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Abstract: In this work we analyze the effectiveness of decoration of nanocrystalline SnO2/TiO2

composites with gold nanoparticles (Au NPs) and platinum nanoparticles (Pt NPs) in enhancing gas
sensor properties in low-temperature HCHO detection. Nanocrystalline SnO2/TiO2 composites were
synthesized by a chemical precipitation method with following modification with Pt and Au NPs by
the impregnation method. The nanocomposites were characterized by TEM, XRD, Raman and FTIR
spectroscopy, DRIFTS, XPS, TPR-H2 methods. In HCHO detection, the modification of SnO2 with
TiO2 leads to a shift in the optimal temperature from 150 to 100 ◦C. Further modification of SnO2/TiO2

nanocomposites with Au NPs increases the sensor signal at T = 100 ◦C, while modification with Pt
NPs gives rise to the appearance of sensor responses at T = 25 ◦C and 50 ◦C. At 200 ◦C nanocomposites
exhibited high selectivity toward formaldehyde within the sub-ppm concentration range among
different VOCs. The influence of Pt and Au NPs on surface reactivity of SnO2/TiO2 composite
and enhancement of the sensor response toward HCHO was studied by DRIFT spectroscopy and
explained by the chemical and electronic sensitization mechanisms.

Keywords: nanocrystalline SnO2; SnO2/TiO2 nanocomposite; Au and Pt modification; formaldehyde
gas sensor; DRIFTS investigation

1. Introduction

In recent years, gas sensors for detecting formaldehyde (HCHO) have received increas-
ing attention because of the harmful impacts of HCHO on human health [1,2]. Formalde-
hyde is one of the most common sources of indoor air pollution, as it is widely used in
various coatings for building materials and furniture [3]. Long-term exposure to HCHO
leads to chronic and incurable diseases. As a harmful substance, formaldehyde can cause
serious health damage even at low concentrations. Therefore, the main challenge in
HCHO detection is necessity to determine low target concentrations. According to the
WHO requirements, the corresponding threshold in indoor working area is 0.5 mg/m3

(0.4 ppm) [1].
Effectively detecting toxic gases, including formaldehyde, requires a sensitive, selec-

tive and easy-to-design analytical sensor. Conductometric gas sensors based on metal
oxide semiconductors (MOS) are among the most promising devices. SnO2 is a well-proven
sensing material that has a high sensitivity to various gases, including HCHO [4–6].

The use of the nanocomposites with n-n and p-n MOS heterocontacts, in particular
SnO2/ZnO [7,8], SnO2/In2O3 [9], SnO2/TiO2 [10–14], SnO2/Fe2O3 [15], SnO2/NiO [16–19]
and SnO2/carbon-based materials [20,21] in comparison to pure oxides, can significantly
enhance the sensor response toward formaldehyde and other volatile organic compounds
(VOCs) and reduce the operating temperature. The main idea is based on controlling the
amount of charge carriers at the interface that, in turn, provides an increase in the concen-
tration of chemisorbed oxygen participating in the oxidation reactions that cause a sensor
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response. Furthermore, SnO2/TiO2 based composites demonstrated significant efficiency
in catalytic oxidation of VOCs and photocatalytic degradation of organic compounds due
to additional high catalytic activity of TiO2 phases [11,22–24].

One of the promising approaches for improving and controlling MOS selectivity and
sensitivity is surface decoration [22,25]. Currently, well-dispersed noble metal nanoparticles
are predominantly used as catalytic modifiers, since they facilitate the oxidation of reducing
gases, in particular VOCs, on the semiconductor surface due to a decrease in the activation
energy of the oxidation reaction [22,26–28]. By doing this, they can significantly reduce the
operating temperature of gas detection down to room temperature [29,30]. These additives
can be located on the surface of semiconductor oxides in the form of clusters or individual
nanoparticles of various sizes [31]. The influence of catalytic modifiers on the formation of
a sensor signal of semiconductor oxides can be realized through chemical and electronic
mechanisms [25,32]. From this point of view, the study of surface reactivity along with gas
sensor properties will allow the finding of obscure issues, and obtaining of a key to further
development and improvement of MOS gas sensors.

Au and Pt NPs have an exceptional role in the formation of oxygen vacancies in solid
oxides that enhance their activity in reducing gas oxidation [33]. There are several works
describing the effectiveness of Au incorporation into mixed metal oxide nanomaterials
in oxidation reactions at a temperature close to 100 ◦C. Yang and Li [34] noticed that the
introduction of Au nanoparticles leads to a significant increase in the catalytic conversion
of CO on the surface of Co3O4/CeO2 heterostructures. The process begins at T = 100 ◦C,
and the complete CO conversion is observed at T = 127 ◦C. The same effect was observed
by Li et al. [35]: the presence of Au nanoparticles strongly contributed to the reduction
of CeO2 in Au/CeO2–TiO2 nanorods, increasing the redox ability and catalytic activity of
the material that led to a complete CO conversion at T = 120 ◦C. In the review [36] it was
shown that the decoration of metal oxides with Au NPs with a particle size of ~20 nm can
increase the catalytic activity and sensor response toward CO and ethanol and shift the
operating temperature to the 100–150 ◦C range and even lower. In addition, as reported
by Marikutsa et al. [26] TiO2/Au sensors demonstrated the highest sensitivity to VOCs
among different Au-functionalized n-type and p-type metal oxide semiconductors. They
attributed this result to a combination of the catalytic effect of gold and the proper Ti–O
binding energy, which is favorable for the chemisorption of oxygen and its release when
interacting with VOCs molecules.

In the present work, we have focused our attention on the effect of Au and Pt nanopar-
ticles (NPs) as surface catalytic modifiers on sensing mechanisms of the SnO2/TiO2 com-
posite in low temperature HCHO detection. Experimental results showed that modification
with Au and Pt NPs leads to a shift of the favorable operating temperature to the low
temperature range and at the same time amplifies the sensor signal.

2. Materials and Methods
2.1. Materials Synthesis
2.1.1. Synthesis of Au Sol

Colloidal gold nanoparticles (Au NPs) were obtained by the well-known technique [37].
Briefly, 2.0 mL of a 1% sodium citrate solution Na3C6H5O7 (>99%, Sigma-Aldrich, St. Louis,
MO, USA) was quickly added to 20 mL boiling solution of 1 mM HAuCl4·3H2O (Sigma-
Aldrich) with vigorous stirring. The solution was boiled until the color became ruby red
and then cooled to room temperature (RT).

2.1.2. Synthesis of Nanocomposites

At the first stage (Figure S1, Supplementary Materials) SnO2 × H2O gel was precip-
itated from H2SnCl6 (Sigma-Aldrich, St. Louis, MO, USA) solution by dropwise adding
of aqueous ammonia (25%) until pH ~ 7. After washing, drying (T = 80 ◦C, 24 h) and
annealing (T = 300 ◦C 24 h) nanocrystalline SnO2 was obtained. At the next step, H2TiCl6
solution (Component-reactive, Russia) was added to the SnO2 aqueous suspension under
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intensive stirring, and then aqueous ammonia (25%) was added dropwise. The gel-like pre-
cipitate was washed, dried and annealed in air at 300 ◦C for 24 h to obtain the SnO2/TiO2
composite. The resulting solid phase at the last stage was impregnated with Pt(acac)2
(Sigma-Aldrich, Buchs, Switzerland) ethanol solution (1.5 mM) or previously formed Au
sol (1 mM) and then annealed at 300 ◦C for 24 h. The amount of the introduced modifier
was selected so that the ratio of Pt/Sn or Au/Sn was 1.0 wt.%.

2.2. Materials Characterization

The size and shape of the Au NPs were analyzed by LEO 912AB Omega transmission
electron microscope (TEM) (Carl Zeiss, Germany). The morphology and particle size
analysis, selected area electron diffraction (SAED) images, and scanning transmission
electron microscopy in high-angle annular dark-field mode (STEM-HAADF) images of the
nanocomposites were registered on Libra 200 TEM (Carl Zeiss, Germany) with a cathode
with thermal field emission at an accelerating voltage of 200 kV. The images were obtained
using an Ultra Scan 4000 CCD camera (Gatan Inc., Las Positas Blvd. Pleasanton, CA, USA).
The energy-dispersive X-ray spectroscopy (EDX) signal was recorded on a silicon drift
X-MAX 80 T detector (Oxford Instruments, Abingdon, Oxfordshire, England). The images
were processed using the ImageJ software (NIH).

X-ray diffraction (XRD) patterns were collected on a DRON-4 diffractometer using
monochromatic Cu Kα radiation in the 2θ range of 10–80◦ with a 0.1◦ step. SnO2 crystallite
size (dXRD) was calculated from the broadening of the most intensive XRD peaks using
Scherrer Equation (1).

d =
k ∗ λ

β ∗ cosΘ
(1)

where d is the mean crystallite size (nm), k is a dimensionless shape factor and is about
0.9, λ = 1.5406 Å is the X-ray wavelength, β is the line broadening at the half of maximum
intensity, and Θ is the Bragg angle. The phase composition was determined using the
WinXPOW software.

The specific surface area was measured by nitrogen adsorption with the Chemisorb
2750 instrument (Micromeritics, Norcross, GA, USA). The chemical composition of the
samples was analyzed using M1 Mistral X-ray fluorescent (XRF) spectrometer (Bruker,
Billerica, MA, USA).

Raman spectra were recorded on an i-Raman Plus spectrometer (BW Tek, 19 Shea Way,
Newark, NJ, USA) equipped with a BAC 151C microscope in the range of 90–1000 cm−1

with a resolution of 4 cm−1. A green laser (532 nm) was used as a radiation source.
The absorption spectrum of a sol of Au nanoparticles stabilized with sodium citrate

was obtained on a Cary 50 (Varian Inc., Melbourne, Australia) spectrophotometer. The
survey was carried out in the 200–800 nm range; the baseline of deionized water was
subtracted.

A Perkin Elmer Frontier spectrometer (Perkin Elmer Inc., Beaconsfield, UK) was
used to register Fourier-transformed infrared (FTIR) and diffuse-reflectance infrared
Fourier-transformed (DRIFT) spectra. The FTIR spectra were registered in the region
of 4000–400 cm−1 with a step of 1 cm–1. The FTIR measurements were carried out in the
transmission mode; 0.3–0.5 mg of the samples were ground with 40 mg of KBr (FT-IR
grade, Sigma-Aldrich) and pressed into tablets ~0.5 mm thick and 12 mm in diameter. The
baseline was preliminarily taken from pure KBr. The DRIFT spectra were obtained both
at RT and at T = 100 ◦C using diffuse reflectance accessory DiffusIR annex and heated
flow chamber HC900 (Pike Technologies, Cottonwood Dr., Madison, WI, USA) sealed by
KBr window. The samples (50 mg) were placed in sapphire crucibles (5 mm diameter)
and pre-annealed at T = 300 ◦C in a flow of pure air (1 h) to clean the surface from the
contaminations. A gas mixture containing 20 ppm of formaldehyde in dry air was used for
the investigations.
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Thermo-programmed hydrogen reduction was carried out on a Chemisorb 2750
(Micromeritics, Norcross, GA, USA) device in a quartz reactor at a gas flow of 10% H2 in
argon (50 mL/min) at a heating rate of 10 ◦C/min from 25 ◦C to 900 ◦C.

The chemical state of the elements was analyzed by X-ray photoelectron spectroscopy
(XPS) on Omicron ESCA+ (Germany) with a monochromatic aluminum anode (AlKα,
E = 1486.6 eV) using a neutralizer (scanning step 0.1 eV/s, transmission energy 20 eV). The
spectra were processed using the UNIFIT software package. The peaks were approximated
by convolution of the Gauss and Lorentz functions with the simultaneous optimization of
the background parameters.

2.3. Sensor Fabrication and Gas Sensing Measurements

The electrical conductivity of the samples in a gas flow was measured on specially
designed micro-hotplates with platinum electrodes on the front side and a platinum
micro-heater on the back side. The suspensions of nanocomposite powders in α-terpineol
(Sigma-Aldrich) were drop-coated on the micro-hotplate substrates (dielectric Al2O3, area:
0.9 mm × 0.9 mm, thickness 0.15 mm). Thick films were annealed at 300 ◦C for 5 h
to remove the binder and sinter the particles. Gas sensor properties were studied in-
situ in the temperature range of 25–300 ◦C in a flow cell under a controlled gas flow
of 100 ± 0.1 mL/min. The gas mixtures containing 0.12–0.25–0.5–1.0 ppm HCHO were
obtained by dilution of the gas from an attested gas mixture (35 ppm of HCHO in N2) with
background purified air. The measurements were carried out with a periodic change in the
gas phase composition (15 min target gas/15 min air).

3. Results and Discussion
3.1. Morphology and Composition Characterization

The phase composition of the obtained samples (Figure 1a) was characterized using
the structural parameters from the ICDD PDF-2 database of SnO2 cassiterite (41–1445),
TiO2 anatase (21–1272) (Figure S2, Supplementary Materials), Au (4-784) (Figure S3, Sup-
plementary Materials) and PtO (43–1100). The XRD patterns clearly show the reflections
corresponding to the SnO2 phase with the tetragonal cassiterite structure. Other possible
crystalline phases are not detected, since their concentration is low, and their diffraction
maxima overlap with the intense reflections of the SnO2 phase.
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Figure 1. XRD patterns (a) and Raman spectra (b) of nanocomposites.

Figure 1b represents Raman spectra of the synthesized samples. All spectra have
almost the same peaks at the same positions, which mean no phase transition during
synthesis process. The peaks detected at 476, 621.5 and 768 cm−1 correspond to the SnO2
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Eg, A1g and B2g fundamental vibration modes, respectively. The intense and wide band
at 562 cm−1 is due to the surface mode of the nano-sized SnO2 [38,39]. A decrease in the
intensity of the SnO2 surface mode in the spectra of nanocomposites indicates that the
modifiers are localized on the surface of SnO2 grains. The peaks at 293 and 343 cm−1 are
related to transformation of IR to Raman active modes [38].

The transmission electron micrographs and corresponding selected-area electron
diffraction (SAED) patterns of SnO2/TiO2@Au and SnO2/TiO2@Pt nanocomposites are
shown in Figure 2a,b and Figure 2c,d, respectively.
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According to TEM images and interplanar spacing analysis, the samples are well crys-
tallized and consist of near spherical SnO2 crystallites with an average size of 4.5 ± 1 nm
that is similar to those calculated from Scherrer’s equation (Figure S4, Supplementary
Materials). The Au NP (Figure 2a) has a spherical shape with the mean diameter of
17 ± 4 nm (Figure S3, Supplementary Materials). The small black dots that can be ob-
served in Figure 2c (indicated by red arrows), are probably related to platinum-containing
nanoparticles. The SAED patterns (Figure 2b,d) consist of concentric rings, which are
typical for nanocrystalline samples. The measured values of interplanar spacing (dhkl)
correspond to the rutile crystalline structure of SnO2 (ICDD, No. 41–1445). The reflections
for TiO2 anatase phase, Au and Pt NPs, are not clearly seen due to the same reasons as in
the case of XRD.

The presence of Pt NPs on the surface of SnO2/TiO2 nanocomposite was additionally
proved by HAADF-STEM with EDX mapping (Figure 3) and elemental analysis. According
to these results the Pt NPs and Ti-containing phase are finely dispersed on the surface of
SnO2 grains; the concentration of modifiers determined by XRF analysis is approximately
equal to the preassigned one (Table 1).
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Table 1. Microstructure characteristics and composition of investigated samples.

Sample dXRD (SnO2),
nm

dTEM (SnO2),
nm

[M]*/([Sn]+[Ti]+[M]*),
Mass. %

[Ti]/([Ti]+[Sn]+[M]*),
mass. % Ssurf, m2/g

SnO2

4 ± 1 4.5 ± 1

- - 115 ± 5
SnO2/TiO2 - 1.4 ± 0.1 97 ± 4

SnO2/TiO2@Pt 1.0 ± 0.1 1.2 ± 0.1 90 ± 4
SnO2/TiO2@Au 1.2 ± 0.1 1.3 ± 0.1 85 ± 4

Notes; dXRD—crystallite size from XRD; dTEM—particle size from TEM; [M]*—Pt and Au, respectively; Ssurf—specific surface area.

3.2. Characterization of Surface Composition and Chemical State

The surface composition and chemical state of the elements were investigated by the
XPS method. Sn 3d XP-spectra are shown in Figure S5 (Supplementary Materials). In
all samples, tin presents as Sn (IV); the peaks at 487.2 and 495.6 eV were assigned to Sn
3d5/2 and Sn 3d3/2, respectively [40]. Figure 4 describes the O1s spectra of all samples.
Two components in the O1s spectra locating at 531.1 eV and 532.4 eV are attributed to
lattice oxygen (Olat) and chemisorbed (Osurf) oxygen species/hydroxyl ions (O−, O2− and
OH−), respectively. Compared to SnO2, the ration Osurf/Olat for the SnO2/TiO2 sample
is 2 times greater and indicates the presence of more chemisorbed surface oxygen species
after synthesis. The formation of n-n heterocontact at the SnO2/TiO2 interface can lead
to electron transfer from the TiO2 conduction band into the SnO2 conduction band. A
high concentration of electrons, in turn, can lead to increased chemisorption of oxygen
species [10].

Ti 2p XP-spectra are shown in Figure 5a. The peaks with binding energies of 458.9
and 464.7 eV are ascribed to the Ti 2p3/2 and 2p1/2 peaks of Ti(IV), respectively [40].
The binding energy of Ti 2p peak is shifted positively by 0.4 eV both for SnO2/TiO2@Pt
and SnO2/TiO2@Au samples. It could be assigned to the electron transfer from TiO2 to
Au and Pt NPs, respectively, due to the difference of work function and metal-support
interactions. [41,42]. The observed situation can also be the reason for the decrease in the
Osurf/Olat ratio for the SnO2/TiO2@Pt and SnO2/TiO2@Au samples (Figure 4).

Figure 5b,c shows the deconvoluted Pt 4f and Au 4f spectra, respectively. According
to [40,42,43], the peaks located at 73.1 eV (Pt 4f7/2) and 76.4 eV (Pt 4f5/2) may be associated
with Pt (II) in PtO or Pt(OH)2. However, the FTIR spectra (Figure S6, Supplementary
Materials) showed that the amount of the hydroxyl groups is almost similar in all samples.
Therefore, we can conclude that platinum in the composite is in the oxidized form of PtO.
The long-term (24 h) and high-temperature (300 ◦C) annealing could lead to oxidation of
the surface layer of platinum nanoparticles. The Au 4f XP-spectrum indicates the presence
of only metallic Au NPs [40].
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The method of temperature-programmed reduction of hydrogen (TPR-H2) was used
to study the oxidative active centers on the surface of the samples. The TPR curves are
shown in Figure 6. The profiles of hydrogen consumption can be divided into two tem-
perature regions: the low-temperature one (T = 100–300 ◦C) corresponds to the reduction
of the surface oxygen-containing species. The high-temperature region (T = 400–750 ◦C)
corresponds to the reduction of SnO2 to metallic Sn. A small shoulder can be observed in
the high-temperature region at T = 460–465 ◦C that corresponds to a partial reduction of
SnO2 to SnO.
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The introduction of modifiers has a significant effect on the shape and position of
hydrogen consumption peaks both in the high-temperature and low-temperature regions.
In particular, the introduction of TiO2 and Pt NPs leads to a noticeable shift of the hydrogen
consumption peaks to the low-temperature region. This effect of decreasing the activation
energy of oxide reduction is due to the high catalytic activity of modifiers that can lead
to a spillover effect [44,45]. However, the introduction of gold nanoparticles, on the
contrary, shifts H2 consumption peaks to the high-temperature region. This effect can be
attributed [46,47] to the interaction of gold nanoparticles with surface oxygen vacancies on
the SnO2 surface and, as a consequence, the localization of chemisorbed oxygen species
at the triple phase interface “Au-SnO2-gas”. Fujita et al. [48] investigated the dependence
of the effectiveness of CO conversion on M–O bond energy for Au/MOx catalysts. They
reported that catalytic activity of Au/TiO2 has the highest value among the large variety of
metal oxides, which was proposed to be due to the formation of oxygen vacancies in the
perimeter region between Au NPs and TiO2 contact. Green et al. have developed a model
according to which an Au–Ti4+ dual site became a favorable adsorption site due to the
O2 activation [49]. It was also found from DFT calculations [50] that at the low operating
temperatures metallic Au NPs are more effective for CO oxidation then Auδ+ due to the
low barrier (0.1 eV) of electron transfer from Au particles to chemisorbed oxygen located at
the Au/TiO2 interface.
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3.3. Gas Sensor Properties

The sensor properties of the synthesized nanocomposites were investigated toward
1 ppm formaldehyde in the temperature range of 300–25 ◦C in order to determine the opti-
mal operating temperature. Figure 7a shows a dynamic resistance change for nanocompos-
ites during exposure of pure air (15 min)—HCHO (15 min). Sensors’ resistance reversibly
decreases in a HCHO atmosphere and increases in pure air, which is characteristic behav-
ior for n-type semiconductors. The sensor response of the samples toward HCHO was
calculated by the following relation: S = R(air)/R(gas), where R(air) is a resistance in pure
air, and R(gas)—is a resistance in target gas. Typical bell-shaped plots of the temperature
dependence of the sensor signals are shown in Figure 7b.
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Figure 7. Change in resistance of the samples under periodic change of the gas phase composition in the temperature range
of 300–25 ◦C (a); temperature dependencies of the sensor response of nanocomposites toward 1 ppm HCHO (b).

It was found that modification of SnO2 with titanium dioxide leads to a shift in the
optimal temperature of sensor response from 150 to 100 ◦C. Modification of SnO2/TiO2
nanocomposites with Au NPs increases the sensor signal at T = 100 ◦C, while modification
with Pt NPs gives rise to the appearance of sensor response at T = 25 ◦C and 50 ◦C.

However, the results of low temperature measurements (below 200 ◦C) show a signifi-
cant baseline drift, which makes it impossible to use these conditions in practice. Therefore,
the concentration dependences of the sensor signal were obtained at T = 200 ◦C, which
provides a reproducible and stable resistance change depending on the composition of the
gas phase.

The calibration curves are linear in double logarithmic coordinates (Figure 8), which
allows us to calculate the minimum detectable HCHO concentration cmin. The cmin values
(Table 2) were estimated from calibration curves using the ratio R(av)/(R(av)-3σ) as a
minimum measurable sensor response, where R(av) is an average resistance in pure air,
and σ is a standard deviation of resistance in pure air [51]. The Au modified sample
demonstrated the lowest value of the minimum detectable HCHO concentration.

Table 2. Minimum detectable HCHO concentration cmin measured at 200 ◦C for sensors based on
investigated materials.

Sample SnO2 SnO2/TiO2 SnO2/TiO2@Pt SnO2/TiO2@Au

cmin, ppb 72 33 111 21
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Figure 8. Change in the nanocomposites’ resistance depending on HCHO concentration of HCHO (a) and calibration curves
(b) at T = 200 ◦C.

The cross sensitivity of the samples was investigated in detection of different VOCs:
formaldehyde, benzene, acetone and methanol at 200 ◦C (Figure 9). The concentration of
VOCs was selected based on a corresponding threshold in an indoor working area [1,4,52].
It was observed that Pt and Au modified samples have enhanced sensor responses toward
VOCs. It is obvious that in the sub-ppm concentration range, SnO2/TiO2 based sensors
demonstrate high selective sensitivity when detecting formaldehyde.
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3.4. Investigation of Surface Reactivity

The surface reactivity of composite materials was investigated by the DRIFTS method.
Figure 10a shows the change of the in situ DRIFT spectra of the SnO2/TiO2@Pt sample in
the presence of 20 ppm HCHO at T = 100 ◦C. During HCHO exposure, the bands located
at 1290 cm−1, 1345 cm−1, 1385 cm−1, 1560 cm−1, 1620 cm−1, 2340 cm−1, 2886 cm−1, and at
2968 cm−1 begin to increase, which indicates the accumulation of new functional groups on
the MOS surface. The appearance of the bands at 1345 cm−1 and 1560 cm−1 were assumed
to originate from the COO- symmetric stretching and COO- asymmetric stretching of
formate species, respectively [53,54]. Absorption bands related to υ(CH) and υs(OCO) of
HCOO- species are located at 2886 cm−1, 2968 cm−1 and 1385 cm−1, respectively [54,55].
The peak at 1290 cm−1 is due to the τ(CH2) vibration mode and indicates the appearance
of dioxymethylene (DOM, H2COO-) intermediate [55].
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Figure 10. In situ DRIFT spectra of the SnO2/TiO2@Pt sample during HCHO adsorption at T = 100 ◦C (a) and during
heating in air atmosphere after HCHO adsorption (b).

The full oxidation of formate species over the nanocomposites was observed by ap-
pearance of the band at 2340 cm−1, which is characterized by the adsorbed CO2 molecules.
The accumulation of surface H2O molecules can be evidenced by an increase in peak
intensity at 1620 cm−1. Another group of active sites that can affect the oxidative activity of
the materials are surface hydroxyl groups. The negative peaks associated with vibrational
frequencies of free surface hydroxyls on oxides were observed at 3598 cm−1, 3670 cm−1

and 3724 cm−1 [56].
When purified air launched into the cell after the analyte gas was closed at T = 100 ◦C,

desorption of formate groups does not occur completely, which causes a baseline drift
observed in the sensor measurements (Figure 7a). Only heating up to 300 ◦C leads to
the complete desorption of these groups (Figure 10b). A decrease in the value of the
sensor signal with an increase in the measurement temperature to 250–300 ◦C is due to
the contribution of thermal desorption of chemisorbed oxygen species, which play a key
role in the oxidation of formaldehyde, as well as to desorption of formaldehyde molecules
themselves.

The profile and peaks of DRIFT spectra of the samples at 100 ◦C indicate that the same
intermediate products were formed during formaldehyde oxidation on the surface of all
nanocomposites (Figure 11 a). At the same time, at RT, the appearance of bands of formate
and DOM groups is observed only in the SnO2/TiO2@Pt sample (Figure 11b). The spectra
of other samples show broad negative humps in hydroxyl regions and positive humps
in the 1800–2800 cm−1 region, indicating the adsorption of formaldehyde and changes of
background due to free charge carrier adsorption through oxygen chemisorption. This
suggested that at RT, only the SnO2/TiO2@Pt nanocomposite can catalyze the oxidative
decomposition of HCHO molecules.

According to the obtained results of DRIFTS analysis, we can conclude that surface
formate and DOM species are the main intermediates for HCHO oxidation, and propose
the following mechanism for the low-temperature detection of HCHO by the obtained
nanocomposites. Being soft based, formaldehyde is mainly adsorbed on Bronsted acid
sites—hydroxyl groups via H-bonding interaction (Equation (2)) [10,57]. This follows from
the monotonic decrease in the intensity of OH group vibrations and an increase in the
intensity of formate vibrations with the time of formaldehyde exposure (Figure 10a). Since
the number of surface OH groups for all samples is approximately the same (Figure S6,
Supplementary Materials), the number of adsorbed HCHO molecules at the first step will
also be approximately the same. At the next stage, adsorbed formaldehyde molecules
oxidize by chemisorbed oxygen ions and produce DOM intermediate (Equation (3)) and
then formate species (Equation (4)). Further, the enhancement of the signal to HCHO will
be dictated by the catalytic activity of the sample. In particular, Pt and Au nanoparticles
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can accelerate the oxidation process due to their high catalytic activity. Finally, during
the last process, these intermediates could be completely oxidized into CO2 and H2O
(Equation (5)).

HCHO(gas) → HCHO(ads) (2)

β·HCHO(ads) + Oα−
β(ads) → β·H2COO−

(ads) + (α− 1)·e− (3)

β·H2COO−
(ads) + Oα−

β(ads) → β·HCOO2−
(ads) + β·OH(α−1)−

(ads) (4)

2β·HCOO2−
(ads) + Oα−

β(ads) → 2β·CO2 + β·H2O + (4β + α)·e− (5)

As was mentioned above, the formation of n-n heterocontact at the SnO2/TiO2 in-
terface can lead to electron transfer from the TiO2 conduction band (Ec) into the SnO2
conduction band since Ec (TiO2-anatase) > Ec (SnO2). This, consequently, can lead to an
increase in the amount of chemisorbed oxygen, as was shown by the O1s XP spectrum
(Figure 4). The effect of gold and platinum nanoparticles on the enhancement of the sensor
signal of composites can be described by the chemical and electronic sensitization mecha-
nisms [25,32]. Au NPs are located on the SnO2/TiO2 surface in metallic form, therefore
the chemical mechanism of interaction with the gas phase is more typical. The mechanism
of chemical sensitization in this case can proceed as follows. Oxygen molecules undergo
dissociative adsorption on the surface of Au NPs due to the lower required activation
energy. Therefore, the oxidation of formaldehyde molecules occurs more actively by atomic
oxygen forms O-, which migrate to the surface of the semiconductor grains. As a result of
this process, electrons are released into the conduction band of the semiconductor metal
oxide, providing an increased sensor response [58,59].
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Figure 11. In situ DRIFT spectra of the samples after 40 min HCHO (20 ppm) exposure at T = 100 ◦C (a) and T = 25 ◦C (b).

Despite the fact that the synthesis annealing temperature of the nanocomposites was
gentle, it can be observed that the platinum nanoparticles, due to their small size, are
oxidized to PtO. However, during sensor measurements when the samples were heated in
an atmosphere of a reducing gas, PtO can be reduced to Pt0. Based on the TPR-H2 profile
of an SnO2/TiO2@Pt sample (Figure 6) this can most likely happen at 130 ◦C. As reported
by Ono and coworkers [60], the thermal stability of Pt oxides is the lowest for Pt NPs
supported on TiO2; regardless of the annealing environment (UHV or O2), the maximum
content of the Pt0 component was observed when Pt/TiO2 was annealed at 500 K. In this
way, the influence of the chemical interaction mechanism can be predominant at higher
temperatures, leading to oxygen spill-over with further oxidation of HCHO molecules. At
the same time, when Pt NPs are in the oxidized form of PtO at lower temperatures, the
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electronic sensitization mechanism can occur. The work function of the platinum in the
oxidized state (6.8 eV) is more than that in the metallic state (5.65 eV) [61,62]. In this case,
PtO acts as an electron acceptor and the increased difference in work function comparing
with SnO2 (4.9 eV) and TiO2 (4.2 eV) produces an electron-depleted space-charge layer
at the interface with semiconductor support [10,63,64]. This was verified by increasing
resistance (Figure 7a) and positive shift of the Ti2p XP-spectrum by 0.4 eV (Figure 5a).
HCHO molecules can directly interact with PtO, undergoing oxidation and leading to a
change in the oxidation state of PtO.

4. Conclusions

SnO2/TiO2 nanocomposites were synthesized by a chemical precipitation method
and then decorated with Au or Pt nanoparticles. According to TEM analysis and XRD
patterns, SnO2 crystallites have a near spherical shape with 4 ± 1 nm size in diameter. Pt
NPs and TiO2 are well dispersed on the SnO2 surface, while Au NPs are located in the
form of individual spherical particles with a size of 17 ± 4 nm.

The results of sensor measurements showed that the modification of SnO2 with
TiO2 allows the reduction of the temperature of HCHO detection from 150 to 100 ◦C.
Modification of SnO2/TiO2 nanocomposites with Au NPs increases the sensor signal at
T = 100 ◦C, while modification with Pt NPs provides the sensor signal at T = 25 ◦C and
50 ◦C. Furthermore, it was shown that the obtained nanocomposites exhibit high selective
sensitivity in formaldehyde detection within the sub-ppm concentration range among
different VOCs.

The influence of the TiO2 phase on the enhancement of sensor response toward HCHO
and other VOCs is based on the formation of n-n heterocontact at the SnO2/TiO2 interface,
leading electron transfer from Ec (TiO2) into Ec (SnO2) and consequently increasing the
amount of chemisorbed oxygen, which was shown by the O1s XPS spectrum and shifting
of the TPR-H2 peak in the low-temperature region.

The sensitizing effect of Au NPs and Pt NPs has a different origin. The presence
of noble metal NPs on the surface of metal oxides can reduce potential barriers of the
nucleophilic O2

- interaction with the analyte-gas molecule due to their high catalytic
activity. Thus, for SnO2/TiO2@Pt samples, the mechanism of electronic sensitization is
characteristic at low operating temperatures, while with an increase in the measurement
temperature in reducing atmospheres, PtO is reduced to Pt and, therefore, the mechanism
of chemical sensitization will prevail. It was additionally proven by the appearance of
formate and DOM intermediates only in the SnO2/TiO2@Pt DRIFT spectrum at room
temperature, indicating oxidative decomposition of HCHO molecules, while at 100 ◦C the
same intermediates appeared for all samples.

For the SnO2/TiO2@Au sample, a spill-over effect of oxygen is responsible for the
increase in the sensor response in the entire temperature range.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11082049/s1, Figure S1: Schematic illustration of the synthesis of the SnO2/TiO2
nanocomposites modified with Au NPs and Pt NPs., Figure S2: XRD pattern (a) and Raman spectrum
(b) of TiO2-300, Figure S3: TEM image and size distribution of the AuNPs determined by TEM
images analysis (inset) (a), XRD pattern (b) and absorption spectrum (c) of synthesized AuNPs,
Figure S4: TEM image and size distribution of the SnO2 nanoparticles determined by TEM image
analysis (inset), Figure S5: Sn 3d XP-spectra of the synthesized samples, Figure S6: FTIR spectra of
the synthesized samples.
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