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ABSTRACT

Similarity-based clustering and classification of
compounds enable the search of drug leads and the
structural and chemogenomic studies for facilitating
chemical, biomedical, agricultural, material and other
industrial applications. A database that organizes
compounds into similarity-based as well as scaffold-
based and property-based families is useful for facil-
itating these tasks. CFam Chemical Family database
http://bidd2.cse.nus.edu.sg/cfam was developed to
hierarchically cluster drugs, bioactive molecules, hu-
man metabolites, natural products, patented agents
and other molecules into functional families, su-
perfamilies and classes of structurally similar com-
pounds based on the literature-reported high, inter-
mediate and remote similarity measures. The com-
pounds were represented by molecular fingerprint
and molecular similarity was measured by Tani-
moto coefficient. The functional seeds of CFam fam-
ilies were from hierarchically clustered drugs, bioac-
tive molecules, human metabolites, natural products,
patented agents, respectively, which were used to
characterize families and cluster compounds into
families, superfamilies and classes. CFam currently
contains 11 643 classes, 34 880 superfamilies and
87 136 families of 490 279 compounds (1691 ap-
proved drugs, 1228 clinical trial drugs, 12 386 inves-

tigative drugs, 262 881 highly active molecules, 15
055 human metabolites, 80 255 ZINC-processed nat-
ural products and 116 783 patented agents). Efforts
will be made to further expand CFam database and
add more functional categories and families based
on other types of molecular representations.

INTRODUCTION

Similarity-based clustering and classification of compounds
have been extensively used in diverse tasks ranging from the
search of bioactive agents for drug discovery (1-4) to the
molecular and chemogenomic studies in such applications
as chemspace navigation and analysis (5,6), structure-target
relationship investigation (7-12), cross-pharmacology pro-
filing of intra-family and cross-family targets (13,14) and
receptor de-orphanization (15). For facilitating these and
other tasks and for the orderly management of known com-
pounds and the study of new compounds, it would be ad-
vantageous to organize the known compounds into chem-
ical families based on structural similarity (16,17) as well
as molecular scaffold classification (5,18,19) and molecu-
lar descriptor projection (19,20). This requires a method
and resource for defining, generating and maintaining a
comprehensive set of chemical families. To the best of
our knowledge, such a resource is not yet publically avail-
able. We therefore developed the CFam Chemical Fam-
ily database (http://bidd2.cse.nus.edu.sg/cfam) both as a
database of function-based chemical families and as a re-
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Search CFam by Molecule, Family, Superfamily or Class Name/ID
Search CFAM by molecule, family, superfamily or Class names or IDs.
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similarity.
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Click here for sample SMILES
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A flat file containing CFAM seed information can be downloaded here.

Figure 1. CFam web interface. CFam is searchable by three modes: compound and family name and ID searching, browsing of CFam families, superfamilies

and classes and the alignment of a compound against CFam families.

source for facilitating further development of chemical fam-
ily databases.

Generating a chemical family database would rely heav-
ily on automated algorithms for classifying large number
of known compounds that exceed 30 million compounds,
1.4 million bioactive molecules and 760 000 patented agents
in the Pubchem (21) and ChEMBL (22) databases, which
evokes two problems. One is the difficulty to strictly use hi-
erarchical clustering algorithm for grouping such a large
number of known compounds, even though k-means hi-
erarchical clustering algorithm is capable of clustering 800
000 compounds (2,16) and none-hierarchical ones can clus-
ter millions of compounds (23). The second is the difficulty
to systematically define chemical families and select fam-
ily members relevant to both structural and chemical stud-
ies and applications in pharmaceutical, biomedical, agricul-
tural and industrial research and development. These prob-
lems also arise in generating protein domain families, which
have been resolved by selecting subsets of proteins of known
functions as the seeds of protein domain families to both de-
fine each family’s functional and structural characteristics
and select family members by multiple sequence alignment
against the seed proteins (24). We employed a similar strat-
egy for generating the CFam chemical families.

To make CFam chemical families more relevant to the ap-
plications in pharmaceutical, biomedical, agricultural, ma-

terial and other industrial applications as well as to the
research in chemistry and related scientific disciplines, the
seeds of the CFam families were or are to be iteratively se-
lected from hierarchically clustered approved drugs, clini-
cal trial drugs, investigative drugs, bioactive molecules, hu-
man metabolites, food ingredients and additives, flavors and
scents, agrochemicals, natural products, patented agents,
toxic substances, purchasable compounds and other known
compounds based on the literature-reported high-similarity
measures (25-28). These families were further clustered into
CFam superfamilies and classes by hierarchically cluster-
ing the seeds based on the literature-reported intermediate
similarity (11,29,30) and remote similarity (3,13,30) mea-
sures. Although this iterative hierarchical clustering proce-
dure seems similar to the incremental clustering algorithm
used in selecting representative proteins for clustering pro-
teins (31) and representative compounds for clustering large
compound libraries (23), there are two significant differ-
ences. One is that the seed selection and clustering processes
are based on hierarchical clustering algorithms. The second
is the preferential selection of compounds of higher func-
tional importance as the seeds in the order of drugs, bioac-
tive molecules, human metabolites, etc.

Currently, CFam database includes the seeds, members
and names of families, superfamilies and classes function-
ally characterized by the approved drugs, clinical trial drugs,
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Search Results

Figure 2. A CFam molecule page resulting from the name search by inputting ‘aspirin’ and selecting ‘molecule’.

Figure 3. The CFam approved drug families browsing page resulting from the clicking of ‘Family’ in the section header titled ‘Browse CFam
Family/Superfamily/Class by Functional Category’ and ‘Approved Drug Families’ in the section.



Figure 4. The CFam result page of the alignment of aspirin with CFam seeds.

investigative drugs, highly active molecules (IC50 or Ki <
1 M against molecular target), human metabolites, zinc-
processed natural products and patented agents. Table 1
provides the statistics of CFam seeds, compounds, families,
superfamilies and classes with respect to the seven func-
tional categories of compounds.

DATA COLLECTION AND PROCESSING

Because of the high computational cost of clustering large
number of compounds, the first version of CFam primar-
ily focuses on the following seven categories of compounds
of functional significance: 1691 approved drugs from TTD
(32) and Drugbank (33), 1228 clinical trial drugs and 12 386
investigative drugs from TTD (32), 262 881 highly active
molecules (IC50 or Ki < 1 pM against molecular target)
from Chembl version 18 (22), 15 055 human metabolites
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Top 30 Matches in the CFAM Database

from HMDB (34), 80 255 ZINC-processed natural prod-
ucts from ZINC (35) and 116 783 patented agents from
PubChem (21) databases, respectively. For database entries
with multiple non-linked components, only the largest com-
ponent was selected. Hydrogens were added and salt ions
were removed by using Open Babel (36), duplicates were
identified and removed by comparative analysis of their
InChIKeys, which is a hashed version of InChlI (37) de-
signed to be nearly unique for each individual compound
with a collision resistance of 2.2 x 10 (38).

GENERATION OF CFam FAMILIES OF HIGH SIMILAR-
ITY COMPOUNDS

Molecular similarity and analysis may be conducted
from different structural, physicochemical and functional
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Table 1. The statistics of CFam seeds, compounds, families, superfamilies and classes with respect to the seven functional categories of compounds:
approved drugs, clinical trial drugs, investigative drugs, bioactives (currently highly active molecules), human metabolites, zinc-processed natural products

and patented agents

Number of Number of Number of Number of

Functional category seeds Number of seeds and members families superfamilies classes
Approved Drugs 1691 95367 (4121 HM, 19 408 NP) 1114 937 813
Clinical Trial Drugs 1168 38981 (551 HM, 3258 NP) 863 756 537
Investigative Drugs 11093 93 191 (4321 HM, 11 881 NP) 4226 2870 1700
Bioactives 98 523 171 162 (833 HM, 24 439 NP) 29983 15088 4035
Human Metabolites 5229 10 408 (5229 HM, 1820 NP) 2058 1377 709
Natural Products 19 449 20 821 4017 1517 394
Patented Agents 60 349 60 349 44 875 12335 3455

Total 197 502 490 279 87 136 34 880 11643

The number of members of these families from the two categories of special interests, human metabolites (HM) and natural products (NP) are also provided.

perspectives by using different types of molecular repre-
sentations. These include molecular descriptors (19,20,39),
molecular scaffolds (5,18,19), molecular fingerprints
(3,16,17) and other molecular representations, such as
chemical graphs, pharmacophore patterns and molecular
fields (40-43). Multiple forms of chemical families can
thus be generated from these molecular representations in
a similar manner as the multiple forms of protein families
generated from multiple-sequence alignment of protein
domains (24,44), conserved signature profiling of selected
sequence segments (45), structure classification (46,47)
and combined analysis of these and other features (48).
Due to the high computational cost in clustering large
number of compounds, in the first version of CFam, we
only used one type of molecular representation, the 2D
molecular fingerprints (specifically, the 881-bit PubChem
substructure fingerprints computed by using PaDEL (49)),
for representing molecules, which was selected because of
its computational efficiency, demonstrated effectiveness
in similarity searching and extensive applications in drug
discovery (3,50-54). The other types of molecular repre-
sentations will be used in the future version of CFam for
generating other forms of chemical families.

The seeds of CFam families were assigned and used to
assemble compounds into CFam families by the follow-
ing iterative hierarchical clustering procedure. In the first
iteration, 1691 approved drugs were clustered by hierar-
chical clustering algorithm with the 2D fingerprint Tarni-
moto coefficient (2DF-TC) as the similarity metric and the
complete linkage as the linkage criterion. Tarnimoto co-
efficient was used because it is the most popular similar-
ity metric for measuring compound similarity (3). Com-
plete linkage was used because of its relatively good per-
formance in clustering bioactive compounds in a recent
comparative study (55). The criterion for grouping com-
pounds into a cluster of high-similarity compounds is 2DF-
TC >0.85, which was adopted because it is a widely used cri-
terion for avoiding structural redundancy in selecting com-
pound libraries for screening bioactive compounds (25,26).
High-similarity compounds grouped by this criterion typ-
ically have 30-81% chance of having the same activity in
the same bioassay (26-28). The drug/drugs in each cluster
was/were assigned as the seed/seeds of a CFam-approved
drug family with the family name systematically charac-
terized by the target/targets, activity type (e.g. inhibitor),

molecular class/classes (e.g. benzisoxazole derivative) and
drug name/names of the seed/seeds.

In the second iteration, the 2DF-TCs of the 1228 clini-
cal trial drugs against the seed/seeds of the existing CFam
families were first computed. If the 2DF-TC of a drug is
>0.85 with respect to all the seeds/seed of a family, the
drug was assigned as a seed of that family. If the 2DF-
TC of a drug is >0.85 to some but not all of the seeds of
a family, the drug was assigned as a member of that fam-
ily. If the 2DF-TC of a drug is >0.85 to the seeds of more
than one family, the drug was tentatively assigned to the
family/families with the largest 2DF-TC and the remain-
ing family/families was/were marked as a cousin family to
the assigned family/families and these cousins are indicated
in the CFam database (e.g. CFFAD942 Prostaglandin G/H
synthase 2 inhibitor diarylsubstituted isoxazole deriva-
tive valdecoxib family is a cousin family of CFFAD3 D2
dopamine receptor ligand benzisoxazole derivative risperi-
done family) so that the cousin families can be subsequently
evaluated for possible merger into a combined family. The
remaining unassigned clinical trial drugs were subject to the
same procedure as that of the first iteration to assign them
as the seed/seeds of CFam clinical trial drug families for
assembling compounds into the respective families.

In the subsequent iterations, each set of 12 386 inves-
tigative drugs, 262 881 highly active molecules, 15 055 hu-
man metabolites, 80 255 ZINC-processed natural prod-
ucts and 116 783 patented agents were in turn subject to
the same procedure as that of the second iteration to as-
sign compounds into the existing CFam families or as the
seed/seeds of the new CFam investigative drug families,
bioactive molecule families, human metabolite families, nat-
ural product families and patented agent families for as-
sembling compounds into the corresponding families, re-
spectively. If the 2DF-TC of a compound is >0.85 to the
seeds of more than one family, it was preferentially assigned
in order of priority to approved drug, clinical trial drug,
bioactive molecule (currently highly active molecule), hu-
man metabolite, natural product and patented agent family,
respectively. Certain functional categories, such as human
metabolites and natural products, are of special interests
beyond one scientific discipline. Therefore, if a compound
from these categories (e.g. a natural product) was preferen-
tially assigned to a family of a different category (e.g. ap-
proved drug), that family was marked and is displayed as a



family containing compound/compounds from this special
category (e.g. approved drug family with natural product).

While possible, the names of these families were system-
atically determined in a similar manner as those of ap-
proved drugs. Many clinical trial and investigative drugs
have little molecular class information and large number
of bioactive compounds and natural products are without
a common name, which make it difficult to automatically
search for their molecular class names. Therefore, while pos-
sible, the TUPAC systematic names were used to extract
common substructure names as putative molecular class
names. Efforts will be made to determine the molecular
classes of these families from the structure information of
their seed/seeds. For the remaining families that we were
unable to obtain molecular class information, their family
names were tentatively characterized by the name/names or
ID/IDs of their seed/seeds.

GENERATION OF CFam SUPERFAMILIES OF INTER-
MEDIATE TO HIGH SIMILARITY COMPOUNDS, AND
CFam CLASSES OF REMOTE TO HIGH SIMILARITY
COMPOUNDS

The centroid seeds of the CFam families were further clus-
tered by hierarchical clustering algorithm with the 2DF-TC
as the similarity metric and the complete linkage as the link-
age criterion, so that the CFam families can be assembled
into CFam superfamilies and classes. The criterion for as-
sembling CFam family/families into a superfamily of inter-
mediate to high similarity compounds is 2DF-TC >0.70,
which was applied because compounds satisfying this crite-
rion have been regarded as similar to one other (30,56) and
those with slightly lower similarity typically have remote
similarity (29). Compounds grouped by this intermediate-
similarity criterion may have up to 30% chance of having
the same activity in the same bioassay (11). These super-
families were systematically named from the common target
classes, chemical classes and individual family names of the
constituent family names. A superfamily is typically com-
posed of compounds of the same or highly similar molec-
ular scaffolds targeting the same target, members of the
same target subfamilies or target sites accommodating sim-
ilar molecular scaffolds. For instance, the CFSAD2 cAMP-
specific 3, 5'-cyclic phosphodiesterase, TNF inhibitor xan-
thine derivative superfamily includes two families of xan-
thine derivatives against the two targets and three families
of structurally similar purine derivatives, N-alkylguanine
acyclonucleosides and theobromines.

The criterion for further assembling CFam
superfamily/superfamilies into CFam classes of remote
to intermediate similarity compounds is 2DF-TC >0.57,
which was used because it can reasonably capture similarity
compounds with cross-pharmacology relationships but
not necessarily have the same activity (13). A CFam class
typically consists of a large number of compounds that
bind to multiple members of a target family/subfamily
and/or target families/subfamilies with binding-sites
accommodating similar molecular scaffolds, which makes
it difficult to systematically name it. Therefore, CFam
classes were tentatively named by their CFam class IDs
only. Efforts will be made to manually determine their
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names. An example of a CFam class is CFCAD?3, which
is composed of the binders of GPCR Class A subfami-
lies A1 (C-C chemokine receptors), A9 (neuropeptide Y
receptors), Al13 (cannabinoid receptors), Al17 (dopamine
receptors), A18 (muscarinic acetylcholine receptors) and
A19 (5-HT receptors), cholinesterases, tryptases, dopamine
transporters and sodium channel proteins, etc.

DATABASE STRUCTURE AND ACCESS

CFam can be searched by three different modes (Figure 1).
The first mode enables the search of CFam by inputting
a compound name or ID (currently support CFam, Pub-
chem, Chembl, Zinc and TTD compound IDs), a CFam
family name or ID, a CFam superfamily name or ID and a
CFam Class ID, respectively. The relevant information may
be obtained by clicking the buttons of ‘Molecule’, ‘Fam-
ily’, ‘Superfamily’ and ‘Class’, respectively. For instance, in-
putting ‘aspirin’ and then clicking ‘Molecule’ leads to the
CFam molecule CFAMMO00072836 page which shows that
aspirin belongs to the CFam CFFADS534 cyclooxygenase
inhibitor salicylate derivative aspirin family (Figure 2). The
second mode enables the browsing of CFam families, su-
perfamilies and classes of any functional category, respec-
tively, which can be proceeded by first clicking the ‘Family’,
‘Superfamily’ or ‘Class’ word in the section header titled
‘Browse CFam Family/Superfamily/Class by Functional
Category’, and then clicking a specific functional category
below the header. For instance, clicking ‘Family’ and then
‘Approved Drug Families’ leads to the page of CFam ap-
proved drug families list (Figure 3). The third mode facil-
itates the alignment of an input compound in SMILES or
molecular fingerprint format against CFam seeds to iden-
tify CFam families with high, intermediate and remote sim-
ilarity to the input compound. The list of up to 30 CFam
families with at least one seed having 2DF-TC > 0.85 (high
similarity family), 0.85 > 2DF-TC > 0.7 (intermediate sim-
ilarity family) and 0.7 > 2DF-TC > 0.57 (remote similarity)
to the input compound is provided. Figure 4 shows the re-
sult page of the alignment of aspirin with CFam seeds. To
facilitate the development of chemical family databases and
the structural and functional analysis of molecules, CFam
seeds can be downloaded from the CFam main page (Figure

1).

REMARKS

Specialized chemical information resources, such as the
chemical family databases, complement the general chem-
ical databases for facilitating focused studies on the naviga-
tion, classification and the structural and functional charac-
terization of molecules. The chemical family databases that
comprehensively cover the known chemspace and charac-
terize molecules from different molecular representations
are increasingly needed given the rapidly expanding pools
of molecules from synthetic and natural sources (57-59)
and the increasing need to analyze higher number and more
variety of compounds for diverse applications (13-15,19).
To meet such a need, CFam will be further updated to ex-
pand existing functional families and add new families of
moderately active molecules (IC50 or Ki 1-10 wM against
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molecular target), food ingredients and additives, flavors
and scents, agrochemicals, natural products beyond ZINC
processed ones, toxic substances, purchasable compounds
and other compounds. Although some of the CFam fam-
ilies are currently composed of seeds only, these seeds are
nonetheless useful for facilitating further development of
chemical families and function-based classification of com-
pounds.
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