, and regulates Ca2+ homeostasis, lipid dynamics, MAMs’ stability, and the ER stress
response [41,100]. Sig-1Rs of different species share a very high sequence identity (>93%),
but share no sequence homology with any other mammalian protein. Interestingly, the
Sig-1R displays a 30% identity, a 67% homology, and a similar ligand profile to the yeast
sterol isomerase encoded by the ERG2 gene [101,102]. This conservation points towards
Sig-1R as a fundamental protein for cell functioning. It is highly expressed in the central
nervous system, playing a key role in physiological functions, such as cell differentiation,
axon formation, microglial activation, and astrocyte regulation [103].

Sig-1R resides specifically on ceramide and cholesterol-rich lipid microdomains at
MAMs, acting as an inter-organelle Ca2+ signaling modulator and exerting a pivotal role
in neuroprotection and neuroplasticity [104]. In physiological conditions, Sig-1R forms a
complex with the chaperone binding immunoglobulin protein/glucose response protein
78 (BiP/GRP78), in a dormant, Ca2+-dependent state. Once activated by agonists or ER
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Ca2+-depletion, Sig-1R dissociates from BiP and reallocates within the ER membrane,
interacting with different proteins, such as IP3R. Then, IP3R is prevented from degradation
and promotes mitochondrial Ca2+ uptake (see Figure 1 for further information [99]) [42].
Thus, Sig-1R is a key element for maintaining the structure and function of MAMs. Besides,
during ER stress response, Sig-1R expression increases, which prevents cells from apoptosis
triggered under such conditions [105]. Sig-1R has been recently identified as indispensable
for mitochondrial bioenergetics during early ER stress, which gives rise to an increased
ER–mitochondrial Ca2+ exchange [106]. Hence, targeting Sig-1R may regulate ER stress, a
common mechanism displayed in neurodegeneration [107]. Interestingly, Sig-1R ligands
have been found to potentially offer protection against the most severe symptoms of SARS-
CoV-2, providing mitochondrial protection, activating mitophagy, preventing ER-stress,
managing Ca2+ transport, and inducing autophagy to prevent cell death in response to
infection [108].

Recently, the basic structural pharmacophore of Sig-1R has been identified, which is
critical for drug development. There is evidence about different shifting monomerization–
oligomerization states of Sig-1R modulated by its ligands. In this sense, agonists and
antagonists regulate the association between Sig-1R and BiP, controlling the interactome
of Sig-1R [105,109,110]. The regulation of these mechanisms has a pivotal role in the
context of MAMs and neurodegenerative diseases [111]. Transcriptional upregulation
of Sig-1R induces its neuroprotective properties. For instance, it has been reported that
Sig-1R upregulates the expression of the antiapoptotic mitochondrial protein Bcl-2 (B-cell
lymphoma 2), preventing neuronal cell death [112]. On the other hand, Sig-1R has been
involved in the protection of cellular oxidative stress and the activation of antioxidant
response elements [113]. In this line, overexpression of Sig-1R enhanced resistance to
oxidative stress in Drosophila melanogaster [114]. Conversely, knockdown of Sig-1R leads to
increased ROS and decreased expression and activity of nuclear factor erythroid 2-related
factor 2 (NRF2), the protein implicated in the activation of the intracellular antioxidant
response [115]. These data point Sig-1R as a potential therapeutic target against oxidative
stress-related diseases.

While Sig-1R deficiency exacerbates progression of neurological disorders and symp-
toms commonly associated to neurodegenerative disorders [116–118], many Sig-1R agonists
exert anti-amnestic, synaptogenesis, and neuroprotective effects under neuronal stress con-
ditions [119,120]. Indeed, the absence of Sig-1R leads to motor neuron degeneration,
associated with reduced ER–mitochondria contacts, disturbed mitochondrial dynamics,
and intracellular Ca2+ dyshomeostasis [121]. Remarkably, pharmacological modulation
of Sig-1R has been demonstrated to mitigate disease and symptoms in different models
of ALS, AD, PD, and HD (reviewed in [105]). Given the chaperone nature of Sig-1R, its
activity in targeting conformationally misfolded proteins occurs only under such condi-
tions. Indeed, it has been described that Sig-1R activation only exhibits therapeutic effects
under pathological conditions and has no effect in control animals [122,123]. This provides
evidence about the specificity of Sig-1R ligands in pharmacotherapy.

6.1.1. Pridopidine

Pridopidine (ACR16) is a selective Sig-1R agonist and a dopamine stabilizer [124,125].
Great focus has been given to pridopidine in recent years, especially in HD, where it has
demonstrated to improve motor function in both animal models and patients, protecting
neurons from mutant huntingtin toxicity [126]. For instance, Ryskamp and colleagues
evaluated the relevance of Sig-1R as a therapeutic target of pridopidine in HD. Action of
pridopidine is mediated by Sig-1R, leading to restoration of IP3R-dependent Ca2+ release
and upregulation of key Ca2+-regulating genes [126]. Furthermore, early treatment of
pridopidine prior to the appearance of disease phenotypes improved motor coordination
and reduced anxiety and depressive-like phenotypes in the YAC128 HD mice model,
whereas late treatment only rescued depressive-like symptoms [126]. Interestingly, the
research carried out by Naia et al. using different models of HD has highlighted the effects
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of pridopidine in mitochondrial function, contributing to neuroprotection mediated by
Sig-1R. Authors reported that pridopidine prevented the disruption of ER–mitochondria
contacts, also improving the colocalization of IP3R and Sig-1R with mitochondria in YAC128
neurons. Accordingly, this compound increased mitochondrial activity, elongation, and
motility. In both HD human neural stem cells and YAC128 neurons, pridopidine increased
mitochondrial respiration, rescued antioxidant response, and decreased mitochondrial
ROS levels caused by Sig-1R knockdown. Additionally, apart from the improvement in
motor coordination, YAC128 mice treated at early/pre-symptomatic age with pridopidine
showed a reduction in mitochondrial ROS levels. Overall, these results highlighted the
effects of pridopidine in mitochondrial function, contributing to neuroprotection mediated
by Sig-1R [126].

Regarding clinical evaluation, pridopidine has demonstrated some improvements in mo-
tor symptoms. A phase-III randomized, double-blind, multicenter trial study (NCT00665223,
MermaiHD) failed to provide evidence about the effects of pridopidine in the primary
outcome (changes in modified Motor score). Despite this, some parameters related to
motor scales improved significantly in the 90 mg/day group [127]. According to these
results, a randomized, double-blind, placebo-controlled, multicenter trial (HART study,
NCT00724048) could not reach its primary endpoint after 12 weeks of treatment. Never-
theless, patients treated with the highest doses improved in secondary motor evaluation,
suggesting modest beneficial effects of pridopidine in HD [127]. Altogether, these re-
sults suggest the reproducible positive effects of pridopidine on motor symptoms in HD.
Currently, a phase-III, randomized, double-blind, placebo-controlled study is recruiting
patients to evaluate the efficacy and safety of pridopidine in patients with early-stage HD
(NCT04556656) [128].

The efficacy of pridopidine has been tested in in vitro and in vivo models of ALS, due
to the fact that different forms of ALS are caused by mutations in the Sig-1R gene [87,129].
Authors demonstrated beneficial effects of pridopidine-targeting Sig-1R on axonal transport
perturbations, neuromuscular junction disruption, and motor neuron death. In addition,
pridopidine slowed the progression of the disease in an ALS mouse model [130]. There is
currently an ongoing phase-II clinical trial on the efficacy of pridopidine in ALS patients
(NCT04615923) [131].

Recently, pridopidine has demonstrated neuroprotective and neurorestorative ef-
fects in nigrostriatal dopamine neurons via Sig-1R in an animal model of PD [132]. A
phase-II, double-blind, parallel-group study started in 2019 with the aim of assessing
two doses of pridopidine in levodopa-induced dyskinesia patients with PD (gLIDE study,
NCT03922711) [133]. Despite the pending results, it seems that the study was cancelled
early due to COVID-19 pandemic.

6.1.2. SA4503

SA4503 or cutamesine is an orally available, potent, and selective Sig-1R agonist that
exhibits antiarrhythmic and antidepressant effects [134]. It has been reported to alleviate
mitochondrial dysfunction, recovering ATP production in a dose-dependent manner and
mobilizing intracellular Ca2+ into the mitochondria. These effects attenuated neuronal
apoptosis [135] and ameliorated cardiac hypertrophy [136]. In addition, SA4503 promoted
the survival of cortical neurons from oxidative-stress-induced cell death [137]. In ALS
models, this compound has shown to suppress motor neuron degeneration and symptom
progression [137]. In this line, SA4503 also enhanced the cytosolic Ca2+ clearance in
motoneurons and IP3R-mediated ER Ca2+ release in ALS mice [138]. In alpha-thalassemia
X-linked intellectual disability, SA4503 reversed axonal development and dendritic spine
abnormalities in cultured cortical neurons, as well as cognitive deficits exhibited in the
mice model [139].

In the clinical field, SA4503 has been evaluated in two trials. In 2008, the safety and effi-
cacy of SA4503 was assessed in subjects with major depressive disorder (NCT00551109) [140].
Results and outcomes are pending. Furthermore, a phase-II, double-blind, placebo-controlled,
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ascending dose study evaluated the safety and motor function restoration in subjects with
acute ischemic stroke (NCT00639249). Even though it was safe and well tolerated, no
significant improvements were found [139].

6.1.3. Blarcamesine

Blarcamesine (ANAVEX2-73) is a safe Sig-1R agonist and muscarinic receptor modula-
tor with preliminary efficacy evidence in patients with AD and Rett syndrome [141]. Pre-
clinically, blarcamesine exerted anticonvulsant, anti-amnesic, neuroprotective, and antide-
pressant effects in various animal models of Rett syndrome [141], fragile X syndrome [141],
AD [142,143], and amnesia [144]. These data suggest its potential in neurodegenerative
and neurodevelopmental diseases.

After demonstrating good safety, bioavailability, and tolerability in AD patients
(NCT02244541) [145], blarcamesine has been tested in a phase-II, placebo-controlled study
with Rett Syndrome patients (NCT03758924) [146]. Even though the trial is completed, results
are still pending. Currently, different phase-II/III trials focused on PD (NCT04575259) [147],
AD (NCT04314934) [148], and Rett Syndrome (NCT03941444, NCT04304482) [149,150],
which are recruiting patients to evaluate the tolerability and efficacy of blarcamesine.

6.1.4. PRE-084

PRE-084 is a selective Sig-1R agonist that has demonstrated promising effects against
oxidative stress and modulating intracellular Ca2+ levels in preclinical studies using dif-
ferent disease models. For instance, PRE-084 exerted protective action against oxidation
and improved viability in human retinal cells [151]. In a HD cell model, pre-treatment
with PRE-084 resulted in the prevention of caspase 3-cleavage, stimulation of cellular
antioxidants, and a reduction in ROS in mutant huntingtin-expressing neuronal cells [152].

Furthermore, in a model of AD, treatment with PRE-084 restored mitochondrial respi-
ratory dysfunction in mouse hippocampus and prevented increases in lipid peroxidation
levels and apoptosis markers [143]. In this line, Watanabe S. et al. evaluated a Ca2+ influx
into the mitochondria and ATP levels after incubating motor neurons of ALS with PRE-084.
In all the experiments, this compound restored the function of IP3R impaired in the model,
suggesting that Sig-1R activation by PRE-084 prevented the disruption of Sig-1R-IP3R
interaction. In addition, intraperitoneal administration of PRE-084 in pre-symptomatic
ALS mice successfully restored co-localization of Sig-1R and IP3R analyzed in neurons of
the lumbar spinal cord. These data indicate that Sig-1R activation is crucial to prevent
MAMs disruption and regulate the Ca2+ exchange between the ER and the mitochondria
via IP3R [87]. PRE-084 improved locomotor function and motor neuron survival in pre-
symptomatic and early symptomatic mutant ALS mice. Authors reported a promising
strategy of pharmacological manipulation of Sig-1R, pointing to an increased availability
of growth factors, as well as modulation of astrocytosis and macrophage–microglia as part
of the mechanisms involved in Sig-1R-mediated neuroprotection [87]. Nevertheless, one
of the studies aforementioned about the treatment of ALS motor neurons with SA4503
also tested PRE-084. Contrary to SA4503, PRE-084 did not reduce the cytosolic Ca2+ lev-
els [138]. These findings indicate that different Sig-1R ligands may have different effects on
MAMs-regulated Ca2+ homeostasis.

6.1.5. Fluvoxamine

Fluvoxamine is a selective serotonin reuptake inhibitor with high affinity for Sig-1R
that has been widely used in clinical practice as an antidepressant. Fluvoxamine has
shown to increase Sig-1R expression, inducing neuroprotection and protecting cells from
ER-stress [153]. This compound has also been found to rescue impaired mitochondrial
Ca2+ uptake and ATP production in hypertrophic cardiomyocytes [154] and protect against
cardiac dysfunction [155]. Furthermore, activation of Sig-1R by fluvoxamine has been
demonstrated to activate several antioxidant pathways [155,156]. For instance, in brain
and liver of oxidative stress-induced mice, fluvoxamine alleviated lipid peroxidation
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and oxidative stress by reducing malondialdehyde and nitric oxide levels and increasing
reduced glutathione (GSH) [157]. Accordingly, this drug exerted anti-inflammatory and
antioxidant properties by enhancing GSH levels and reducing the nitric oxide-dependent
oxidative marker 3-nitrotyrosine [158]. Special attention has been paid lately to fluvoxamine
regarding COVID-19. Clinically, this compound is well tolerated and widely available.
Its mechanisms of action are involved with the hallmarks of severe COVID-19 (reviewed
in [159]). At the moment, fluvoxamine has not been used in the clinical field beyond
antidepressant or COVID-19 purposes.

6.2. Mitochondrial Calcium Uniporter as a Therapeutic Target

The mitochondrial calcium uniporter (MCU) is one of the most important and highly
selective Ca2+ transporting complexes [160]. MCU is a crucial element of MAMs, acting
as a gatekeeper of Ca2+ and controlling the mitochondrial Ca2+ influx. In fact, it has
been determined that MCU and IP3R must have optimal distance to ensure mitochondrial
Ca2+ signaling in physiological conditions [161]. Located in the IMM, this pore-protein is
composed of several subunits. While the pore-forming and Ca2+-conducting subunit of
the MCU complex is named Mcu, the regulatory subunit encompasses MICU1; MICU2;
mitochondrial calcium uptake protein 1, 2, 3 (MICU3); essential MCU regulator (EMRE); mi-
tochondrial calcium uniporter regulator 1 (MCUR1); and mitochondrial calcium uniporter
regulatory subunit (MCUb) [162,163].

Specifically, MICU1 is an important gatekeeper located towards the mitochondrial
matrix, next to the IMM. MICU1 controls the mitochondrial Ca2+ influx by interacting with
Mcu, so when binding to Ca2+, its conformation changes from hexamers to oligomers and
activates MCU [164,165]. Knock out of MICU1 in mice causes significant mortality, marked
ataxia, and muscle weakness. Furthermore, patients with mutations in MICU1 exhibit
brain and muscle disorders, proximal myopathy, learning difficulties, and a progressive
extrapyramidal movement disorder [166]. Besides, MICU2 is also a gatekeeper and exhibits
an inhibitor role of Ca2+ uptake, preventing Ca2+ to cross the IMM unless it is above the
threshold. In fact, elevated Ca2+ levels in the intermembrane space are required to reach
the mitochondrial matrix through MCU due to its low Ca2+ affinity [167]. MICU3 displays
the same role as MICU2 but, in comparison, has a different tissue-dependent expression
pattern [168]. EMRE is a single-pass transmembrane protein that functions as a positive
regulator of MCU, and its interaction with MCU is essential for mitochondrial Ca2+ uptake,
acting as a gatekeeper and preventing mitochondrial Ca2+ overload [169,170]. MCUR1
exerts a scaffold role, binding Mcu and EMRE [171,172]. MCUb is the negative regulatory
subunit of MCU since its overexpression leads to a decreased Ca2+ intake by the MCU [173].

In the last decade, special interest has been taken in the modulation of MCU activity as
a novel therapeutic target. Most current therapeutic approaches are focused on the inhibi-
tion of ER–mitochondria Ca2+ exchange, mainly in cancer [174,175] and neurodegenerative
disorders [176] (such as AD [177] and PD [178]).

However, diseases such as type 2 diabetes point towards MCU activation to alleviate
mitochondrial dysfunction associated with dysregulation in intracellular Ca2+ homeostasis,
MAMs disruption, and defects in several functions regulated in this domain [179,180].
Targeting the MCU has been demonstrated to be beneficial in models with impaired ER–
mitochondria inter-organelle communication. For instance, MCU activation by spermine
increased cytosolic Ca2+ clearance by promoting mitochondrial Ca2+ buffering capability
in cardiomyocytes with cardiac hypertrophy. In this cellular model, SR–mitochondria
connections were decreased by the inhibition of Mfn2, leading to inhibition of ATP synthesis
and contributing to pathogenesis [181].

Besides, genetic modulation of MCU expression has proved to modulate mitochon-
drial Ca2+ uptake [182]. In this line, either MCU overexpression or MCU activation by
spermine reversed Pb2+-induced oxidative stress and inhibition of mitochondrial Ca2+

uptake in SH-SY5Y human neuroblastoma cells [183]. The promotion of mitochondrial
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Ca2+ import through MCU overexpression in glia recovered degenerative phenotypes and
ATP production in a FRDA Drosophila melanogaster model [90].

Kaempferol

The most relevant MCU enhancer described until now is Kaempferol, which has
demonstrated to enhance MCU, promoting Ca2+ import into the mitochondria and exhibit-
ing neuro and cardioprotective properties [184–188]. In 2004, Montero and collaborators
identified different flavonoids with the effect of stimulating mitochondrial Ca2+ entry
through MCU activation. The most active compound was Kaempferol, which increased
the rate of mitochondrial Ca2+ uptake by 85-fold [189]. In addition, Kaempferol modulates
autophagy to protect cells from malfunction and regulates ER stress [190,191]. Special
attention has been paid to Kaempferol recently due to its anti-inflammatory and antioxi-
dant properties. For instance, Kaempferol was able to induce NRF2 expression in brain
tissues [184]. A recent study suggests that Kaempferol augmented the phosphorylation of
PIK3 and Akt, thus allowing Keap-1 to release NRF2 and promote antioxidant response in
the nucleus [192].

Accordingly, in cerebellar granule cells, Kaempferol prevented cells from apoptosis,
exerting potent effects by blocking ROS production [193]. In ischemia–reperfusion injury
models, Kaempferol reduced mitochondrial dysfunction and reduced oxidative stress by
decreasing ROS and malondialdehyde levels, whereas GSH and GSH peroxidase levels
increased significantly [194–196]. In a D. melanogaster model of PD, kaempferol delayed
degenerative phenotype onset in a dose-dependent manner, accompanied by a reduc-
tion in oxidative stress markers [197]. Similar effects on phenotype and oxidative stress
were reported in a D. melanogaster model of AD [198]. Indeed, a study conducted with
921 participants concluded that kaempferol and other flavonoids are associated with lower
risk of developing AD [199]. Kaempferol was proposed as a bone-fide candidate for the
design of therapeutic approaches against familial ALS from a computational perspective
through molecular docking, quantum chemical studies, and molecular dynamics [200].

6.3. Other Approaches

In addition to the aforementioned approaches, other compounds may be suitable to
increase mitochondrial Ca2+ uptake without a specific ER–mitochondria target.

6.3.1. Taurine

Taurine is a sulfur-containing amino acid present in abundance in many excitable
tissues, including the brain, skeletal, and cardiac muscles. Physiological actions of tau-
rine include membrane stabilization, neurotransmission, and modulation of cellular Ca2+

levels [201]. El Idrissi and Trenkner evaluated the neuroprotective role of taurine in the
regulation of mitochondrial Ca2+ buffering in cerebellar granule cells. They demonstrated
an active role in the regulatory mechanisms of Ca2+ homeostasis, suggesting an enhance-
ment in mitochondrial function and regulation of intracellular Ca2+ [202,203]. Besides the
suggestion of a selective mechanism of taurine in mitochondrial Ca2+ uptake enhancement,
though the specific receptor of taurine is not known.

6.3.2. Nerve Growth Factor

Nerve growth factor (NGF) is a secreted neurotrophin involved in survival, mainte-
nance, and regeneration of specific types of neurons in the central and peripheral nervous
system [204]. It has been highlighted as a potential therapeutic option for neurodegenera-
tion due its role in apoptosis prevention [205], mitochondrial dysfunction protection [206],
mitochondrial remodeling, and intracellular Ca2+ mobilization [207,208]. In the context of
Ca2+ signaling, NGF has been demonstrated to increase cytosolic free Ca2+ concentration
in C6-2B glioma cells and PC12 cells [209], as well as mitochondrial Ca2+ [207]. NGF was
assessed in an open-label, dose-escalation study of encapsulated cell biodelivery of NGF in
AD patients. Authors reported that preliminary data of the NGF treatment seemed to slow
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the rate of atrophy depending on the subtype of AD [210]. For this reason, NGF treatment
should be further investigated for neuronal support.

6.3.3. MiCUps

Mitochondrial Ca2+ uptake enhancers (MiCUps) are a group of compounds recently
identified to increase mitochondrial Ca2+ import, especially in cardiomyocytes. Using
molecular ligand–protein docking and mutational analysis, a recent study has determined
Efsevin as a MiCUp that shifts the opening of the VDAC2 channel, promoting Ca2+ entry
to the mitochondria [211]. It has been mostly used in cardiac models, due to its ability to
regulate cardiac rhythmicity [187,212]. Ezetimibe and disulfiram have been recently identi-
fied as MiCUps, proving to efficiently suppress arrhythmogenesis in different experimental
models. The identification of such compounds underscores mitochondrial Ca2+ uptake as a
pharmacological target [213].

6.3.4. Antioxidants

Targeting the mitochondrial redox state could be a suitable therapeutic strategy to
recover ER–mitochondria communication. In this context, compounds may modulate
mitochondrial Ca2+ signaling to stabilize its redox state or directly target mitochondrial
ROS [214]. The first strategy has been discussed before; many of the aforementioned
compounds exert antioxidant properties in addition to its main mechanism of action,
which can readjust the ER–mitochondria Ca+2 flux and, thus, ensure a correct balance
in the ROS–antioxidant system. In the context of the second strategy, treatment with
antioxidants has been demonstrated to recover ER–mitochondria communication and Ca2+

exchange between the two compartments. Vitamin E restored mitochondrial Ca2+ uptake
in a cardiomyocyte model of FRDA [91]. Accordingly, trolox (mimic of vitamin E) and
N-acetylcysteine were able to recover both function and structure of MAMs in a neuronal
model of FRDA [90], suggesting an oxidative environment in MAMs is implied in the
pathophysiology of the disease. In essence, the use of antioxidants may be a good strategy
to both reduce redox environment in MAMs and potentiate Ca2+ influx in the mitochondria.

On the other hand, when mitochondrial function is impaired, it is realistic to assume
the involvement of different effectors and mechanisms. For this reason, some authors point
towards the use of a combination of antioxidants also known as ‘mitochondrial cocktails’,
due to its irrelevant toxicity, providing relevant benefits by increasing the spectrum of
action [215–218].

SS-31 or elamipretide is an aromatic–cationic tetrapeptide that readily penetrates
cell membranes and transiently localizes to the inner mitochondrial membrane. This
mitochondrial-targeted agent was found to interact with cardiolipin, an anionic phospho-
lipid located in the IMM and required for cristae formation. In addition, SS-31 accelerates
ATP recovery and increases the enzymatic activities of Fe-S enzymes, including aconitase
and complex II and III of the respiratory chain [219,220]. Another study suggested that
SS-31 could have therapeutic potential effects in preventing damage from oxidative stress
in neurocognitive disorders [221]. SS-31 has demonstrated to be safe and well tolerated. It
has been tested in a crossover clinical trial evaluating its efficacy in primary mitochondrial
myopathy for 4 weeks. Patients experienced a clinically meaningful change in the primary
endpoint, which was not significant [222]. Nonetheless, these and other relevant results
provided efficacy to support the initiation of a 6-month-long, phase-III study. Another
clinical trial (NCT04689360) is currently recruiting patients with genetically confirmed rare
diseases with known mitochondrial dysfunction [223].

Mitoquinone or MitoQ is an orally active mitochondria-targeted antioxidant that
mimics the role of the endogenous mitochondrial antioxidant coenzyme Q10 [224]. In
addition, MitoQ has demonstrated to substantially increase the antioxidant capacity of
coenzyme Q10 by modulating oxidative stress via activating the NRF2 pathway [225,226]
and increasing GSH levels [227]. Treatment in vitro and in vivo with MitoQ has provided
evidence about its beneficial effects in neuroprotection, as well as in restoring mitochondrial
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dynamics, bioenergetics, and the redox state [228,229]. MitoQ is currently being evaluated
in several clinical trials, including its assessment in AD (NCT03514875) [230], vascular
function (NCT02966665) [231], and multiple sclerosis (NCT04267926) [232], among others.

These and other antioxidants targeting mitochondrial dysfunction in neurodegenera-
tion have been extensively reviewed by several authors, including us [218,233–238].

7. Conclusions and Future Perspectives

Since mitochondria are intracellular dynamic compartments involved in multiple
mechanisms, the in-depth study of these mitochondrial-dependent pathways is crucial to
understand the pathophysiology of neurological and neuromuscular disorders. Particu-
larly, we highlight the importance of crosstalk communication between the ER and the
mitochondria in intracellular Ca2+ homeostasis and, therefore, in cell physiology. Since
MAMs are the structures carrying out such communication, their disruption involves
dramatic consequences that not only affect mitochondrial mechanisms, but also a plethora
of intracellular signaling pathways. An example of such disarrangement is exerted in
neurological disorders, as the proteins involved in these diseases are part of the protein
network of MAMs [86,90,239].

On the other hand, proteins belonging to MAMs are a growing list, which contributes
to the idea of the complexity and dynamism of these structures and, thus, the mechanisms
involved in its regulation. For this reason, it is also important to determine the properties
of MAMs in different cell types under distinct cellular conditions. The elucidation of these
pathways will provide valuable information about the physiopathology of diseases that
present impaired ER–mitochondria communication, opening new fields of research to
identify adequate treatments for patients.

We believe that restoration of MAMs communication may be a suitable strategy to
reverse this impairment. In addition, some patients suffering from neuromuscular diseases
usually undergo heart conditions [240–242]. Interestingly, the activation of targets, such as
Sig-1R, has demonstrated to have both neuro and cardioprotective effects. As compounds
such as pridopidine and blacarmesine are currently being evaluated in clinical trials, the
results obtained may be applicable to other diseases with common impaired mechanisms.
Furthermore, oxidative stress is a common hallmark in neurological disorders [234,243,244],
so the activation of antioxidant mechanisms has always been a common therapeutic strategy.
The fact that many compounds targeting mitochondrial Ca2+ uptake can, therefore, exert
antioxidant properties, making them more versatile in restoring the molecular defects
involved in these diseases.

In terms of future therapeutic approaches, special attention is being paid to miRNAs.
These small molecules regulate genetic expression by binding to its target mRNA and
can be detected in biological fluids. The identification of miRNA signatures could pro-
vide valuable information about diagnosis or prognosis, even in the early stages of the
disease. Besides, this should address the nature of targets and the extent of the biological
regulation of the occurring pathways. For instance, miR-20b has been found to mediate
MFN2 signaling, which can impair ER–mitochondria Ca2+ crosstalk and contribute to
cardiac hypertrophy [181]. This opens a new field of therapy development in MAMs
communication.

Neurological diseases, such as ALS, CMT, and FRDA, have no cure, so it is essential
to find therapeutic approaches that can improve patient’s wellbeing by either slowing the
onset of symptoms and/or delaying the progression of the disease, in addition to physical
therapy, occupational therapy, and surgery. The repurposing of compounds outlined in this
review could be a good strategy to test in vitro and in vivo models of disease. Furthermore,
the use of new in silico approaches, such as pharmacophore modeling and molecular
docking, are useful to ensure optimal molecular interactions with a specific biological
target. This may contribute to identifying new targets, drug discovery, and optimization
for specific treatments [245–247].
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