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Summary 
c-kit ligand (KL) activated mouse bone marrow-derived mast cells (BMMC) for the dose- and 
time-dependent release of arachidonic acid from cell membrane phospholipids, with generation 
of leukotriene (LT) C4 in preference to prostaglandin (PG)D2. KL at concentrations of 10 ng/ml 
elicited half-maximal eicosanoid generation and at concentrations of >50 ng/ml elicited a max- 
imal generation of -15  ng LTC4 and 1 ng PGD2 per 106 cells, with 20% net ~-hexosaminidase 
release 10 min after stimulation. Of the other cytokines tested, none, either alone or in combina- 
tion with KL, elicited or modulated the immediate phase of mediator release by BMMC, indi- 
cating strict specificity for KL. Activation of BMMC in response to KL was accompanied by 
transient phosphorylation of cytosolic phospholipase A2 and reversible translocation of 5-1ipoxy- 
genase to a cell membrane fraction 2-5 min after stimulation, when the rate of arachidonic acid 
release and LTC4 production were maximal. BMMC continuously exposed to KL in the pres- 
ence of IL-10 and IL-I~ generated LTC4 in marked preference to PGD2 over the first 10 min 
followed by delayed generation of PGD2 with no LTC4 over several hours. Pharmacologic studies 
revealed that PGD2 generation in the immediate phase depended on prostaglandin endoperoxide 
synthase (PGHS)-I and in the delayed phase on PGHS-2. Thus, KL provided a nonallergic stimulus 
for biphasic eicosanoid generation by mast cells. The immediate phase is dominated by LTC4 
generation with kinetics and postreceptor biosynthetic events similar to those observed after cell 
activation through the high affinity IgE receptor, whereas the delayed phase of slow and selective 
PGD2 production is mediated by induction of PGHS-2. 

T he ability of the stromal cytokine, c-kit ligand (KL) 1 
to directly activate mouse bone marrow-derived mast 

cells (BMMC) for prostanoid generation during 2-10 h and 
to prime these cells for IgE-dependent prostanoid and leu- 
kotriene (LT) generation after 1 d reveals biochemically sepa- 
rate responses over time (1, 2). Furthermore, the finding that 
BMMC can be stimulated directly by cytokines to generate 
prostanoids extends the recognition of the involvement of 
mast cells in non-IgE--dependent biologic processes. KL in the 
presence of IL-13 and/or IL-10 induced the transcription and 
translation of prostaglandin endoperoxide synthase (PGHS; 

1 Abbreviations used in this paper: BMMC, bone marrow-derived mast cells; 
cPLA2, cytosolic phospholipase A2; FLAP, 5-1ipoxygenase-activating pro- 
tein; KL, c-kit ligand; 5-LO, 5-1ipoxygenase; LT, leukotriene; MAP ki- 
nase, mltogen-actlvated protein kinase; MIP-lol, macrophage inflamma- 
tory protein-l~; MCP-1, monocyte chemoattractant protein-I; NGF, nerve 
growth factor; PGHS, PG endoperoxide synthase; TNP, trinitrophenyl. 

or cyclooxygenase)-2 leading to delayed PGD2 generation 
(1). In contrast, the immediate response of these mast cells 
to IgE-dependent activation was the generation of LTC4 
in marked preference to PGD2 (3), which was derived via 
PGHS-1 even when PGHS-2 was present and functional 
through cytokine treatment (1). BMMC treated with KL plus 
appropriate accessory cytokines for >1 d were primed for in- 
creased IgE-dependent acute PGD2 synthesis caused by up- 
regulation of PGHS-1, cytosolic phospholipase A2 (cPLA2), 
and hematopoietic PGD2 synthase (2). KL has previously 
been reported to initiate exocytosis of mast cells (4, 5) at con- 
centrations similar to those needed for proliferation (6), 
differentiation (7, 8), survival through inhibition of apop- 
tosis (9), adhesion (10), and chemotaxis (11). Because of the 
importance of identifying non-IgE-dependent mechanisms 
for mast cell activation and elaboration of the cysteinyl LTs, 
we have now analyzed the immediate response of BMMC 
to KL in terms of eicosanoid biosynthesis. 
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The initial step in arachidonic acid metabolism is the re- 
lease of free arachidonic acid from cell membrane phospho- 
lipids by phospholipase A2 (PLA2). Among the several char- 
acterized mammalian PLA2 enzymes, 85-kD cPLA2 and 
14-kD type II secretory PLA2 are implicated in supplying 
arachidonic acid to downstream biosynthetic enzymes (12). 
cPLA2 is rapidly activated by translocation from the cytosol 
to a cell membrane compartment in response to an increase 
in cytoplasmic Ca 2+ concentration (13) and by phosphory- 
lation by mitogen-activated protein (MAP) kinase (14) in re- 
sponse to a wide variety of stimuli including cross-linking 
of FceRI on mast cells (15). Type II PLA2 has been impli- 
cated in the mechanism of degranulation (16) and in making 
arachidonic acid available for prostanoid biosynthesis (17, 18), 
but it has not been implicated in LT biosynthesis (18). After 
crosslinking of FceRI, 5-1ipoxygenase (5-LO) is activated by 
reversible Ca2+-dependent translocation to the perinuclear 
membrane (19), where 5-LO-activating protein (FLAP) pre- 
sents arachidonic acid for sequential conversion to 5-hydroper- 
oxyeicosatetraenoic acid and then to LTA4 (20). LTA4 is con- 
jugated with reduced glutathione to form LTC4 by LTC4 
synthase, an integral perinuclear membrane protein that has 
significant homology with FLAP (21). PGHS, which occurs 
in two integral membrane isoforms, catalyzes the oxygena- 
tion of arachidonic acid to PGH2. Only PGHS-1 is constit- 
utively expressed, and the expression of the two isoforms is 
differently regulated by particular growth factors and cytokines 
(1, 2, 22-30). The conversion of PGH2 to PGD2 is regulated 
in mast cells by a glutathione-dependent, cytosolic, hemato- 
poietic PGD2 synthase (2, 31). 

We now report that KL elicits the rapid generation of 
LTC4 from BMMC in a 10-15-fold excess over PGD2. Tran- 
sient phosphorylation of cPLA2 and transient translocation 
of 5-LO occurred in parallel with the release of arachidonic 
acid and the generation of LTC4, respectively. The immedi- 
ate phase of Kbinitiated eicosanoid release is not influenced 
by the presence of accessory cytokines and is followed by a 
delayed, selective generation of PGD2 via PGHSo2 that re- 
quires I1.-10 and/or IL-I~/as accessory cytokines. The finding 
that KL, a tissue-derived factor, directly activates BMMC for 
eicosanoid generation at a level comparable to IgEodependent 
stimulation reveals a likely alternative route for the appear- 
ance of lipid mediators in allergic and inflammatory processes. 
Furthermore, the KL-dependent regulation of arachidonic acid 
metabolism in BMMC can be divided into three sequential 
phases: immediate, delayed, and priming. 

Materials and Methods 

Materials. Recombinant mouse KL and Ibl0 were acquired 
through expression in baculovirus, and their concentrations were 
determined as previously described (1, 2). Recombinant mouse IL- 
l/3, ID3, IL-4, IL-6, GM-CSF, TGF-~I, macrophage inflammatory 
protein-Ice (MIP-lc~), monocyte chemoattractant protein-1 (MCP- 
1), IFN-% and TNF-ce were purchased from Genzyme Corp. (Cam- 
bridge, MA). 2.5 S nerve growth factor (NGF) and indomethacin 
were purchased from Sigma Immunochemicals (St. Louis, MO). 
Recombinant mouse Ib9 (32) was provided by C. Uyttenhove and 

J.-C. Renauld (Ludwig Institute for Cancer Research, Brussels, 
Belgium). Rabbit antiserum to human cPLA2 was provided by J. 
D. Clark (Genetics Institute, Cambridge, MA), rabbit antiserum 
to 5-LO was from J. F. Evans (Merck Frosst, Quebec, Canada), 
and the PGHS-2 inhibitor, NS-398 (33) was from J. Trzaskos (Merck 
DuPont, Wilmington, DE). 

Activation of BMMC with KL. Bone marrow cells from male 
BALB/cJ mice (Jackson Laboratory, Bar Harbor, ME) were cul- 
tured for 3-6 wk in 50% enriched medium (RPMI 1640 containing 
100 U/ml penicillin, 100 #g/ml streptomycin, 10 #g/ml gentamycin, 
2 mM t-glutamine, 0.1 mM nonessential amino acids, and 10% 
FCS/50% WEHI-3 cell (American Type Culture Collection, Rock- 
ville, MD)-conditioned medium as described (1, 2). After 3 wk, 
>97% of the cells in culture were BMMC as assessed by staining 
with toluidine blue or with alcian blue and safranin. BMMC, washed 
once with enriched medium, were stimulated by resuspension with 
KL in enriched medium at a cell density of 5 x 106 cells per ml 
and were incubated for various periods. The concentration of KL 
used in typical experiments was 100 ng/ml. In separate experiments, 
BMMC were incubated for 10 min with IL-lfl (5 ng/ml), Ib3 (100 
U/ml), Ib4 (1.5 ng/ml), Ib6 (5 ng/ml), II.-9 (100 U/ml), Ibl0 
(10 U/ml), GM-CSF (100 U/ml), TGF-fll (2.5 ng/ml), NGF (500 
ng/ml), MIP-lc~ (10 -7 M), MCP-1 (10 .7 M), IFN-3, (100 U/ml), 
or TNF-c~ (500 U/ml) either alone or in combination with 100 
ng/ml KL. The reaction was stopped by centrifugation of the cells 
at 120 g for 5 min at 4~ and the supernatants were retained for 
assay of mediator release. The cell pellets were suspended in en- 
riched medium and disrupted by freeze-thawing. ~-Hexosaminidase, 
a marker of mast cell degranulation, was quantitated in the super- 
natants and pellets by spectrophotometric analysis of the hydrol- 
ysis ofp-nitrophenyl-B-D-2-acetamido-2-deoxyglucopyranoside (34). 
The percent release of B-hexosaminidase was calculated by the for- 
mula [S/(S + P)] x 100, where S and P are the B-hexosaminidase 
contents of equal portions of each supernatant and cell pellet, respec- 
tively. PGD2 and LTC4 were assayed by radioimmunoassay (Amer- 
sham Corp., Arlington Heights, IL). 

For comparison to IgE-dependent activation, BMMC were sus- 
pended at 1 x 107 cells per ml in WEHI-3 cell-conditioned 
medium and sensitized with 10 /~g/ml monoclonal IgE anti- 
trinitrophenyl (TNP) for 30 rain. After being washed twice with 
enriched medium, the cells were resuspended in enriched medium 
at 5 x 106 cells per ml and were incubated at 37~ for 10 min 
with 100 ng/ml TNP-BSA or with 100 ng/ml KL. Mediator re- 
lease was assessed as described above. 

In certain experiments, the effects of indomethacin and NS-398 
on immediate PGD2 release were assessed. BMMC were cultured 
with 100 ng/ml NS-398, 100 ng/ml indomethacin, or in culture 
medium without inhibitors, together with 10 #g/ml IgE anti-TNP, 
at a density of I x 107 cells per ml for 2 h. The cells were then 
washed and activated with 100 ng/ml TNP-BSA or 100 ng/ml KL 
at 5 x 106 cells/ml for 10 min. To assess the effect of these in- 
hibitors on delayed PGD2 release, replicate cells were cultured at 
a density of I x 10 + cells per ml for 2 h in medium containing 
100 ng/ml KL, 10 U/ml Ibl0, and 5 ng/ml Ibl/~, and then for 
3 h more with these cytokines in the absence or presence of each 
inhibitor. At the end of each experiment, the cells were pelleted 
and the PGD2 released into the supernatant was measured by ra- 
dioimmunoassay. 

Measurement of Arachidoni~ Acid Release from Activated BMMC. 
BMMC were suspended in 50% WEHI-3 cell-conditioned medium 
at 1 x 10+ cells per ml and were incubated with 1/~Ci/ml [3H]ar- 
achidonic acid (100 Ci/mmol) (New England Nuclear, Boston, MA) 
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at 37~ for 12 h. The cells were then washed three times with 
enriched medium and stimulated with KL as described above. The 
[3H]arachidonic acid associated with the cell pellet and that 
released into the supernatant were quantitated in a liquid B-scin- 
tillation counter (Beckman Scientific Instruments, Palo Alto, CA). 
The percent release of [3H]arachidonic acid was calculated by the 
formula [S/(S + P)] x 100, where S and P are the cpm of equal 
portions of supernatant and cell pellet, respectively. Alternatively, 
the total lipids in replicate samples of cells and supernatants were 
extracted as described (17) and were developed by thin layer chro- 
matography on silica gel plates (Sigma) with a solvent system of 
chloroform/methanol/acetic acid (65:25:10 vol/vol). The spots of 
each phospholipid and neutral lipid were visualized by exposure 
to I2 vapor and scraped from the plates; the radioactivity was then 
counted in a liquid B-scintillation counter. 

Phosphorylation of cPLA2. BMMC (2 x 106 cells/ml) were 
prelabeled for 1.5 h at 37~ with [32p]orthophosphate (500 
/xCi/ml) (Amersham) in phosphate-free Eagle's MEM (Sigma) sup- 
plemented with 5% FCS, 50 U/ml IL3, and in the case of IgE/Ag 
stimulation, 10 #g/ml IgE anti-TNP. After being washed, the cells 
were resuspended in 800/~1 of enriched medium at a density of 
5 x 106 cells per ml, and activated with 100 ng/ml KL or with 
100 ng/ml TNP-BSA as described above. The cells were pelleted 
by centrifugation at 10,000 g for 20 s at 4~ and were immedi- 
ately lysed by 10 min incubation at 4~ in 200/zl of buffer com- 
prising 10 mM sodium phosphate buffer, pH 7.4, 5 mM NaaVO4, 
50/~g/ml leupeptin (Sigma), 1.5/xM pepstatin A (Sigma), 1 mM 
PMSF (Sigma), and 0.1% NP-40 (Boehringer Mannheim GmbH, 
Mannheim, Germany). The lysate was centrifuged at 10,000 g for 
20 s at 4~ The resulting supernatant was mixed with 20/~1 of 
a 50% (vol/vol) suspension of protein A-Sepharose (Pharmacia Fine 
Chemicals, Piscataway, NJ) in lysis buffer that had been preincubated 
with 5/xl of antiserum to cPLA2 for 1 h at 4~ After incuba- 
tion for 2 h at 4~ the beads were sedimented by brief centrifuga- 
tion at 10,000 g for 20 s at 4~ and washed three times with the 
lysis buffer. The proteins bound to the beads were solubilized by 
boiling for 5 min, applied to 10% SDS-PAGE (Schleicher & Schuell, 
Inc., Keene, NH), and electrophoresed. The separated proteins were 
electroblotted onto a nitrocellulose membrane (Bio-Rad Laborato- 
ries, Hercules, CA) in a transfer buffer consisting of 20 mM Tris, 
150 mM glycine, and 20% methanol with a Mini-Trans-Blot Elec- 
trophoretic Transfer Cell (Bio-Rad) at 250 V for 1.5 h. Immuno- 
precipitated, phosphorylated protein was visualized by autoradiog- 
raphy at -80~ with XAR-5 film (Eastman Kodak Co., Rochester, 
NY). The membrane was then sequentially treated with the fol- 
lowing: 5% nonfat milk in 10 mM Tris-HC1, pH 7.4, containing 
150 mM NaC1 and 0.1% Tween 20 (Bio-Rad) (TBS-Tween) for 
1 h; antiserum against cPLA2 at a dilution of 1:2,000 in TBS- 
Tween for 1 h; TBS-Tween for three washes; and horseradish 
peroxidase-conjugated goat anti-rabbit IgG (Bio-Rad) (1:8,000 di- 
lution) in TBS-Tween for I h. After five washes, the protein bands 
were visualized with a chemiluminescent technique using an ECL 
Western blot analysis system (Amersham). In preliminary experi- 
ments, cPLA2 in cell lysates (4 x 106 cells equivalents) was com- 
pletely and quantitatively precipitated by 5/xl of the antiserum 
against cPLA2 under the conditions described (data not shown). 

5-L0 Transtocation. Before and after treatment with cytokines, 
BMMC (5 x 106 cells) were pelleted by centrifugation at 10,000 g 
for 20 s at 4~ and were immediately frozen in dry ice/ethanoh 
Rapid freezing is reported to be essential for the detection of 
membrane-bound 5-LO in BMMC after IgE/Ag stimulation (19). 
Then 0.5 ml of a buffer composed of 50 mM Tris-HC1, pH 7.4, 

5 mM Na3VO4, 50 #g/ml leupeptin, 1.5 #M pepstatin A, and 1 
mM PMSF, precooled at 4~ was added, and the cells were dis- 
rupted by sonication (Branson sonifier; 60% work cycle, setting 
6; Branson Sonic Power, Danbury, CT). The lysate was centrifuged 
at 100,000 g for 1 h at 4~ The resulting pellet was reconstituted 
in 100 #1 of the same buffer. 10-#1 portions of the 100,000 g super- 
natant and pellet were resolved in 10% SDS-PAGE, electroblotted 
to a nitrocellulose membrane, and immunoblotted with rabbit an- 
tiserum against 5-LO at a dilution of 1:5,000 as described above. 
Translocation of 5-LO was defined by the immunodetection of 5-LO 
in the 100,000 g pellet. 

R e s u l t s  

Time Course, Dose Dependence, and Cytokine Specificity of 
Eicosanoid Release from BMMC Activated with KL. When 
BMMC were resuspended in enriched medium containing 
100 ng/ml KL, the release of ~/-hexosaminidase was detect- 
able by 1 rain (5.1 • 0.6% release, mean _+ SEM, n = 3) 

and reached a near maximum of 25.4 • 1.7% (n = 3) by 
5 rain. [3H]arachidonic acid release into the supernatant 
from prelabeled BMMC was evident by 1 rain (1.5 • 0.3%, 
n = 5) and reached a maximum of 12.1 __ 2.1% (n = 5) 
by 5 rain. LTC4 release was barely detectable for the first 2 
rain, reached half-maximum at 5 rain, and plateaued at a max- 
imum of 13.9 • 1.1 ng per 106 cells (n = 3) by 10 rain. 
PGD2 release was apparent by 2 rain and increased to a max- 
imum of 1.0 _+ 0.2 ng per 106 cells (n = 3) at 10 rain 
(Fig. 1). 

The dependence of mediator release from BMMC on the 
concentration of KL was examined after 10 rain of stimula- 
tion (Fig. 2). ~-Hexosaminidase, arachidonic acid, LTC4, 
and PGD2 were released in a dose-dependent manner; all 
reached maximum levels with a KL concentration of 50-100 
ng/ml. However, interpolation from the dose-response curves 
revealed an EC50 of '-10 ng/ml for the release of [3H]ara- 
chidonic acid, LTC4, and PGD2 compared to an ECs0 of 
"~25 ng/ml for B-hexosaminidase release, reflecting greater 
sensitivity of arachidonic acid metabolism than of exocytosis 
to the action of KL. 

Because the time course of KL-stimulated mediator release 
was comparable to that of IgE-dependent activation, the two 
processes were compared for product release at 10 rain, which 
represented a plateau for each reaction. BMMC sensitized with 
hapten-specific IgE and stimulated with specific Ag released 
twofold more 15-hexosaminidase, 1.5-fold more arachidonic 
acid, 2.9-fold more LTC4, and 2.3-fold more PGD2 than 
BMMC stimulated with 100 ng/ml KL (Table 1). Thus, the 
product profiles were similar in amount and distribution with 
LTC4/PGD2 ratios of 11:1 and 9:1, respectively, for IgE- 
dependent and Kbinitiated activation. Kbdependent release 
of each mediator was markedly reduced when BMMC were 
activated in the absence of extracellular Ca 2+ (Table 1). 

Among the cytokines evaluated, Ib3 (Fig. 3), IL-4, Ib6, 
IL-9, IL-10, IL-1B, GM-CSF, TGF-/~I, NGF, MIP-Ior MCP-1, 
IFN-'y, and TNF-cx (n = 4; data not shown) did not directly 
induce mediator release from BMMC during 10 rain incuba- 
tion at the concentrations noted in Materials and Methods. 
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Figure 1. Time course of the release of ~-hexosaminidase (Beta-HEX), 
araehidonic acid (AA), LTC4, and PGD2 from BMMC treated with KL. 
BMMC were incubated with 100 ng/ml KL for the indicated periods, 
and the release of each mediator was assessed as described in Materials 
and Methods. The values are the mean _+ SEM of three to five indepen- 
dent experiments. 
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Figure 2. Dose-dependent effect of KL on immediate mediator release 
from BMMC. BMMC were incubated for 10 min with the indicated con- 
centrations of KL, and the release of each mediator was assessed as de- 
scribed in Materials and Methods. The values are the mean _+ SEM of 
four independent experiments. 

These cytokines neither enhanced nor suppressed mediator 
release from BMMC activated by 100 ng/ml KL for 10 min 
or by a suboptimal concentration of 10 ng/ml KL (n -- 2; 
data not shown). Furthermore, the combination of KL + 
IL-10 + IL-13, which is optimal for induction of PGHS-2- 
dependent PGD2 generation during 2-10 h (1), did not elicit 
any greater PGD2 generation during 10 min, the interval 
used for assessing the immediate response, than did KL alone 

(Fig. 3). Thus, BMMC treated with KL in combination with 
IL-IO and IL-1B as accessory cytokines exhibited predominant 
generation of LTC4 with a small amount of PGD2 during 
the immediate response, followed by a delayed generation of 
PGD2 extending from 2-10 h with no appreciable genera- 
tion of LTC4 (Fig. 3). Exocytosis did not accompany the 
latter process (data not shown). 

Activation of cPLA2 in BMMC Treated with KL. After 
a 12-h preincubation of BMMC with [ZH]arachidonic acid, 
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Table 1. Immediate Mediator Release from BMMC Activated with KL or with IgE/Ag 

B-Hexosaminidase Arachidonic acid LTC4 PGD: 
Treatment Ca 2+ (%) (%) (ng/106 cells) (ng/106 cells) 

KL + 18.0 +_ 6.7 14.5 _+ 1.3 15.3 + 2.2 1.7 _+ 0.2 
KL - 6.3 _+ 1.3" 2.4 _+ 0.2* 0.4 _+ 0.4* 0.3 +_ 0.3* 
IgE/Ag + 36.0 + 3.1" 21.0 _+ 4.0* 43.0 _+ 3.7* 3.7 _+ 0.7+ 

BMMC were treated for 10 min with KL or with IgE/Ag in the presence or absence of Ca:+, as described in Materials and Methods. Values represent 
the mean _+ SEM of three experiments. 
* P <:0.05 and * P <0.01 vs KL in the presence of Ca :+ . 

99% of the radioactivity was consistently incorporated into 
phospholipid pools, mainly into phosphatidylethanolamine 
(55.0%) and phosphatidylcholine (31.6%), followed by phos- 
phatidylinositol/phosphatidylserine (11.2%) and other phos- 
pholipids (1.4%). After incubation with 100 ng/ml KL for 
10 min, free arachidonic acid increased 12-fold to 13.6%, ac- 
companied by decreases in the percent of total [3H]archi- 
donic acid remaining in phosphatidylethanolamine and phos- 
phatidylcholine without any appreciable changes in other 
phospholipids (Table 2). In terms of total counts, the decre- 
ment from these two phospholipids of 9.1 and 3.8% for a 
total of 12.9% matched the net 12.5% increase in free arao 
chidonic acid. 

To assess the activation of cPLA2 in terms of phosphory- 
lation, BMMC were preincubated with [32p]orthophosphate, 
sensitized with IgE, activated with either KL or with Ag 
for 2 min, lysed, and immunoprecipitated with antiserum 
against cPLA2. The immunoprecipitates were resolved on 
SDS-PAGE, transfered to a nitrocellulose membrane, and 
visualized by autoradiography. The immunoprecipitates con- 
tained a single major phosphorylated protein with a molec- 
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Figure 3. Biphasic cytokine-initiated eicosanoid generation. BMMC 
were incubated with IL-3 (squares), KL (triangles), or KL + II=10 + IL-1/~ 
(circles) for the indicated periods, and the release of PGD2 (open symbols) 
and LTC4 (closed symbols) was assessed as described in Materials and 
Methods. The values are the mean _+ SEM of four independent experiments. 

ular mass of ,,o100 kD (Fig. 4 A), which was identified as 
cPLA2 by immunoblotting with the same anti-cPLA2 Ab 
(data not shown). Increased incorporation of 32p into cPLA2 
protein was demonstrated in KL-treated BMMC as compared 
to BMMC treated with IL-3 as a negative control, and was 
comparable with that observed in BMMC activated with 
IgE/Ag (Fig. 4 A). Kinetic experiments revealed that phos- 
phorylation of cPLA2 in response to KL was detectable at 
1 min, reached a maximum at 2-5 min, a time when the 
rate of arachidonic acid release was maximal, and thereafter 
declined (Fig. 4 B). 

Reversible Translocation of 5-LO in BMMC Treated with KL. 
The translocation of 5-LO from the cytosol to a cell mem- 
brane compartment was assessed after activation of BMMC 
with 100 ng/ml KL. SDS-PAGE/immunoblotting was per- 
formed with the 100,000 g supernatants and pellets of the 
lysates of BMMC that were unstimulated or stimulated with 
KL for 2-10 min (Fig. 5). 5-LO protein in the membrane 
fractions increased in KL-treated cells relative to that in IL- 
3-treated cells after 2 rain, although most of the 5-LO re- 
mained in the 100,000 g supernatants (Fig. 5 A). The in- 
crease in 5-LO protein in the 100,000 g pellet was maximal 

Table 2. Liberation of Arachidonic Acid from Phopsholipids 
after Activation of BMMC with KL 

Lipids 

[3H]Arachidonic 
acid incorporated 

(% of total) 

No stimulus KL 

Phosphatidylethanolamine 55.0 -+ 0.6 45.9 _+ 3.0* 
Phosphatidylcholine 31.6 _+ 0.4 27.8 + 1.5" 
Phosphatidylinositol/ 

phosphatidylserine 11.2 _+ 0.1 11.8 -+ 1.6 
Other phospholipids 1.4 _+ 0.2 1.1 +_ 0.1 
Free arachidonic acid 1.1 _+ 0.1 13.6 -+ 0.2* 

[3H]Arachidonic acid-labeled BMMC were treated with 100 ng/ml KL 
for 10 min, and lipids were extracted and separated as described in Materials 
and Methods. The values are mean _+ SEM of three experiments. 
* P <0.05 vs no stimulus. 
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Figure 4. Phosphorylation of cPLA~. (A) BMMC prelabeled with 32p 
were treated for 2 min with 100 U/ml II.-3, or 100 ng/ml KL, or were 
sensitized with 10/zg/ml IgE anti-TNP and activated for 2 min with 100 
ng/ml TNP-BSA. (B) BMMC prelabeled with 32p were stimulated with 
100 ng/ml KL for the indicated periods. The cells were lysed, immuno- 
precipitated with anti-cPLA2, resolved on SDS-PAGE, transferred to a 
nitrocellulose membrane, and visualized by autoradiography, as described 
in Materials and Methods. 

after 2-5 min of treatment with KL, a time when the rate 
of LTC4 generation was maximal, and returned to near basal 
levels by 10 min (Fig. 5 B). 

Effect of PGHS Inhibitors on KLstimulated Mediator Release 
from BMMC. When BMMC were treated for 3 h with 
NS-398, a reagent that selectively and irreversibly inactivates 
PGHS-2 (33), and then were stimulated with KL or with 
IgE/Ag, there was no inhibition of the generation of PGD2 
during the first 10 min (Table 3). In contrast, the generation 
of PGD2 by replicate cells that were cultured with KL, IL-10 
and IL-I~ for 5 h was markedly suppressed (~82% inhibi- 
tion) by NS-398. By comparison, treatment of BMMC for 
3 h with indomethacin (Table 3) or aspirin (data not shown), 
which are nonspecific but more selective inhibitors of PGHS-1 
than PGHS-2 (35, 36), markedly inhibited each of the three 
reactions by >90%. 

Discussion 

The demonstration that the 5-I.O pathway to LTC4 gen- 
eration can be directly activated in mast cells by a tissue-derived 
cytokine, KL, reveals an alternative non-IgE-dependent mech- 
anism for activation of this pathway for lipid mediator syn- 
thesis. The biochemical steps used by KL for arachidonic acid 
release and processing are those also recruited by IgE-dependent 
activation; and the kinetics, the amounts, and the ratio of 
LTC4/PGD2 elaborated are comparable. The associated 
finding that continuous KL stimulation in the presence of 
two accessory cytokines, IL-1B and IL-10, leads to delayed selec- 
tive generation of PGD2 at 2-10 h (1) demonstrates sequen- 
tial direct cytokine effects on the same target cell for eicosa- 
noid biosynthesis with different major products in the 
immediate and delayed phases. Taken together, these direct 
and time-dependent responses to KL of an effector cell of 
allergic inflammation, the mast cell, reveal previously unex- 
plored pathways for providing membrane-derived bioactive 
mediators. 

Figure 5. Translocation of 5-LO. (A) BMMC were treated for 2 min 
with either 100 ng/ml KL or 100 U/ml IL-3. (B) BMMC were treated 
with 100 ng/ml KL for the indicated periods. The distribution of 5-LO 
in the 100,000 g supernatant (S) and pellet (P) was assessed by SDS- 
PAGE/immunoblotting as described in Materials and Methods. 

When BMMC were exposed to KL, there was rapid mobili- 
zation of arachidonic acid from cell membrane phospholipids, 
followed by substantial generation of LTC4 in preference to 
PGD2 accompanied by exocytosis of ~-hexosaminidase (Fig. 
1). Exocytosis was apparent within the first minute and reached 
a maximum to a plateau at 5 min. Eicosanoid generation oc- 
curred more slowly than exocytosis and was preceded by the 
release of arachidonic acid from cell membrane phospholipids. 
Thus, arachidonic acid release was seen within 1 min of ex- 
posure to KL and was followed by detectable release of LTC4 
and PGD2 by 2-5 rain, reaching a plateau by 10 min (Fig. 
1). The dose-response studies revealed that the release of ara- 
chidonic acid and the synthesis of LTC4 and PGD2 were 
more sensitive than exocytosis to the action of KL, with 
ECs0 values of ~10 ng/ml KL for arachidonic acid metabo- 
lism as compared to * 2 5  ng/ml KL for exocytosis (Fig. 2). 
As each event was elicited through the same receptor, the 
different sensitivity to the action of KL presumably lies in 
the different postreceptor events leading to either arachidonic 
acid metabolism or exocytosis. A near maximal response was 
observed at '~50 ng/ml KL (Fig. 2), a concentration similar 
to that which induces proliferation of BMMC (2, 6) and 

Table 3. Effect of NS-398 and Indomethacin on PGD2 
Generation 

PGD2 (ng per 106 cells) 

No Indo- 
Treatments inhibitor NS-398 methacin 

IgE/Ag (10 min) 2.3 _+ 0.3 2.8 • 0.3 <0.2* 
KL (10 rain) 1.3 • 0.2 1.4 • 0.3 <0.2* 
KL + IL-10 + 

IL-I~ (5 h) 3.8 + 0.5 0.7 • 0.3* <0.2* 

BMMC were activated in the presence or absence of inhibitors as described 
in Materials and Methods. The values are the mean _+ SEM of five ex- 
periments. 
* P <0.01 and ~ P <0.05 vs no inhibitor. 
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cytosis of human skin mast cells and rodent serosal mast cells 
(4, 5). The dose dependence of immediate LTC4 generation 
from BMMC in response to KL is also comparable with that 
observed for the delayed phase of cytokine-induced PGD2 
generation via PGHS-2 (1) and for priming of BMMC for 
enhanced IgE-dependent PGD2 and LTC4 generation (2). 

KL-initiated immediate activation of BMMC has kinetics 
similar to those of IgE/Ag activation. The product profile 
elicited by KL is also comparable to that elicited by IgE/Ag 
with the generation of LTC4 in preference to PGD2 in a 
molar ratio of "~10:1 (Table 1). Previous studies, in which 
activation of BMMC through FcytLIII was compared to that 
through FceRI (37), also revealed that the ratio of products 
acutely generated via the 5-LO and the cyclooxygenase 
pathways is determined by the cell phenotype rather than the 
ligand. KL and IgE/Ag fall into a group of mast cell acti- 
vators that are dependent on extracellular Ca 2§ (Table 1), 
thereby distinguishing them from G protein-coupled agonists, 
such as substance P and compound 48/80, which elicit mast 
cell activation independent of extracellular Ca 2+ (38). More- 
over, both KL and IgE/Ag trigger mast cell exocytosis (2-5), 
adhesion (10, 39), and proliferation (6, 40); stimulate tyro- 
sine phosphorylation leading to activation of the ras/MAP 
kinase pathway (41, 42); and induce the transcription of im- 
mediate early genes, such as c-jun and c-jos (43, 44). Thus, 
both receptors, irrespective of their divergent structures, ac- 
tivate several common signal transducing molecules to elicit 
similar responses in mast cells. 

To identify the biochemical steps leading to rapid lipid medi- 
ator generation in KL-treated BMMC, the posttranslational 
modification of the individual enzymes involved in postrecep- 
tor metabolism of arachidonic acid to LTC4 and PGD2 was 
assessed. Our studies reveal that the events after signal trans- 
duction that lead to immediate generation of LTC4 by KL 
include phosphorylation of cPLA2 (Fig. 4) and translocation 
of 5-LO (Fig. 5). cPLA2 was phosphorylated transiently after 
activation of BMMC by KL and reached a maximum at 2 
rain, when the rate of arachidonic acid release was maximal 
(Fig. 4). Dephosphorylation of cPLA2 at 10 min coincided 
with the loss of further arachidonic acid release. Because both 
KL and IgE/Ag stimulate MAP kinase via a ras-dependent 
postreceptor pathway (41, 42), it is likely that the phosphory- 
lation of cPLA2 observed in both systems (15) is mediated 
by MAP kinase. Furthermore, both KL and IgE/Ag increase 
intracellular Ca :+ concentrations (4, 45), which is a critical 
event in the activation of cPLA2. 

The translocation of 5-LO to the membrane fraction 2-5 
rain after activation of BMMC with KL, when the rate of 
LTC4 generation was maximal, was transient and was 
reversed by 10 min (Fig. 5). IgE-dependent activation of mast 
cells for LTC4 generation is also associated with reversible 
translocation of 5-LO to the membrane fraction, whereas the 
continuous elevation of cytosolic Ca 2+ associated with iono- 
phore stimulation causes permanent translocation to the mem- 
brane leading to inactivation of the enzyme (19). Thus the 
transient Ca 2+ influx initiated by KL (4) facilitates activation 
and translocation of both cPLA2 and 5-LO, thereby allow- 

ing the released arachidonic acid to be sequentially metabo- 
lized by 5-LO and LTC4 synthase at the perinuclear mem- 
brane (21, 46). Other mechanisms, such as the interaction 
of 5-LO with Grb2 and cytoskeletal proteins through its SH3- 
binding motif (47), might also be involved in 5-LO translo- 
cation. 

The other cytokines that were studied had no effect on 
immediate mediator release either alone or in combination 
with KL. The lack of effect of NGF and 3-chemokines is 
of particular note because these cytokines are each reported 
to stimulate mediator release from certain populations of mast 
cells or basophils. Both NGF and KL stimulate exocytosis 
from rat peritoneal mast cells (5, 48), sustain viability of these 
cells in culture by inhibiting apoptosis (9, 49), and induce 
maturation of BMMC toward the connective tissue mast cell 
phenotype (7, 8, 50). MIP-lc~ and MCP-1 not only act as 
potent histamine-releasing factors for human basophils but 
also induce histamine release from mouse connective tissue 
mast cells in vitro and in vivo (51, 52). Whereas there are 
no anciUiary cytokine requirements for immediate eicosanoid 
generation in response to KL, accessory cytokines are impor- 
tant for the delayed response to KL (1) and for the priming 
by KL for IgE-dependent activation of BMMC (2). The KL- 
initiated, PGHSo2-dependent, delayed phase of PGD2 gener- 
ation requires IL-10 and/or IL-1/~ as accessory cytokines (1); 
and priming of BMMC by KL for increased IgE-dependent 
PGDz generation is augmented by IL-3, IL-9, or IL-10 (2). 
Thus, the immediate activation of BMMC by KL is unique 
in terms of its apparent specificity to a single cytokine and 
the lack of enhancement by other cytokines. 

Incubation of BMMC with the triad of KL + IL-10 + 
IL-1B revealed two phases of eicosanoid biosynthesis. The im- 
mediate phase was characterized by the generation of LTC4 
in preference to PGD2 and was followed 2-10 h later by the 
release of PGD2 in the absence of detectable LTC4 genera- 
tion (Fig. 3). Inhibition by aspirin and indomethacin but not 
by NS-398, together with the observation that BMMC con- 
stitutively express PGHS-1 but not PGHS-2 when maintained 
in IL-3 alone (1, 2), indicate that PGHS-1 is the isoform that 
mediates rapid prostanoid biosynthesis in response to KL (Table 
3), as in the case of IgE/Ag stimulation (1, 2). This contrasts 
with the dependence of the delayed phase of PGD2 genera- 
tion on PGHS-2 (1) (Table 3). 

Various physiologic, nonimmunologic mast cell secreta- 
gogues have been characterized. Many of these, such as sub- 
stance P (38), C5a (53), and chymase (54), have been shown 
to elicit degranulation and PGD2 generation from human 
skin mast ceils and rat peritoneal mast cells, which are poor 
sources of LTC4. Adenosine selectively primes BMMC for 
degranulation in response to IgE/Ag with no effect on LT 
generation (55). Thrombin elicits degranulation of BMMC 
in the absence of LTC4 synthesis (56). Thus, of the other 
nonimmunologic activators of mast cells, none has been shown 
to elicit substantial LT generation, and in no instance have 
the postreceptor biosynthetic events leading to eicosanoid syn- 
thesis been examined. 

Our current studies reveal that KL regulates eicosanoid 

203 Murakami et al. 



Figure 6. Diagram of KL regulation of arachidonic 
acid metabolism in BMMC. When BMMC are treated 
with KL with the appropriate accessory cytokines, the 
expression of each enzyme involved in arachidonic acid 
metabolism and its product is changed as illustrated. In 
the first phase, KL rapidly activates cPLA2 and 5-I.O, 
leading to immediate generation of LTC4 in preference 
to PGD2, via PGHS-1, within minutes. In the second 
phase, PGHS-2 is induced in response to KL in combi- 
nation with IL-10 and/or IL-I~, accompanied by a delayed 
phase of PGD2 generation over 2-10 h. LTC4 is not 
generated. In the third phase, the expression of cPLA2, 
PGHS-1, and hematopoietic PGD2 synthase (PGDS) is 
increased by KL from I d to 1 wk, leading to priming 
for increased generation of PGD2 in response to IgE/Ag 
over 10 min. Ib3, II.-9, and IL-IO each augment the ex- 
pression of PGHS-1, thereby further enhancing the 
priming effect of KL. The top portion of the figure sche- 
matically depicts the changes in expression of each en- 
zyme relative to the starting amount of that particular 
protein determined by SDS-PAGE/immunoblotting 
during the three phases of the KL-dependent cellular re- 
sponse. 

generation in BMMC in at least three different and sequen- 
tial phases as illustrated in Fig. 6. The  first phase represents 
an immediate response to KL alone, leading to generation 
of LTC4 in preference to PGD2 through posttranslational ac- 
tivation of cPLA2 and 5-LO, and utilization of PGHS-1. The 
second phase is characterized by PGHS-2-dependent delayed 
PGD2 generation over several hours, with a requirement for 

I b l 0  and/or I b l B  as accessory cytokines (1). In the third 
phase, after 1 d, KL primes BMMC for increased IgE- 
dependent PGD2 synthesis through increased expression of 
cPLA2, PGHS-1, and hematopoietic PGD2 synthase, with 
IL-3, IL-9, or I1.-10 acting to further augment PGHS-1 ex- 
pression (2). 
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