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Abstract: In recent years we have focused our efforts on investigating various binary mixtures
containing carbon dioxide to find the best candidate for CO2 capture and, therefore, for applications
in the field of CCS and CCUS technologies. Continuing this project, the present study investigates
the phase behavior of three binary systems containing carbon dioxide and different oxygenated
compounds. Two thermodynamic models are examined for their ability to predict the phase behavior
of these systems. The selected models are the well-known Peng–Robinson (PR) equation of state and
the General Equation of State (GEOS), which is a generalization for all cubic equations of state with
two, three, and four parameters, coupled with classical van der Waals mixing rules (two-parameter
conventional mixing rule, 2PCMR). The carbon dioxide + ethyl acetate, carbon dioxide + 1,4-dioxane,
and carbon dioxide + 1,2-dimethoxyethane binary systems were analyzed based on GEOS and PR
equation of state models. The modeling approach is entirely predictive. Previously, it was proved
that this approach was successful for members of the same homologous series. Unique sets of binary
interaction parameters for each equation of state, determined for the carbon dioxide + 2-butanol
binary model system, based on k12–l12 method, were used to examine the three systems. It was
shown that the models predict that CO2 solubility in the three substances increases globally in the
order 1,4-dioxane, 1,2-dimethoxyethane, and ethyl acetate. CO2 solubility in 1,2-dimethoxyethane,
1.4-dioxane, and ethyl acetate reduces with increasing temperature for the same pressure, and
increases with lowering temperature for the same pressure, indicating a physical dissolving process
of CO2 in all three substances. However, CO2 solubility for the carbon dioxide + ether systems
(1,4-dioxane, 1,2-dimethoxyethane) is better at low temperatures and pressures, and decreases with
increasing pressures, leading to higher critical points for the mixtures. By contrast, the solubility of
ethyl acetate in carbon dioxide is less dependent on temperatures and pressures, and the mixture has
lower pressures critical points. In other words, the ethers offer better solubilization at low pressures;
however, the ester has better overall miscibility in terms of lower critical pressures. Among the binary
systems investigated, the 1,2-dimethoxyethane is the best solvent for CO2 absorption.

Keywords: carbon dioxide; ethyl acetate; 1,4-dioxane; 1,2-dimethoxyethane; phase behavior; GEOS;
PR EoSs; CCS

1. Introduction

Green chemistry, green engineering, and sustainable development have become strate-
gic priority areas in both business and academia over the last decade. Chemical methods
that produce goods with the least amount of waste and hazardous chemicals, coupled with
cost improvements, have opened the door to innovative solutions. Special attention is paid
to the re-examination of industrial fluids and solvents, and methods to produce the next
generation of clean, healthy, reliable, and useful products and processes that are also good
for human health and the environment [1–4].
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Fluids such as carbon dioxide (CO2) and water are among the most naturally non-
hazardous and stable substances we use in our everyday lives, and they will most likely
be the working fluids of choice for the next wave of green goods and processes due to
their environmental compatibility. Physical properties and phase behavior of complex
CO2-containing mixtures are now correlated with a diverse range of applications [2–4].

Simultaneously, carbon (as CO2) emissions from a variety of processes, including
fossil fuel-powered plants and electricity processing facilities, account for more than 80%
of greenhouse gas emissions (GHGs) [5]. CO2 levels have steadily risen from 280 ppm to
over 400 ppm since pre-industrial times [6]. Furthermore, even assuming steady emissions
in the coming decades, the International Panel on Climate Change (IPCC) anticipated that
CO2 concentrations in the atmosphere might reach at least 570 ppm by 2050, triggering
a 2 ◦C rise in global mean temperature [7]. Reducing emissions by capturing CO2 at
stationary point sources (e.g., power plants, refineries, oil and gas processing sites, iron and
steel factories, cement plants, and other chemical plants) would only delay the rise in CO2
concentration in the atmosphere, and it is widely acknowledged that technologies that can
extract CO2 at low concentrations are urgently needed. Carbon capture and storage (CCS)
is a critical technology for the cost-effective mitigation of anthropogenic CO2 emissions,
with the International Energy Agency (IEA) estimating that it may contribute around 20%
to CO2 emission reductions by 2050 [8].

Alternatives to fossil fuels, such as nuclear, solar, wind, and biomass energies, are
now being developed to prevent further global climate change, yet these energy sources
will not be able to supply our modern society’s needs. Fossil fuels will continue to be the
primary source of energy in the present and near future due to their availability, ease of
transportation, competitiveness, and other factors; it will therefore be necessary to research
and develop a highly effective CO2 separation and capture technology in order to meet
CO2 reduction targets (CCS).

Chemical absorption, physical adsorption, membrane separation, cryogenic frac-
tionation, and adsorption employing molecular sieves are the most widely utilized CO2
separation processes. Traditional technologies include limitations such as high energy
consumption, chemical degradation, low/insufficient capacity, corrosion, foaminess, and
so on [9–12]. Furthermore, according to recent studies [13,14] these approaches raise the
energy requirements of power plants by 25–40%, with the separation process accounting
for two-thirds of the entire CCS cost, even though some of them are energy efficient and
environmentally friendly. CCS costs could be decreased in circumstances where indus-
trial operations produce large amounts of CO2 gas streams or even pure CO2, but they
remain a barrier to its application. Many studies in this area have concentrated almost
entirely on the creation of improved sorbents with enhanced CO2 capacity and/or lower
regeneration heat.

Recent findings [15,16] show that, while equilibrium CO2 capacity is a key determinant
of process performance, phase equilibria, transport properties (e.g., viscosity, diffusion
coefficients, etc.) and other thermophysical properties (e.g., heat capacity, density, etc.) all
have a significant impact on the capital cost, and thus the price of carbon captured.

In addition, for optimal design and function, knowledge of the thermophysical prop-
erties and phase equilibria of systems of interest for CCS is a must.

In this context our group focused on investigating the phase behavior of carbon
dioxide with various organic compounds as a way of carbon mitigation. The phase behavior
(and thermophysical properties) of selected hydrocarbons (n-alkanes, branched alkanes,
naphthenes) and functional group substances (e.g., alcohols, ethers, esters) were studied
to determine their suitability as CO2 capture solvents/cosolvents [17–23]. Experiments
are well known for being both costly and time consuming. Consequently, the alternative
is the use of equations of state (EoS) models, that are the most widely used method for
correlating and/or predicting phase equilibria and mixture properties, even though they
have their known limitations [24]. Therefore, in this study we propose a predictive two-
fold modelling approach, and we demonstrate that reasonably good qualitative results
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can be obtained based on a well-documented carbon dioxide containing system for other
systems, if experimental data are not available for the latter. The model system we selected
is the carbon dioxide + 2-butanol binary system, for which the complete experimental
phase behavior is available [2,25]. The thermodynamic models chosen are the classic
Peng–Robinson (PR) equation of state and the General Equation of State (GEOS), which
is a generalization for all cubic equations of state with two, three, and four parameters,
coupled with classical van der Waals mixing rules (two-parameter conventional mixing
rule, 2PCMR). Both PR equation of state and GEOS were selected for their simplicity
and availability.

In the current work, we present the results for three binary systems of carbon diox-
ide and some oxygenated organic compounds with four carbon atoms, namely ethyl
acetate (EA), 1,4-dioxane (D), and 1,2-dimethoxyethane (DME). The two first compounds
are isomers with the formula C4H8O2; ethyl acetate belonging to the esters class, while
1,4-dioxane to cyclic ethers; and the last one is a linear diether with the formula C4H10O2,
as can be seen in Table 1.

Table 1. Compound structures and molecular mass.

Compounds Formula Chemical Structure Molecular Weight CAS Number
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The second modelling objective is to compare the predicted impact of functional group
effect on the solvent ability to dissolve CO2, as part of our long-term project to identify the
best candidate(s) as physical solvent for CO2 capture.

2. Modelling

Cubic equations of state have been extensively studied since van der Waals proposed
his famous equation in 1873, and they are still the most popular method for the correlation
and prediction of phase equilibria and mixture properties, with many practical applica-
tions [4,26]. They provide the best combination of precision, simplicity, reliability, and
computation speed, and they continue to be effective and simple tools for calculating the
phase behavior of many systems, including complex mixtures such as petroleum fluids,
regardless of their known limitations [26–28].

The General Equation of State [29,30] with four parameters, and the Peng–Robinson
equation of state [31] with two parameters, coupled with classical van der Waals mixing
rules (two-parameter conventional mixing rules, 2PCMR) were chosen to investigate the
phase behavior of the selected carbon dioxide containing mixtures.

The Peng–Robinson equation of state [31] is:

P =
RT

V − b
− a(T)

V(V + b) + b(V − b)
(1)

where the two parameters, a and b, are:

a = 0.45724
R2Tc

2

Pc
α(T) (2)

b = 0.077796
RTc

Pc
(3)
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α(TR, ω) =
[
1 + mPR

(
1− TR

0.5
)]2

(4)

mPR = 0.37464− 1.54226ω− 0.26992ω2 (5)

The cubic equation of state GEOS [29,30] has the form:

P =
RT

V − b
− a(T)

(V − d)2 + c
(6)

The four a, b, c, and d parameters are given by the following relations for a pure component: a(T) = acβ(Tr) ac = Ωa
R2Tc

2

Pc
b = Ωb

RTc
Pc

c = Ωc
R2Tc

2

Pc
2 d = Ωd

RTc
Pc

(7)

The temperature function used in cubic GEOS is:

β(Tr) = Tr
−m (8)

where Tr is the reduced temperature, Tr = T/Tc. The expressions of the Ωa, Ωb, Ωc, and
Ωd parameters are:

Ωa = (1− B)3; Ωb = Zc − B; Ωc = (1− B)2(B− 0.25); Ωd = Zc −
(1− B)

2
(9)

with
B =

1 + m
αc + m

, where αc. is Riedel′s criterion. (10)

The a, b, c, and d coefficients in GEOS are in fact functions of the critical data (Tc, Pc,
and Vc), m, and αc parameters. We should mention that GEOS is a general form for all cubic
equations of state with two, three, and four parameters, as previously demonstrated [32].
Thus, the parameters of the Peng–Robinson equation of state can be obtained from the

Equations (7)–(9) by setting the following restrictions: Ωc = −
(

Ωb
2

)2
and Ωd = −Ωb

2
respectively. It follows that:

B = 0.25− 1
8

(
1− 3B
1− B

)2
and Zc(PR) =

1 + B
4

(11)

resulting B(PR) = 0.2296 and Zc(PR) = 0.3074. The original temperature function β(Tr)
was used for PR EoS [31].

The first Equation (11) for B can be solved iteratively, starting with an initial approxima-
tion of B in the right-hand term. The corresponding values for Ωa, Ωb, Ωc, and Ωd are given
in Equation (9), and are shown in Table 2 for GEOS, as they are compound-dependent for
it, while for PR they are universal (Ωa = 0.4572; Ωb = 0.0778; Ωc = −0.0121; Ωd = −0.0778).
It must also be mentioned that the values of Zc in GEOS are the experimental values [33].

Table 2. The critical compressibility factor (Zc), and General Equation of State (GEOS) parameters (B,
Ωa, Ωb, Ωc, Ωd).

Substance CO2 EA D DME

B 0.1767 0.1720 0.1612 0.1475
Zc 0.2740 0.2550 0.2540 0.2305
Ωa 0.5582 0.5677 0.5903 0.6196
Ωb 0.0973 0.0830 0.0928 0.0875
Ωc −0.0497 −0.0535 −0.0625 −0.0745
Ωd −0.1377 −0.1590 −0.1654 −0.1913
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The coefficients a, b, c, and d were obtained for mixtures using the classical van der
Waals two-parameter conventional mixing rules (2PCMR for a, b) extended correspondingly
for c and d:

a = ∑i ∑j xixjaij; b = ∑i ∑j xixjbij; c = ∑i ∑j xixjcij; d = ∑i xidi (12)

aij = (aiaj)
1/2(1− kij

)
; bij =

bi + bj

2
(
1− lij

)
(13)

cij = ±(|ci|
∣∣cj
∣∣)1/2 (with “+” for ci, cj > 0 and “−” for ci or cj < 0).

Generally, negative values are common for the c parameter of pure components. The
geometric mean in Equation (13) for cij was explained in previous papers [34,35]. For
PR EoS a and b are given by Equations (12) and (13) and c and d are calculated by the
restrictions c = −2b2 and d = −b [32].

The GEOS parameters m and αc of each component were estimated by constraining
the EoS to reproduce the experimental vapor pressure and liquid volume on the saturation
curve between the triple point and the critical point. The values of critical data and GEOS
parameters of the pure components are given in Table 3. The critical data and acentric
factors of pure components are taken from the DIPPR database [33].

Table 3. Critical data (Tc, Pc, Vc), acentric factor (ω) [33], and GEOS parameters (αc, m) for pure compounds.

Compounds Tc/K Pc/bar Vc/cm3·mol−1 ω αc m

CO2 304.21 73.83 94.0 0.2236 7.0801 0.3045
EA 523.30 38.80 286.0 0.3664 7.9337 0.4403
D 587.00 52.08 238.0 0.2793 7.8346 0.3130

DME 536.15 38.71 270.6 0.3475 8.6973 0.3315

The calculations were made using our in-house software package PHEQ (Phase
Equilibria Database and Applications) [36], and GPEC (Global Phase Equilibrium Cal-
culations) [37–39]. The CRITHK module in our software uses the method designed by
Heidemann and Khalil [40] for calculating the critical curve, where the numerical deriva-
tives given by Stockfleth and Dohrn [41] are implemented.

3. Results and Discussion

Models capable of predicting equilibria properties without the use of experimental
data, which yield accurate results in both the sub-critical and critical regions, are needed in
modern process design.

Although correlating experimental data on a limited range of pressures, temperatures,
and compositions is the preferred method by many research groups, efforts were dedicated
to analyzing the phase behavior of systems using a global approach [17–23,34,35,37–39,42].
In a previous study [34] we predicted the phase behavior of the carbon dioxide + 2-butanol
binary system, as extensive experimental data were available, using the k12–l12 method [42].
Thus, in a broad range of temperatures, we calculated a unique set of interaction pa-
rameters that accurately represented the experimental critical pressure maximum (CPM)
and the experimental temperature of the upper critical endpoint (UCEP) of the system
with different equations of state [34]. The carbon dioxide + 2-butanol system is a type II
phase diagram [43,44] since it exhibits liquid–liquid immiscibility [45]. As a function of
two independent variables, phase diagrams show the domains occupied by the various
phases of a system, the boundaries that distinguish these areas, and the special points
of the system [43,44,46]. As in type I phase behavior, type II phase behavior is charac-
terized by a continuous liquid–vapor (LV) critical curve extending between the critical
points of the pure components, but also by a liquid–liquid (LL) critical curve intersecting
the three-phase liquid–liquid–vapor equilibrium line (LLV) in an upper critical endpoint
(UCEP) [43,44]. Furthermore, in a previous paper [47] using the unique sets (k12, l12) of
binary interaction parameters (BIPs) calculated for carbon dioxide + 2-butanol system with
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the Soave–Redlich–Kwong (SRK) [48] and Peng–Robinson (PR) [31] equations of state,
we successfully predicted the phase behavior of the carbon dioxide + 2-propanol system.
The organic compound, 2-propanol (C3H8O) belongs to the same homologous class of
secondary alcohols.

In this study, we are using the sets obtained with GEOS (k12 = 0.050; l12 = −0.040)
and PR EoS (k12 = 0.025; l12 = −0.108) for the carbon dioxide + 2-butanol system [34] to
predict the phase behavior of carbon dioxide + ethyl acetate (EA), + 1,4-dioxane (D), and +
1,2-dimethoxyethane (DME). Although 2-butanol (C4H10O) and the organic compounds se-
lected as the second component in the binary systems for this analysis are not isomers, they
have in common four carbon atoms, 8 to 10 hydrogen atoms, and one or two oxygen atoms.

The critical pressures of pure ethyl acetate and 1,2-dimethoxyethane are very close
(Table 3), followed by 2-butanol (41.89 bar [33]) and 1,4-dioxane; while the critical tempera-
tures are increasing in the order ethyl acetate, 2-butanol (535.90 K [33]), 1,2-dimethoxyethane,
and 1,4-dioxane.

A careful literature search was performed [2,49] and all available literature data for
the three binary systems were collected. Figure 1 presents the calculated phase diagrams
for the chosen binaries, both with GEOS and PR EoS, as well as for the reference system
carbon dioxide + 2-butanol. PR EoS predicts type II phase behavior for all systems. The
three-phase liquid–liquid–vapor region and liquid–liquid critical lines are enlarged in
Figure 2, while the liquid–vapor critical lines are detailed in Figure 3.
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Figure 1. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2), + 1,2-dimethoxyethane
(2), + 2-butanol (2), and + 1,4-dioxane (2) binary systems. Symbols, literature data [22,45,50–53]; full
lines, predictions by GEOS; dotted lines, predictions by Peng–Robinson (PR) equation of state (EoS).
CO2 + ethyl acetate (blue); CO2 + 1,2-dimethoxyethane (gray); CO2 + 2-butanol (orange); CO2 +
1,4-dioxane (purple).

Figure 2a shows the liquid–liquid critical lines that intersect the three-phase liquid–
liquid–vapor equilibrium curves in upper critical endpoints. The predicted UCEP tempera-
tures are ranging increasingly in the order ethyl acetate, 1,2-dimethoxyethane, 1,4-dioxane,
and 2-butanol. All predicted LL critical lines have positive slopes, translating in LL phase
splitting in isothermal pressure–composition diagrams [43,44] and LL critical points at
temperatures lower than the UCEP’s temperature. In Figure 2b the distribution of the
predicted UCEPs is shown in detail, as well as the comparison of the experimental UCEP
and three-phase equilibrium line [45] for carbon dioxide + 2-butanol with the predictions
by PR EoS. The agreement between experimental data and predictions is remarkably good.
It must be pointed out that although there is no experimental evidence that the carbon
dioxide + ethyl acetate, + 1,4-dioxane, and + 1,2-dimethoxyethane are type II phase dia-
grams, the fact that the model predicts the UCEPs at low temperatures is an advantage for
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applications. Another observation is that GEOS correctly predicts type II phase behavior
for the carbon dioxide + 2-butanol system and type I phase behavior for the systems under
investigation. However, from the LV critical lines in Figure 3, it is clearly seen that the
critical locus of the binary mixtures increases as the critical temperature of the more volatile
component is increasing (EA < DME < D). Although ethyl acetate and 1,4-dioxane are
isomers, the behavior of the carbon dioxide mixture seems to be dictated by the critical
properties of pure components, which in this case are more similar between ethyl acetate
and 1,2-dimethoxyethane, as well as the linear structures. It must also be noted that the
CPM shifts to higher temperatures in the same order: carbon dioxide + ethyl acetate,
+ 1,2-dimethoxyethane, + 1,4-dioxane, from ~400 K to ~440 K, this asymmetrical shape of
the LV critical curves being the most common one among binary systems [44].

Molecules 2021, 26, x FOR PEER REVIEW 7 of 15 
 

 

 
 

(a) (b) 

Figure 2. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2), + 1,2-dimethoxyethane (2), + 2-butanol (2), 
and + 1,4-dioxane (2) binary systems calculated with PR EoS. (a) Detail of the predicted liquid–liquid critical lines, upper 
critical endpoints, and three-phase equilibrium lines. (b) Enlargement of the three-phase region. PR EoS predictions: 
dashed lines and triangles. Experimental data: cross (UCEP), circles, and square [45]. CO2 + ethyl acetate (blue); CO2 + 1,2-
dimethoxyethane (gray); CO2 + 2-butanol (orange); CO2 + 1,4-dioxane (purple). 

 
Figure 3. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2), + 1,2-dimethoxyethane 
(2), and + 1,4-dioxane (2) binary systems, detailing the LV critical curves. Symbols, literature data 
[22,49,50,52]; full lines, predictions by GEOS; dotted lines, predictions by PR EoS. CO2 + ethyl acetate 
(blue); CO2 + 1,2-dimethoxyethane (gray); CO2 + 1,4-dioxane (purple). 

Figure 2a shows the liquid–liquid critical lines that intersect the three-phase liquid–
liquid–vapor equilibrium curves in upper critical endpoints. The predicted UCEP temper-
atures are ranging increasingly in the order ethyl acetate, 1,2-dimethoxyethane, 1,4-diox-
ane, and 2-butanol. All predicted LL critical lines have positive slopes, translating in LL 
phase splitting in isothermal pressure–composition diagrams [43,44] and LL critical points 

0
20
40
60
80

100
120
140
160
180

200 250

P
/ b

ar

T / K

0

5

10

15

20

200 220 240 260
P

/ b
ar

T / K

0
20
40
60
80

100
120
140
160
180

280 380 480 580

P
/ b

ar

T / K

Figure 2. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2), + 1,2-dimethoxyethane
(2), + 2-butanol (2), and + 1,4-dioxane (2) binary systems calculated with PR EoS. (a) Detail of the
predicted liquid–liquid critical lines, upper critical endpoints, and three-phase equilibrium lines. (b)
Enlargement of the three-phase region. PR EoS predictions: dashed lines and triangles. Experimental
data: cross (UCEP), circles, and square [45]. CO2 + ethyl acetate (blue); CO2 + 1,2-dimethoxyethane
(gray); CO2 + 2-butanol (orange); CO2 + 1,4-dioxane (purple).
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Figure 3. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2), + 1,2-dimethoxyethane
(2), and + 1,4-dioxane (2) binary systems, detailing the LV critical curves. Symbols, literature
data [22,49,50,52]; full lines, predictions by GEOS; dotted lines, predictions by PR EoS. CO2 + ethyl
acetate (blue); CO2 + 1,2-dimethoxyethane (gray); CO2 + 1,4-dioxane (purple).
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Figures 4–6 compare the predictions by GEOS and PR EoS for each binary system
analyzed. Thus, Figure 4 shows the comparison of the available experimental critical data
and the predictions by both GEOS and PR equation of state for the carbon dioxide + ethyl
acetate binary system.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 15 
 

 

at temperatures lower than the UCEP’s temperature. In Figure 2b the distribution of the 
predicted UCEPs is shown in detail, as well as the comparison of the experimental UCEP 
and three-phase equilibrium line [45] for carbon dioxide + 2-butanol with the predictions 
by PR EoS. The agreement between experimental data and predictions is remarkably 
good. It must be pointed out that although there is no experimental evidence that the car-
bon dioxide + ethyl acetate, + 1,4-dioxane, and + 1,2-dimethoxyethane are type II phase 
diagrams, the fact that the model predicts the UCEPs at low temperatures is an advantage 
for applications. Another observation is that GEOS correctly predicts type II phase behav-
ior for the carbon dioxide + 2-butanol system and type I phase behavior for the systems 
under investigation. However, from the LV critical lines in Figure 3, it is clearly seen that 
the critical locus of the binary mixtures increases as the critical temperature of the more 
volatile component is increasing (EA < DME < D). Although ethyl acetate and 1,4-dioxane 
are isomers, the behavior of the carbon dioxide mixture seems to be dictated by the critical 
properties of pure components, which in this case are more similar between ethyl acetate 
and 1,2-dimethoxyethane, as well as the linear structures. It must also be noted that the 
CPM shifts to higher temperatures in the same order: carbon dioxide + ethyl acetate, + 1,2-
dimethoxyethane, + 1,4-dioxane, from ~400 K to ~440 K, this asymmetrical shape of the 
LV critical curves being the most common one among binary systems [44]. 

Figures 4–6 compare the predictions by GEOS and PR EoS for each binary system 
analyzed. Thus, Figure 4 shows the comparison of the available experimental critical data 
and the predictions by both GEOS and PR equation of state for the carbon dioxide + ethyl 
acetate binary system. 

  
(a) (b) 

Figure 4. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2) binary system. ●, [51]; ○, [50]; ●, ●, critical 
points of CO2, EA [33]; ─, ─, vapor pressures of pure components; ▬, GEOS predictions; ▲ (UCEP), - - - , PR predictions. 

0

20

40

60

80

100

120

140

200 300 400 500 600

P
/ b

ar

T / K

0

20

40

60

80

100

120

140

280 380 480
P

/ b
ar

T / K

Figure 4. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2) binary system. •, [51]; #, [50]; •, •, critical
points of CO2, EA [33]; –, –, vapor pressures of pure components;
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Figure 5. P–T fluid phase diagrams for carbon dioxide (1) + 1,2-dimethoxyethane (2) binary system. •, [22]; •, •, critical
points of CO2, EA [33]; –, –, vapor pressures of pure components;
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Figure 6. P–T fluid phase diagrams for carbon dioxide (1) + 1,4-dioxane (2) binary system. •, [52]; #, [49]; •, •, critical
points of CO2, EA [33]; –, –, vapor pressures of pure components;

Molecules 2021, 26, x FOR PEER REVIEW 8 of 15 
 

 

at temperatures lower than the UCEP’s temperature. In Figure 2b the distribution of the 

predicted UCEPs is shown in detail, as well as the comparison of the experimental UCEP 

and three-phase equilibrium line [45] for carbon dioxide + 2-butanol with the predictions 

by PR EoS. The agreement between experimental data and predictions is remarkably 

good. It must be pointed out that although there is no experimental evidence that the car-

bon dioxide + ethyl acetate, + 1,4-dioxane, and + 1,2-dimethoxyethane are type II phase 

diagrams, the fact that the model predicts the UCEPs at low temperatures is an advantage 

for applications. Another observation is that GEOS correctly predicts type II phase behav-

ior for the carbon dioxide + 2-butanol system and type I phase behavior for the systems 

under investigation. However, from the LV critical lines in Figure 3, it is clearly seen that 

the critical locus of the binary mixtures increases as the critical temperature of the more 

volatile component is increasing (EA < DME < D). Although ethyl acetate and 1,4-dioxane 

are isomers, the behavior of the carbon dioxide mixture seems to be dictated by the critical 

properties of pure components, which in this case are more similar between ethyl acetate 

and 1,2-dimethoxyethane, as well as the linear structures. It must also be noted that the 

CPM shifts to higher temperatures in the same order: carbon dioxide + ethyl acetate, + 1,2-

dimethoxyethane, + 1,4-dioxane, from ~400 K to ~440 K, this asymmetrical shape of the 

LV critical curves being the most common one among binary systems [44]. 

Figures 4–6 compare the predictions by GEOS and PR EoS for each binary system 

analyzed. Thus, Figure 4 shows the comparison of the available experimental critical data 

and the predictions by both GEOS and PR equation of state for the carbon dioxide + ethyl 

acetate binary system. 

  

(a) (b) 

Figure 4. P–T fluid phase diagrams for carbon dioxide (1) + ethyl acetate (2) binary system. ●, [51]; ○, [50]; ●, ●, critical 

points of CO2, EA [33]; ─, ─, vapor pressures of pure components; ▬, GEOS predictions; ▲ (UCEP), - - - , PR predictions. 

0

20

40

60

80

100

120

140

200 300 400 500 600

P
/ 

b
ar

T / K

0

20

40

60

80

100

120

140

280 380 480

P
/ 

b
ar

T / K

, GEOS predictions; N, - - -, PR EoS predictions.

Figure 4a shows the entire phase diagram, including the predicted UCEP by PR EoS,
while Figure 4b presents the enlargement of LV critical region. A clear dispersion of the
experimental critical data is observed, the difference in CPM being more than 15 bar, while
the divergence in corresponding temperatures is ~50 K. The experimental data from [51]
are better predicted by both GEOS and PR EoS. However, the predicted CPM by GEOS is
closer to the experimental one, including the corresponding temperature, while PR EoS
predicts the CPM at a higher pressure (~2 bar larger), and more importantly, at a higher
temperature (~20 K). On the other hand, both equations underpredict the critical curve at
temperatures lower than ~350 K compared with the experimental data.

Figures 5 and 6 are organized in the same way as Figure 4, displaying on the left side
(a) the entire phase diagram and the enlargement of the liquid–vapor critical region, and
on the right side (b) for the carbon dioxide + 1,2-dimethoxyethane and carbon dioxide +
1,4-dioxane, respectively. The predictions by both PR EoS and GEOS are quite accurate
for the carbon dioxide + 1,2-DME binary system, for which only one set of experimental
critical data is available [22], with a slight superiority by GEOS in the critical pressure
maximum area (Figure 5), but with a pronounced underestimation in the LV critical region
towards the critical point of carbon dioxide. The available experimental critical data [50,53]
for the carbon dioxide + 1,4-dioxane binary system are in good concordance, with a slight
discrepancy in the maximum critical pressure area. GEOS performs better than PR EoS for
the carbon dioxide + 1,4-dioxane binary system, though the same trend as for the other
two systems can be noticed—an underestimation of the critical points in the first part of
the LV critical curve starting from the critical point of CO2, followed by a faster reach of
the critical pressure maximum than the experimental data. PR EoS predicts the CPM at
higher pressure and temperature than the experimental ones.

Although the pressure–temperature projections of the phase diagrams are reason-
ably well predicted considering that the BIPs have been determined for carbon dioxide +
2-butanol binary system, the pressure–composition projection predictions by both GEOS
and PR EoS show qualitative agreement for CO2 + 1,4-dioxane and CO2 + 1,2-dimethoxyethane
binary systems and display a better concordance for the CO2 + ethyl acetate system, but the
experimental data are quite scattered for the latter. In Figure 7 are plotted the experimental
data for the three binary systems studied, together with the predictions by GEOS and PR
EoS. As PR EoS predicts type II phase behavior, the LL critical lines, the UCEPs, and the
three-phase equilibrium lines are also shown. The three-phases region is additionally de-
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tailed on the left side of the figure. This behavior will be negatively reflected in isothermal
phase diagrams as underestimation or overestimation of the carbon dioxide compositions,
depending on the temperature.
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Figure 7. P–X fluid phase diagram of the carbon dioxide + ethyl acetate (blue), carbon dioxide + 1,4-dioxane (purple), and
carbon dioxide + 1.2-dimethoxyethane (gray) binary systems. Symbols, literature data [22,51,53]; full lines, predictions by
GEOS; dashed lines, predictions by PR EoS.

Thus, we compare the predictions by both GEOS and PR EoS with experimental
isothermal pressure–composition data at 343.15 K for all three systems considered in
Figure 8. This temperature is the highest common one for all systems for which experimen-
tal data are available. It must be mentioned that the fewest data are available for the carbon
dioxide + 1,2-dimethoxyethane system [22]. Both models predict a much higher content
of the organic compounds in the liquid phase, which increases with pressure, consistent
with the behavior observed in the pressure–temperature and pressure–composition projec-
tions. The vapor phase is better predicted, though the models underestimate the carbon
dioxide compositions.
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Figure 8. Comparison of literature data for CO2 + ethyl acetate (blue) [54], + 1,4-dioxane (purple) [53],
and + 1,2-dimethoxyethane (gray) [22] binary systems at T = 343.15 K and predictions by GEOS (full
lines) and PR EoS (dashed lines).
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Note that at this temperature, the experimental data suggest that CO2 is most soluble
in 1,2-dimethoxyethane, followed by 1,2-dioxane, and ethyl acetate, while the predictions
indicate the order ethyl acetate, 1,2-dimethoxyethane, and 1,4-dioxane. However, the
predictions become more accurate at higher temperature and pressures. For this purpose,
we present PR EoS predictions at the same temperatures (300, 320, 350, 400, 450, and 500 K)
for the three systems studied in Figure 9. The composition windows for phase separation at
a specified temperature and pressure grow apparently in the order carbon dioxide + ethyl
acetate (Figure 9a), carbon dioxide + 1,2-dimethoxyethane (Figure 9c), and carbon dioxide
+ 1,4-dioxane (Figure 9b). In other words, and more related to possible applications in
CCS/CCUS, it means that the models predict that carbon dioxide is most soluble in ethyl
acetate, followed by 1,2-dimethoxyethane, and 1,4-dioxane.
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Figure 9. VLE behavior at six temperatures (300, 320, 350, 400, 450, and 500 K) for the carbon dioxide + ethyl acetate (a),
carbon dioxide + 1,4-dioxane (b), and carbon dioxide + 1,2-dimethoxyethane (c) binary systems. The lines correspond to PR
EoS predictions with the BIPs k12 = 0.025 and l12 = −0.108.

When comparing the prediction results at the same temperature for the three mix-
tures, it can be observed that at high temperatures and pressures, the CO2 solubility
increases in the same order as the experiments suggest, i.e., 1,4-dioxane < ethyl acetate <
1,4-dimethoxyethane (Figure 10a). At higher temperatures and pressures, the differences
become more conspicuous (Figure 10b). Considering solvent-solvent and solvent-CO2
interactions, it was demonstrated [55] that ether bonds in solvents can promote the CO2
absorption and perform better than esters. Moreover, the present study indicates that the
oxygenated cyclic compound has the poorest solubility in CO2, confirming the same result
when comparing cyclic alkanes and normal alkanes [17].
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Figure 10. VLE behavior at 400 K (a) and 500 K (b) for the carbon dioxide + ethyl acetate, carbon diox-
ide + 1,4-dioxane, and carbon dioxide + 1,2-dimethoxyethane binary systems. The lines correspond
to PR EoS predictions with the BIPs k12 = 0.025 and l12 = −0.108.
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Further investigations are necessary to determine which class of organic substances is
the best solvent for carbon dioxide capture.

4. Conclusions

The phase behavior of carbon dioxide + ethyl acetate, + 1,4-dioxane, and + 1,2-
dimethoxyethane binary systems was reasonably well predicted using unique sets of
binary interaction parameters tailored for the carbon dioxide + 2-butanol system using the
k12-l12 method with GEOS (k12 = 0.050; l12 = −0.040) and PR EoS (k12 = 0.025; l12 = −0.108)
models. Although the test is severe, both models show a very good agreement for the
pressure–temperature phase diagrams for all three systems investigated. The carbon diox-
ide + 1,4-dioxane binary system displays the larger ranges of immiscibility, followed by the
carbon dioxide + ethyl acetate, and carbon dioxide + 1,2-dimethoxyethane. The models
predict that the most suitable candidate for CO2 capture among the three binary mixtures
considered is carbon dioxide + 1,2-dimethoxyethane. These results show that, based on
similarity of compounds, qualitative information can be obtained without having experi-
mental data for the systems under investigation. It was shown that linear ethers are the
most favorable solvents, followed by esters, and cyclic esters. Further studies are needed
to determine if the members of the same organic family behave similarly, and which class
of organic substances is the most suitable as a physical solvent.
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