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Abstract: Rosa gallica is a widely used Rosa species for medicinal and culinary purposes. Rosa gallica
has been reported to display antioxidant, anti−inflammatory, and antibacterial activities. However,
the effect of Rosa gallica against skin aging in vivo is unknown and its active components have not
been fully understood. Oral administration of Rosa gallica prevented UVB−mediated skin wrinkle
formation and loss of collagen/keratin fibers in the dorsal skin of mice. Examination of biomarkers
at the molecular level showed that Rosa gallica downregulates UVB−induced COX−2 and MMP−1
expression in the skin. Through a direct comparison of major compounds identified using the
UHPLC−MS/MS system, we discovered gallic acid as the primary component contributing to the
anti-skin aging effect exhibited by Rosa gallica. Examination of the molecular mechanism revealed
that gallic acid can potently and selectively target the c−Raf/MEK/ERK/c−Fos signaling axis. In
addition, both gallic acid and MEK inhibitor blocked UVB−induced MMP−1 expression and restored
collagen levels in a reconstructed 3D human skin model. Collectively, Rosa gallica could be used as a
functional ingredient in the development of nutraceuticals against skin aging.

Keywords: Rosa gallica; skin aging; gallic acid; c−Raf; UHPLC−MS/MS

1. Introduction

Chronic irradiation of ultraviolet B (UVB) light causes skin wrinkle formation, in-
flammation, pigmentation, and dehydration [1,2]. UVB triggers signaling pathways lead-
ing to upregulation of genes involved in collagen degradation and inflammation [1,3].
Among these, matrix metalloproteinases (MMPs), especially MMP−1, play a key role
in promoting collagen degradation and in turn, wrinkle formation [4]. In addition,
cyclooxygenase 2 (COX−2), which can be induced by UVB light, mediates skin inflamma-
tion and photoaging [5]. Thus, food compounds that can inhibit the expression of MMP−1
or/and COX−2 have the potential to possess anti-skin aging effects [6,7].

Activator protein 1 (AP−1) and its upstream regulatory pathways have been known to
be major contributing factors to MMP–1 expression and skin aging [8]. AP−1 is a dimeric
transcription factor formed by Fos (c−Fos, FosB, Fra1, and Fra2) and Jun (c−Jun, JunB, and
JunD) families. Activation of AP−1 induces transcription of genes involved in skin aging,
cell proliferation, angiogenesis, and inflammation [8–10]. Especially as AP−1 directly
induces MMP−1 expression leading to collagen degradation in the skin, downregulation of
AP−1 components have been suggested as a promising strategy to block skin aging [11]. UV
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causes the activation of mitogen−activated protein kinases (MAPKs), including ERK1/2,
p38, and JNK1/2, which act as key upstream regulators of AP−1 activity [8,12]. Hence,
studies have demonstrated that inhibiting upstream regulatory pathways of AP−1, such
as the MAPKs, MAP2Ks, or c−Raf can suppress skin aging [13–17].

Rosa species have been used as a cooking ingredient as well as a medicinal plant.
Various types of roses, including Rosa canina, Rosa damascene, Rosa centifolia, and Rosa
gallica have been reported to display antioxidant, antibacterial, anti−depressant, and
anti−inflammatory properties [18,19]. Additionally, the Rosa species is known for its
functional effects on the skin [20,21]. In particular, Rosa gallica is one of the most commonly
used Rosa species for cosmetic, medicinal, and culinary purposes [22,23]. Although the
potential of the Rosa gallica extract to prevent biomarkers of skin aging in vitro has been
reported [24], there has been no study demonstrating the anti−skin aging effect of Rosa
gallica in vivo. Moreover, active ingredients responsible for the bioactivity of Rosa gallica
and Rosa species are poorly understood. Herein, we have orally administered the Rosa
gallica extract to mice and evaluated its anti−skin aging effect to assess its potential as a
functional food/nutraceutical agent. Moreover, we have identified the active ingredient
of Rosa gallica by ultra−high performance liquid chromatography (UHPLC) with mass
spectrometry (MS) and examined its molecular mechanism.

2. Materials and Methods
2.1. Materials

Gallic acid, quercetin, catechin, kaempferol, rutin, quercitrin, U0126, dimethyl sulfox-
ide (DMSO), and formic acid were purchased from Sigma−Aldrich (St. Louis, MO, USA).
Antibody to detect COX−2 was purchased from Cayman Chemical (Ann Arbor, MI, USA),
and the antibodies to detect MMP−1 and collagen I were obtained from Abcam (Cam-
bridge, United Kingdom). Antibodies against c−Jun, p38, JNK, c−Raf, MKK4, vinculin,
and GAPDH was provided by Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Antibody
to detect c−Fos, phospho−c−Jun, phospho−ERK, ERK, phospho−p38, phospho−JNK,
phospho−c−Raf, phospho−MEK, MEK, phospho−MKK4, phospho−MKK3, and MKK3
were purchased from Cell Signaling Technology (Danvers, MA, USA). Rosa gallica petals
were imported from Turkey through GN Bio (Hanam, Korea). Analytical grade water and
acetonitrile (ACN) were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Rosa gallica Extract Preparation

Rose petals were ground in a blender to obtain a powder. Dried powder (10 g) of
rose petal was mixed with 1000 mL of 70% (v/v) ethanol and extracted at 70 °C for 3 h
using reflux condenser. And then the extract was filtered through No. 2 filter paper
(Whatman, Maidstone, UK). The solvent was subsequently evaporated, and the product
was freeze-dried.

2.3. Experimental Animals and Treatments

Female SKH−1 hairless mice were obtained from Orient Bio (Seongnam, Korea). Mice
had free access to food and water for 15 weeks. Seven mice were allocated into each
group. The Institutional Animal Care and Use Committee (SEMI1−19−02) approved
all experimental protocols. Rosa gallica extract was dissolved in distilled water at the
indicated concentration and treated to mice every day by oral gavage. UVB was applied
to the mice by UV−3000 (Dong Seo Science Co., Ltd., Seoul, Korea) starting at week
5 of the experiment. UVB irradiation was gradually increased from 1 MED to 4 MED
(1 MED = 1 minimal erythema dose = 50 mJ/cm2) with no injury.

2.4. Wrinkle Measurement

Skin replicas of mouse dorsal skin were made with the SILFLO (Amique Group Co. Ltd.,
Tokyo, Japan) at the end of the experiments. The skin replicas were photographed using
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Nikon E600 (Nikon, Tokyo, Japan). Depth of the wrinkle was measured by Visioline® VL
650 (Courage&Khazaka GmbH, Koln, Germany).

2.5. Masson’s Trichrome Staining

Tissue specimens were fixed with 4% (v/v) formalin solution. Tissue was embedded
in paraffin. Approximately 4 µm−thick sections were subjected to stained with Masson’s
Trichrome for collagen and keratin fibers analysis. After tissue staining, slides were
examined at 200 X magnification by Nikon DS–Fi3 (Nikon).

2.6. Immunoblot

Skin tissues or cell were lysed with RIPA buffer. Immunoblot was performed as
previously described [25]. Briefly, lysates were centrifuged at 4 ◦C, 12,000× g for 10–20 min.
Protein concentration of lysate was measured using BCA assay (Thermo Fisher Scientific).
The proteins were separated using SDS−PAGE and transferred to a nitrocellulose (NC)
membrane (PALL® Corporation, Port Washington, NY, USA). The NC membrane was
blocked in the 5% skim milk in Tris−Buffered Saline in 0.1% Tween 20 for 1 hr. Membrane
was incubated with a primary antibody at 4 ◦C overnight. Bands were detected with
Western Lightning Plus−ECL (PerkinElmer, Waltham, MA, USA) after incubated with an
HRP−conjugated secondary antibody. All blots presented in the manuscript are from a
film scan generated from an automatic X−ray film processor (JPI Healthcare, Seoul, Korea).

2.7. UHPLC–LTQ–Orbitrap/MS/MS Conditions

The molecular weights of the peaks were displayed from high−resolution MS using
LTQ Orbitrap XL (Thermo Fisher Scientific) coupled with Accelar UHPLC (Thermo Fisher
Scientific). Mobile phase A was water containing 0.1% (v/v) formic acid, and mobile phase
B was ACN containing 0.1% (v/v) formic acid. Separation of compounds was performed
using a C18 column (Acquity UPLC® BEH; 2.1 mm × 100 mm, 1.7 µm; Waters Corp.,
Milford, MA, USA) at a flow rate of 0.4 mL/min using the following gradient 3–10% mobile
phase B for 3 min; 10–40% B for 16 min; 40–80% B for 17 min; 80–3% B for 19 min; 3% B
for 20 min. The UHPLC−MS/MS was operated with a Z−spray ion source in the positive
ion, negative ion mode using the following conditions: capillary voltage of 20 V, capillary
temperature of 350 °C, spray voltage 3.5 kV. Spectra were scanned in the range between
150 and 1500 m/z.

2.8. Cell Culture and UVB Irradiation

Human Dermal fibroblasts (HDFs) were kindly provided by Dr. Jin Ho Chung (Depart-
ment of Dermatology, Seoul National University College of Medicine, Seoul, Korea). HDFs
were cultured in Dulbecco’s Modified Eagle’s Media (DMEM, Corning Inc., Somerville,
MA, USA) containing 10% fetal bovine serum (FBS, Thermo Fisher Scientific) with peni-
cillin/streptomycin (Corning Inc.). Cells were irradiated with UVB using Bio−link−BLX
(Vilber Lourmat, Paris, France), with the peak emission wavelength is 312 nm. The energy
of UV was 0.03 J/cm2.

2.9. SRB Staining

HDFs were seeded into a 6−well plate. After 24 h, the medium was replaced with
serum–free DMEM. The next day, chemicals were treated at the indicated concentrations
and incubated for 48 h. After fixing the cells, the living cells were stained with sulforho-
damine B (SRB, Sigma−Aldrich). SRB was dissolved with 10 mM Tris and absorbance was
measured at 554 nm.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

HDFs were seeded in 12−well plates at a density of 1.8 × 105 cells/well. Cells
were incubated for 24 h, after which the medium was replaced with serum−free media
and incubated for another 24 h. Cells were treated with compounds at the indicated
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concentrations and then irradiated with UVB. Following 48 h of incubation, the culture
supernatants were collected and centrifuged at 13,000× g to remove cell debris. The
concentration of MMP−1 in the cell culture media was determined by corresponding
ELISA kits (R&D Systems Inc., Minneapolis, MN, USA). These assays were performed as
manufacturer’s instructions.

2.11. Reconstructed 3D Human Skin Model

Reconstructed 3D human skin (Neoderm−ED) was obtained from Tegoscience (Seoul,
Korea). The reconstructed 3D human skin model was treated with indicated chemicals
for 1 h prior to UVB irradiation. The skin tissue was irradiated with UVB twice a day for
8 days, and the medium was changed every two days. The skin tissue was incubated at
37 ◦C under 5% CO2 atmosphere.

2.12. Collagen Staining in Reconstructed 3D Human Skin Model

Skin sections from reconstructed 3D human skin model were fixed with 4% formalin
solution. Paraffin−embedded sections were cut on glass slides. Slides were deparaffinized
three times with xylene and hydrated through a grade alcohol bath. The deparaffinized
sections were stained with Sirius Red/Fast Green solution (Chondrex, Inc. Woodinville,
WA, USA). After tissue staining, slides were washed with 0.5% (v/v) acetic acid solution.
Finally, slides were dehydrated through a reverse grade alcohol bath and mounted. Pictures
of collagen−stained slides were taken using the Nikon eclipse Ts2 (Nikon).

2.13. Statistical Analysis

Statistical analyses were used one−way analysis of variance followed by GraphPad
Prism 5 software (San Diego, CA, USA). All data are presented as means ± standard
deviation (SD). A p < 0.05 was considered statistically significant.

3. Results
3.1. Oral Consumption of Rosa gallica Petal Extract (RPE) Suppresses UVB−Mediated Skin
Wrinkle In Vivo

Mice were administered with Rosa gallica petal extract (RPE) and exposed to UVB
for 10 weeks (Figure 1A). Continuous exposure to UVB induced skin wrinkle formation
(Figure 1B). Interestingly, oral administration of RPE at 5 and 10 mg/kg B.W. led to a reduc-
tion in UVB−mediated wrinkle formation in the dorsal skin of mice (Figure 1B). Quantifi-
cation of skin wrinkle demonstrated that RPE administration could block UVB−induced
mean wrinkle depth and max wrinkle depth to near control levels (Figure 1C). These results
clearly show that oral intake of RPE can suppress UVB−mediated skin aging in vivo.

3.2. RPE Does Not Show Side Effects In Vivo

To assess the safety of RPE in vivo, we evaluated several parameters after RPE ad-
ministration. RPE did not display noticeable effects on body weight of mice (Figure 2A).
In addition, RPE did not affect the amount of food and water intake (Figure 2B,C). Ad-
ditionally, RPE did not cause any change to the weight of liver in the mice (Figure 2D).
Collectively, these results demonstrate that oral consumption of RPE does not generate
side effects in vivo at the treated concentrations.
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Figure 1. Rose petal extract (RPE) suppresses UVB−induced skin wrinkle formation. (A) RPE was
orally administered to mice every day. UVB was irradiated three times a week as indicated in the
experimental scheme. (B) Representative pictures of skin replica. (C) Mean wrinkle depth and
max wrinkle depth were quantified. Data represent the means ± SD (n = 4). Significant differences
between un−treated control and UVB−only treatment group (# p < 0.05) and significant differences
between UVB and UVB + RPE administrated group (* p < 0.05, ** p < 0.01).

3.3. RPE Inhibits Collagen Degradation and Blocks UVB−Mediated Biomarker of Skin Aging

To further examine the anti−skin aging effect of RPE, we analyzed key biomark-
ers of skin aging. Collagen and keratin are major structural proteins constituting the
skin and reduction of these proteins has been known to be responsible for skin wrin-
kle formation [26,27]. Results from Masson’s trichrome staining of the skin demonstrate
that RPE can prevent UVB−mediated decrease in collagen and keratin levels in the
skin (Figure 3A). We also found that RPE suppresses UVB−induced COX−2 and MMP−1
expression in the skin (Figure 3B), suggesting that RPE can block major mediators of in-
flammation and collagen degradation. While there has been a previous report that RPE can
attenuate MMP−1 in cells, this is the first time to show that RPE can suppress MMP−1
expression as well as collagen degradation and wrinkle formation in vivo.
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was no significant difference (n.s.) among all groups.
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Figure 3. RPE inhibits collagen degradation and reverses biomarkers of skin aging. (A) Masson’s
trichrome staining for the visualization of collagen and keratin fibers in mouse skin tissue. Collagen
fibers appear blue and keratin fibers appear red. The scale bar indicates 100 µm. (B) Protein
expression of MMP−1, COX−2, and vinculin were determined in mouse tissue lysates using the
corresponding antibody. Tissue lysates from three mice per group were used. Vinculin was used as a
loading control.
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3.4. Identification of Compounds in Rosa gallica

Main fragment ions of RPE obtained by UHPLC–LTQ–Orbitrap/MS/MS are shown
in Figure 4. A total of 17 peaks excluding solvent peak were identified (Table 1). Tentative
identification was performed using the obtained precursor ion and their fragment ions.
Gallic acid (1) and catechin (2), which are relatively polar compounds, were detected
rapidly with short retention times under reverse−phase condition. Compounds in which
two glycosides are bound to quercetin (such as rutin, fragment ion value of 303.05 m/z)
were identified at relatively short retention times, followed by a monoglycoside (quercetin
of 303.05 m/z and kaempferol of 287.05 m/z) and an aglycone (dihydrokaempferol) type.
In this study, since the binding structures of the glycoside moiety is unclear, it was ex-
pressed as a diglycoside. Among the identified compounds, 11 peaks were identified as
quercetin (peaks no. 5, 6, 7, 8, 11, 14, and 15) or kaempferol (peaks no. 9, 10, 13, and
17) derivatives, which is in accordance with previous reports where the glycosides of
quercetin and kaempferol are the most abundant flavonoids in roses among the reported
compounds [28–30].
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Table 1. Identification of major chemical constituents in RPE by UHPLC−LTQ−Orbitrap/MS/MS.

Peak tR
(min) Molecular Weight Ion Mode Precursor Ion

(m/z)
Fragment Ions

(m/z) Tentative Identification Reference

1 2.16 170.1195 [M − H]− 169.0000 N.D. Gallic acid [30]
2 4.04 290.2681 [M + H]+ 291.0864 N.D. Catechin [29]
3 4.28 954.7038 [M + H]+ 955.1054 N.D. Rugosin B [28]
4 6.50 936.6454 [M + H]+ 937.0934 N.D. Casuarictin [31]
5 7.45 616.4806 [M + H]+ 617.1137 303.0499 Quercetin-3-O-

gallate-glucoside [32]

6 8.00 610.5175 [M + H]+ 611.1607 465.1029,
303.0500 Rutin [30]

7 8.28 464.3763 [M + H]+ 465.1028 303.0499 Quercetin-3-O-galactoside [28,33]
8 8.56 464.3763 [M + H]+ 465.1026 303.0498 Quercetin-3-O-glucoside [30,33]

9 9.51 448.3769 [M + H]+ 449.1078 287.0549 Kaempferol-3-
O-galactoside [28,33]

10 10.00 448.3769 [M + H]+ 449.1080 287.0550 Kaempferol-3-O-glucoside [30,33]
11 10.20 448.3769 [M + H]+ 449.1078 303.0498 Quercitrin [30]
12 11.94 438.5128 [M − H]− 437.1445 N.D. unknown

13 12.44 432.3775 [M + H]+ 433.1130 287.0550 Kaempferol-3-
O-rhamnoside [30]

14 13.10 652.5542 [M + H]+ 653.1712 303.0500 Quercetin diglycoside [30]
15 14.78 636.5548 [M + H]+ 637.1764 303.0500 Quercetin diglycoside [30]
16 16.96 583.6741 [M + H]+ 584.2754 438.2387 Tricoumaroyl spermidine [34]
17 19.12 288.2522 [M + H]+ 289.2373 271.2268 Dihydrokaempferol [35]

RPE, rose petal extract; UHPLC-LTQ-Orbitrap/MS/MS, ultra-high performance liquid chromatography and tandem mass spectrometry; tR,
retention time; N.D., not detected.

3.5. Gallic Acid Is a Major Active Compound of Rosa gallica in Preventing Skin Aging

Based on the results from the chemical analysis (Figure 4 and Table 1), we selected
gallic acid, quercetin, catechin, kaempferol, rutin, and quercitrin for further evaluation. The
inhibitory activity against MMP−1 was measured using the six compounds. Treatment of
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gallic acid displayed the strongest reduction in UVB−induced MMP−1 levels among the
tested compounds without any apparent cytotoxicity (Figure 5A,B). In addition, gallic acid
was able to suppress MMP−1 levels in a dose−dependent manner (Figure 5C), suggesting
gallic acid as a major contributing factor to the anti−skin aging effect exhibited by RPE.

3.6. Gallic Acid Targets the c−Raf Signaling Pathway

To understand the molecular mechanism of gallic acid, we investigated the effect
of gallic acid on UVB−mediated signaling. As AP−1 is a crucial transcription factor
controlling the expression of MMP−1 [4], we sought the test the effect of gallic acid on
individual factors constituting the AP−1 dimer. Gallic acid downregulated c−Fos, whereas
phosphorylation of c−Jun was not affected (Figure 6A). Since the expression of c−Fos has
been known to be primarily regulated by MAPK family members (i.e., ERK1/2, p38, and
JNK1/2) [8], we examined the effect of gallic acid against MAPK activation. We discovered
that gallic acid can potently and selectively suppress ERK1/2 phosphorylation, while
displaying no noticeable effects on JNK1/2 and p38 phosphorylations (Figure 6B). Gallic
acid also attenuated phosphorylation of MEK1/2 which is the direct upstream regulator of
ERK1/2 (Figure 6C). c−Raf is activated by UV and acts as an upstream regulator of the
MEK/ERK pathway [36]. Results show that gallic acid can markedly reduce the activation
of c−Raf (Figure 6C). In addition, gallic acid did not affect the phosphorylations of MKK4
and MKK3/6, further suggesting that gallic acid preferentially inhibits the c−Raf/MEK
pathway (Figure 6C). Overall, these results show that gallic acid can selectively target the
c−Raf/MEK/ERK/c−Fos pathway.
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measured after cells were treated with gallic acid (GA), quercetin (Qc), catechin (Ca), kaempferol (Kp),
rutin (Ru), Quercitrin (Qi) for 48 h (n = 5). (B) Human dermal fibroblasts (HDFs) were pre−treated
with compounds at the indicated concentrations for 1 h before being exposed to UVB. After 48 h,
MMP−1 production in cultured media was measured using ELISA (n = 3). Data represent MMP−1
inhibition rate compared to UVB−only treatment group. (C) HDFs were pre−treated with gallic acid
(GA). MMP−1 concentration was measured using ELISA (n = 3). Data represent the means ± SD.
Significant differences between un−treated control and UVB−only treatment group (## p < 0.01) and
significant differences between UVB and UVB + GA treatment group (* p < 0.05, ** p < 0.01).



Antioxidants 2021, 10, 1663 9 of 14

3.7. MEK Inhibition and Gallic Acid Blocks UVB−Induced MMP−1 Expression and Collagen
Reduction in Reconstructed 3D Human Skin Model

As gallic acid selectively inhibited the c−Raf/MER/ERK signaling axis, we used a
selective MEK inhibitor (i.e., U0126) to confirm the involvement of this signaling pathway
in MMP−1 and collagen expression. U0126 suppressed UVB−induced MMP−1 in HDFs,
demonstrating that activation of c−Raf/MER/ERK signaling is necessary for MMP−1
production (Figure 7A). We further utilized a reconstructed 3D human skin model to
investigate the impact of U0126 and gallic acid on controlling MMP−1 and collagen levels.
Reconstructed 3D human skin tissues were treated with U0126, gallic acid, or both and
irradiated with UVB for 8 days. Both gallic acid and U0126 downregulated UVB−induced
MMP−1 expression and prevented UVB−induced decrease in collagen (Figure 7B,C).
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Figure 6. Effect of gallic acid (GA) on UVB−induced signaling pathways. (A) Protein expression
of c−Fos, vinculin, p−c−Jun, and c−Jun were determined in human fibroblast cell lysates using
the corresponding antibody. Vinculin was used as a loading control. (B) Effect of GA on MAPKs
pathway in HDFs. Protein expression levels of phosphorylated and total ERK, JNK, p38, and vinculin
were determined in cell lysates using the corresponding antibody by immunoblotting. Vinculin
was used as a loading control. (C) Effect of GA on c−Raf and MAP2Ks pathway in HDFs. Protein
expression levels of phosphorylated and total c−Raf, MEK1/2, MKK4, and MKK3, and vinculin were
determined in cell lysates using the corresponding antibody by immunoblotting. Vinculin was used
as a loading control.
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control and UVB−only treatment group (### p < 0.001) and significant differences between UVB and
UVB + U0126 treatment group (*** p < 0.001). (B) Effect of GA and U0126 on MMP−1 and collagen in
a reconstructed 3D human skin model. GAPDH was used as a loading control. (C) Collagen was
stained in sections from a reconstructed 3D human skin model using Sirius Red/Fast Green solution.
The scale bar indicates 50 µm.

4. Discussion

In the current study, RPE was orally administered to mice and its protective effect
against skin aging was examined. While a previous study reported the effect of RPE against
UVB−induced skin aging under in vitro conditions [24,37], the efficacy of RPE in vivo was
unknown. This is the first report to demonstrate that oral administration of Rosa gallica
can block UVB−mediated skin aging in vivo without any noticeable toxicity. These results
suggest that RPE can be a promising nutraceutical agent for the prevention of skin aging.

While previous studies reported bioactivities of Rosa gallica, the active components
remained elusive. The identification of active compounds is a crucial step in understanding
the mechanism of natural agents as well as developing it for practical applications. The
active compound can be used as a marker for quality control or for optimizing processing
conditions of the natural agent. Through combining UHPLC−MS/MS−based chemical
analysis and activity evaluation, we have identified gallic acid as an active compound that
can at least partially recapitulate the anti−skin aging effect exerted by RPE. Gallic acid was
chosen as the major active compound because it showed the strongest inhibitory effect
against MMP−1 expression compared to other compounds from RPE. Although weaker
than gallic acid, quercetin and catechin also displayed inhibitory activity against MMP−1
expression (Figure 5B). This is consistent with previous studies which have also reported
the anti-skin aging potential of quercetin and catechin [38,39]. Thus, the protective effect of
RPE against skin aging may be attributed to a combination of several components. Based
on our results gallic acid was chosen as a major active component, yet further studies to
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evaluate the activity of other compounds could aid in fully understanding the function of
Rosa gallica.

When we examined the components of RPE, glycosidic derivatives of quercetin and
kaempferol constituted a large portion among the identified compounds (Table 1). Rutin
and quercitrin showed significantly weaker bioactivity compared to their aglycon com-
pound, quercetin (Figure 5B), which is in accordance with previous reports where removal
of the sugar moieties generally increases the bioactivity of the compound [40–43]. In line
with this, while we were not able to test all the compounds found in the extract, considering
that kaempferol generated minor effects in the tested condition (Figure 5B), it is likely that
other glycosidic derivatives of kaempferol found in RPE would also produce relatively
insignificant effects towards MMP−1 expression. However, there is a possibility that other
compounds with distinct structures found in RPE could contribute to the anti-skin aging
effect of Rosa gallica.

We have examined the molecular mechanism of gallic acid and discovered that
gallic acid can selectively inhibit c−Raf, MEK, ERK, and c−Fos, while displaying no
noticeable effects towards other MAPK and MAP2K family members. Gallic acid was
previously reported to exert anti−skin aging effects; however, the responsible mode of
action was largely unknown [44,45]. We report that gallic acid can inhibit UVB−induced
c−Raf/MEK/ERK/c−Fos signaling axis in HDFs, and this may be the major mecha-
nism to explain the gallic acid−driven downregulation of MMP−1. In addition, the
c–Raf/MEK/ERK signaling pathway has been known to play a critical role in the develop-
ment of various cancers, including melanoma, non−melanoma skin cancers, pancreatic
cancer, and non−small cell lung cancer [46–48]. Considering that agents targeting the
c−Raf pathway exert chemopreventive/chemotherapeutic effects against these types of
cancers [47,49], gallic acid may also potentially suppress carcinogenesis.

At high concentrations phytochemicals may display toxicity, however, at low concen-
trations, they can modulate various physiological pathways, potentially providing health
benefits. The concept of hormesis has been applied to understand the mechanism for the
therapeutic effects reported by natural products [50,51]. Among these, the activation of
cellular stress response pathways has been suggested as one of the potential modes of
action for phytochemicals [51]. Indeed, many phytochemicals have been implicated to
control cellular antioxidant systems as well as the signal transduction pathways [51,52]. In
addition to targeting the c−Raf/MEK/ERK/c−Fos signaling axis, Rosa gallica and gallic
acid may have exerted anti-skin aging activity through affecting regulators of oxidative
stress. Gallic acid has been reported to modulate Keap1/Nrf2/ARE pathway [53,54] and
Roses have been known to show antioxidant effects in cell models [37,55]. These attributes
of Rosa gallica and gallic acid could have provided cellular protection through regulating
the concentration of free radicals and subsequent inflammatory responses in the skin,
leading to attenuation of skin aging.

5. Conclusions

Rosa gallica is an edible flower which has been used as an ingredient in traditional
medicine and culinary practices. We have found that Rosa gallica can provide a protective
function against skin aging in vivo. Gallic acid appears to function as an active compound
of Rosa gallica through inhibiting the c−Raf signaling pathway (Figure 8). Discovering the
possibility of Rosa gallica as an anti−skin aging food agent opens new opportunities to
utilize rose petals as a nutraceutical.
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