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We designed a novel assisted closed-loop optimization protocol to improve the efficiency
of brain-computer interfaces (BCI) based on steady state visually evoked potentials
(SSVEP). In traditional paradigms, the control over the BCI-performance completely
depends on the subjects’ ability to learn from the given feedback cues. By contrast, in
the proposed protocol both the subject and the machine share information and control
over the BCI goal. Generally, the innovative assistance consists in the delivery of online
information together with the online adaptation of BCI stimuli properties. In our case,
this adaptive optimization process is realized by (1) a closed-loop search for the best set
of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the
subject and the machine. These closed-loop interactions between subject and machine
are evaluated in real-time by continuous measurement of their efficiencies, which are
used as online criteria to adapt the BCI control parameters. The proposed protocol aims to
compensate for variability in possibly unknown subjects’ state and trait dimensions. In a
study with N = 18 subjects, we found significant evidence that our protocol outperformed
classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into
account interindividual variabilities: e.g., under the new protocol, baseline resting state
EEG measures predict subjects’ BCI performances. This paper illustrates the promising
potential of assisted closed-loop protocols in BCI systems. Probably their applicability
might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools
for clinical contexts and as new paradigms for basic research.
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INTRODUCTION
The use of closed-loop interaction with biological nervous sys-
tems for observation and control purposes goes back to the
beginnings of electrophysiology in the 1940s when the voltage
clamp technique was developed (Marmont, 1949; Cole, 1955).
Later on, the dynamic clamp technology to implement artifi-
cial membrane or synaptic conductances (Robinson and Kawai,
1993; Sharp et al., 1993) has produced many examples of suc-
cessful closed-loop interactions with neural systems at the cellular
and circuit levels (for reviews see Prinz et al., 2004; Goaillard
and Marder, 2006; Destexhe and Bal, 2009; Economo et al.,
2010).

We recently proposed a generalization of the dynamic clamp
concept in electrophysiology and animal ethology to design
closed-loop interactions with biological nervous systems beyond
electrical stimulation and recording. In particular, we investigated
in our previous work goal-driven real-time closed-loop interac-
tions with drug microinjectors, mechanical stimulation devices
and video event driven stimulators (Muniz et al., 2008, 2011;
Chamorro et al., 2009, 2012). These examples illustrate that mod-
ern activity-dependent stimulation protocols can reveal dynamics
otherwise hidden under traditional stimulation techniques, pro-
vide control of regular and pathological states, induce learning
processes, bridge between distinct levels of analysis and lead to
a further automation of experiments. In this paper, we propose

the same assisted closed-loop approach described in our previ-
ous work to optimize the efficiency of steady state visually evoked
potentials (SSVEP) based brain-computer interfaces (BCI) which
might have a large impact for applied uses, such as computer
control and biomedical or prosthetic uses, but also as novel
paradigms for basic research. Generally, the innovative assistance
consists in the delivery of online information with regard to the
control over the given BCI goal both to the human subject and
to the system, together with the online adaptation of BCI stimuli
properties.

BCIs use measures of brain activity, typically real-time human
EEG recordings, usually in order to interact with devices such
as virtual keyboards, etc. (for recent reviews see e.g., Birbaumer,
2006; Van Gerven et al., 2009; Nicolas-Alonso and Gomez-Gil,
2012). Among the most successful BCIs are those which rely
on SSVEPs, a type of event related potentials (ERPs) generated
by the nervous system in response to repetitive visual stimula-
tion (flicker) by linear superposition of transient visually evoked
potentials (VEPs) (Capilla et al., 2011) up to 90 Hz (Herrmann,
2001): apart from smaller responses in higher harmonic frequen-
cies, the brain mainly generates electrical activity at just the same
fundamental frequency as its visual system is exposed to the visual
flicker frequency. SSVEPs are frequently used in basic and applied
research because of their relatively large magnitudes which lead to
superior signal-to-noise ratios (SNRs) and make them relatively
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stable against artifacts as compared to other ERPs (Vialatte et al.,
2010).

SSVEP-BCIs make use of the physiological property that
SSVEP magnitudes can be modulated by visual-spatial selective
attention (e.g., Morgan et al., 1996). Thus, SSVEP based BCIs
employ multiple visual stimuli (e.g., LEDs or regions on a screen)
flickering at different frequencies. Apart from these intraindivid-
ual state changes due to attention, SSVEP magnitudes further
depend both on extrinsic variables as the spatial and temporal
frequencies of the stimulus, and on other intrinsic intra- and
interindividual dimensions of the subjects themselves (Ding et al.,
2006; Lopez-Gordo et al., 2011). The optimal spatial frequency of
a structured stimulus is related to individual traits such as visual
acuity or age (Vialatte et al., 2010). There is also a significant dif-
ference in the magnitude of SSVEPs between flicker stimulation
of the center (fovea centralis) vs. the periphery of the visual field.
Environmental conditions (e.g., screen brightness and frequency,
distance to the screen, etc.) also influence the performance of the
BCI. Although determined by multiple factors, SSVEP magni-
tudes are modulated by the subjects’ states of attention. Hence,
online monitoring of SSVEP magnitudes elicited by arrays of
multiple flickering light sources allows BCI systems to detect to
which flicker source the subject is attending to at a given moment.
Taken altogether, these aspects call for automated mechanisms to
optimize parameters of the stimuli and of the BCI control, aiming
toward flexible adaptiveness to specific individual and contextual
situations of SSVEP-BCI use.

Commonly, SSVEP-BCIs use only one prefixed set of flicker
frequencies, but nonetheless there are studies employing two dif-
ferent prefixed sets (e.g., Volosyak et al., 2009, 2011) which lead
to remarkably different results. Those findings imply that BCI
efficiency may crucially depend on flicker frequency selection.
Following this idea, we created an assisted closed-loop adap-
tive algorithm to search for the best frequencies for each subject
and for each particular time point/situation of use. The adaptive

and informative nature of this novel online approach aims to
improve the BCI efficiency as compared to traditional paradigms
(see Figure 1). Firstly, this optimization process is realized by
performing a real-time closed-loop search for the best set of fre-
quencies to achieve the given BCI goal. The number of stimuli and
their effectiveness with regard to the BCI goal modulate this real-
time search strategy. The closed-loop search is evaluated in real-
time by a continuous measurement of the actual BCI efficiency
(see section “Efficiency Measures”), which is used as an online cri-
terion to select the BCI control parameters. Secondly, the SSVEP
online recording is processed, on the one hand, to an online audi-
tory feedback to inform the subject and, on the other, is used
to inform the system to select the best flicker frequencies. This
shared information constitutes the assisted part of the closed-
loop. The proposed protocol aims to address the problems which
arise from different hardware configurations, subjects’ intra- and
inter-individual variabilities, e.g., in neuropsychological dimen-
sions of executive functioning (see e.g., Funahashi, 2001) etc., and
other sources of variability in experimental settings and intrinsic
dimensions.

The paper is organized as follows: in section “Materials and
Methods” the new assisted closed-loop system is described; in sec-
tion “Results” analyses and correlates efficiency as compared with
traditional BCI paradigms are presented; finally, in “Discussion”
section we discuss about the generalization and applicability of
the proposed novel protocol.

MATERIALS AND METHODS
PARTICIPANTS
A convenience non-probability sample of N = 18 healthy subjects
from our department was used applying the exclusion criteria
self-reported chronic medication/substance intake and neurolog-
ical diseases as e.g., epilepsy. Our sample consisted of 6 females
and 12 males with age Mdn = 26.00 years (25th percentile =
23.00, 75th = 35.75), range = 18–59. Subjects had a normal or

FIGURE 1 | Comparison of a traditional BCI neurofeedback (left) vs. the

novel assisted closed-loop paradigm (right) which informs both the

subject (about his/her brain activity in relation to the BCI goal) and the

system (about the specificities of the given subject). In our example, the

assisted closed-loop provides online information (i) to the system about the
most effective flicker frequencies and (ii) to the subject about the actual
distance to the pre-defined threshold by continuous auditory feedback
(loudspeaker symbol, right).
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corrected-to-normal vision and were right-handed. Permission of
the ethics committee of Autonomous University of Madrid was
obtained; all subjects participated voluntarily in the sense of an
informed consent without receiving any incentives. Participants
were informed that they could leave the experiments at any time
without giving any explication.

SSVEP BCI SYSTEM
Stimulation device
We constructed a stimulation panel with four white color LEDs
(manufacturer Seoul Semiconductor, white lamp LED LW500AM,
∅ 5 mm, viewing angle 100◦), using a 100 � series resistor to
the digital +5V output of the acquisition board (see below)
which results in a luminous intensity output IV ≈ 700 mcd for
each LED.

On a black background panel, each LED was mounted into
a reflector with ∅40 mm diffuser cap carrying an outstanding
non-transparent cylindrical black screen of 45 mm length; the
spatial organization is illustrated in Figure 2. Below each white
flicker light source we placed a green color standard signaling
LED to instruct the subject where to look during the BCI task.
The distance of the LED stimulation panel to the subject was kept
∼60 cm, resulting in a visual angle of ∼3.8◦ for every light source.

BCI task
The BCI task consisted in subjects trying to follow a prefixed
sequence of 16 steps by focusing their vision onto a specific flick-
ering white light source out of the four possible ones at each step,
as continuously indicated by the smaller green signaling LEDs
below. This sequence was identical for all subjects. A brief beep
sound confirmed the indicated flickering light source as correctly
detected.

STIMULATION
We compared the BCI efficiency under three conditions of
flicker frequency selection: (i) by the assisted closed-loop (ACL)

protocol, (ii) by a standard protocol with stimulation frequen-
cies prefixed at 27, 28, 29, and 30 Hz (because 1 Hz distances are
commonly employed in SSVEP-BCIs e.g., Herrmann, 2001; Diez
et al., 2011; Volosyak et al., 2011), and (iii) by a protocol which
used a selection of top frequencies for each subject (see section
“ACL Algorithm”). In order to compensate for possible presenta-
tion order effects, the order of (i), (ii), y (iii) was permutated over
the subjects.

Figure 3 shows the timeline of the experiment. The first phase
of the experiment consisted in the measurement of the individual
EEG baseline and the frequency scanning phase to select a set of
flicker stimulation frequencies for each subject (the number of
frequencies in this set is specific for each participant—see below).
The second phase is the BCI phase with its three conditions (i),
(ii), and (iii) mentioned above.

SIGNAL ACQUISITION AND PREPROCESSING
The signal acquisition and preprocessing steps are summa-
rized in Figure 4. The EEG signal was recorded at 1024 Hz
with eight sintered Ag/AgCl electrodes mounted into a “Aegis
Array” stretch lycra cap (Sands Research Inc., Texas/USA)
using a “BRAINBOX® EEG-1166” 64 channel EEG amplifier
(Braintronics B.V, Almere/Netherlands) with in-house software
written in C. Vertical and horizontal EOG was recorded bipo-
larly by an in-house battery driven analog amplifier follow-
ing a circuitry of Usakli and Gurkan (2010) with sintered
Ag/AgCl electrodes fixed by adhesive rings above/below the
left eye vs. at left/right epicanthus connected to a data acqui-
sition board (NI-PCI-6251, National Instruments) at 1024 Hz.
The eight standard 10–20 positions were FPz, F3, Fz, F4, Cz,
Pz, POz, and Oz (Jasper, 1958). For online SSVEP detection
as BCI input only POz and Oz were used, while for later
offline studies the signals from all eight mentioned electrodes
were analyzed. The EEG reference electrode was placed at nose
tip, EOG ground electrode at glabella and impedances were
kept <10 k�.

FIGURE 2 | Diagram of the BCI flicker stimulation setup (left) and the

signal acquisition/stimulation system. The flickering frequency was
controlled by a software driving the digital output of a National Instruments
data acquisition (DAQ) board (model NI-PCI-6251) directly connected to the
white colored LEDs, generating 0/+5V off vs. on signals according to the

desired flicker frequency. We verified the intended flicker frequency for each
light source independently by a photodiode connected to a digital
oscilloscope. Luminous intensity output is IV ≈ 700 mcd for each white LED.
Smaller green color standard signaling LEDs were placed below to instruct
subjects where to look during the BCI task.

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 27 | 3

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Fernandez-Vargas et al. Assisted closed-loop optimization of SSVEP-BCI efficiency

FIGURE 3 | Timeline of the experiment. In the first phase individual EEG
baseline activity is measured and in the following frequency scanning phase
those frequencies electing largest SSVEP magnitudes are selected for each
subject individually, while those below a predefined threshold are excluded

(Top Freq.). Later, these values are used in the BCI phase. Under the prefixed
frequency condition, always the same frequency set of 27, 28, 29, and 30 Hz
is used for stimulation. Red boxes indicate stimulation, blue resting periods
and gray baseline recording; in each box durations are reported.

FIGURE 4 | Signal chain of acquisition and online preprocessing. Input
signals are the time domain EEG signals at electrodes Oz and POz sampled
at 1024 Hz which finally result in normalized SSVEP spectral power
densities Sf for each of the 20 stimulation frequencies f using as
transformation to frequency domain the Fast Fourier Transform (FFT).

To improve SSVEP detection, we used the online computed
difference signal between Oz and POz as bipolar montage as the
only input signal to our BCI system. This reduces both EOG/EMG
artifacts and EEG activity not related to the visual cortex because
this montage implements a simple and computationally inexpen-
sive spatial high pass filter (see Figure 5). Thus, the SNR for the
SSVEP detection is increased as compared to unipolar montages
(Diez et al., 2010). In a time window of 2 s, this difference sig-
nal was then linearly detrended, treated by a Hann-window and
then converted into frequency domain by Fast Fourier Transform

(FFT) with a window length of 2048 sample points. The chosen
Hann-window function has a quite narrow main lobe, which
determines a good frequency resolution, and reasonable side lobe
suppression (Harris, 1978). Those FFT coefficients meeting the
exact flicker frequencies were used, one single coefficient for
each flicker frequency. Thus, 20 real numbers were obtained and
squared to represent the power spectral densities (PSDs) in the
flicker range 20–39 Hz (see Figure 4). This procedure was devel-
oped following Diez et al. (2011). The described analysis was
continuously repeated as sliding windows with a displacement of
250 ms, resulting in 87.5% overlapping. With all four LEDs emit-
ting steady light, magnitudes of baseline EEG activities Bf were
measured over 30 s at each future flicker stimulation frequency,
determined as MPSD by the described procedure (5 sets of 6s with
2 s resting periods in between, see Figure 3 Baseline). Subjects
were instructed to use only the resting periods in-between for eye
blinks/relaxation and otherwise maintain their eyes quietly open,
trying to avoid jaw and tongue movements to reduce EOG/EMG
artifacts.

For the frequency scanning phase of the experiment an iden-
tical measurement procedure was used, but with time windows
for flicker stimulation of 4 s in each frequency f of the 20–39 Hz
range resulting in magnitudes of SSVEPs as response, Rf . Each
stimulation epoch is followed by a 2 s resting period. In the BCI
phase of the experiment, the same procedure is used for the
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FIGURE 5 | (A) Example of EEG time domain signals during 3 s before and
after 21 Hz flicker stimulation at electrodes Oz (red) and POz (blue). Using their
difference signal (black) as BCI input, in the sense of a bipolar montage,
remarkably reduces common DC offsets, EOG/EMG artifacts and EEG
contributions other than due to the visual cortex: the difference signal offers a

simple spatial high-pass filter. (B) Example of signal-to-noise ratios Sf during a
single iteration of the algorithm ACL using four different flicker frequencies. The
gray shadowed area represents the noise floor with dimensionless value 10;
this level was defined as SSVEP detection threshold for all subjects. Horizontal
lines indicate the detection duration of each target frequency at each step.

selected stimulation frequencies in a single measurement window
of 2 s.

SSVEP PSD magnitudes were normalized to EEG baseline
activity in a given frequency f as dimensionless signal-to-noise
ratios:

Sf = Rf /Bf (1)

In order to minimize fatigue, we tried to keep the baseline and
frequency scanning phase as short as possible, 40 s in total for the
baseline and 160 s for frequency scanning.

ACL ALGORITHM
Selection of the top frequencies for each subject
A closed-loop approach is used to select the set of the four top
stimulation frequencies by compatibility for each subject and
in the given experimental context. As a first step, the specified
range is scanned which results in a-priori score for each of them.

Stimulation frequencies are defined as valid if their Sf exceeds a
prefixed threshold (set to 10) any time during the ongoing flicker
stimulation. For N valid frequencies, the frequency correspond-
ing to the largest Sf gets an initial score of s1(0) = N, the second
to best s2(0) = N − 1, etc. The frequency corresponding to the
lowest Sf gets a score of sN(0) = 1. Finally, the four best scores
define the selection of the four top stimulation frequencies.

First closed-loop in the ACL-algorithm: iterative selection of the
most compatible frequencies
The previous procedure provides initial scores for each frequency
s1(0), s2(0), . . . , sN(0) which depend on subjects’ intra- and
interindividual state and trait dimensions and on the extrinsic
conditions in which the BCI is used. The selection of the four
stimulation frequencies is then further optimized in an itera-
tive approach attending to their compatibility. Thus, as the next
step, we calculate the following compatibility measure between all
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possible pairs of frequencies x and y taking into account a measure
of their distance and their scores:

cxy(t) = α · (
sx(t) + sy(t)

) + β · dxy (2)

Here t represents the iteration number. We assigned the follow-
ing weights to the distance and the scores: α = 1.5 and β = 1,
respectively, where dxy is a measure of the distance between the
frequencies which we define below. The values for α and β were
set empirically based on several trials. Because four frequencies
are used simultaneously in our specific BCI implementation, the
most compatible four frequencies have to be selected out of N
valid frequencies, determined by the protocol described above:
the first step is to identify pairs of frequencies with optimal
compatibility (“2 freq.” search in the ACL branch in Figure 2).
This search consists of 3N/4 iterations (see below), each of them
divided into 16 steps with a resting period at its end. The
ACL departs from the scores calculated in the scanning proce-
dure s1(0), s2(0),. . ., sN (0): they are modified in the successive
iterations to search for the best compatibility.

In each iteration, the subject has to follow a sequence of flicker
light sources by focusing upon them, as continuously indicated by
the location of the green light. The flicker frequencies are chosen
by selecting maxxy(cxy) at the end of the iteration. To update the
scores, we take into account both the success rate and the time as:

sx(t) = sx(t − 1) · (δ · SR − γ · T) (3)

where SR is the success rate (correct SSVEP detections over 16, the
number of possible detections) and δ and γ are parameters of the
ACL algorithm which were set to δ = 1.2 and γ = 0.02. T is the
duration of the detection in seconds. The values for δ and γ were
chosen based upon the range of SR and T and several simulations.

In this first part of the algorithm, the distance between two
specific frequencies fx and fy for Equation (2) is calculated as:

dxy = ∣∣fx − fy
∣∣ (4)

Each cxy(t) is updated by the new scores after each iteration. Once
this procedure has run p = �3N/4� times, the highest cxy(p) is
selected and a new set is created with the union of both frequen-
cies. Now, the next highest cx′y′(p) disjoint from the previous set
is chosen and a new set is constructed. This is repeated �N/2�
times because this is the total number of possible disjoint pairs. It
is ensured that each set is disjoint from all others. p = �3N/4� is
chosen to test �3N/2� frequencies, so that the best frequencies are
tested more than once. It is important to note that the duration
of the frequency tests has to be restricted.

Afterwards, the second part of the algorithm is performed, the
selection of four frequencies. The same procedure as in the first
part is employed, but instead of single frequencies, sets of two fre-
quencies are used. The values of sx′(p + 1) of each set are adjusted
according to the values cxy(p), where x′ = x ∪ y. In this way, the
set with the highest value gets s1′(p + 1) = �N/2�, the second
best s2′(p + 1) = �N/2� − 1 and so on. The last one gets s�N/2�′
(p + 1) = 1. From this point of the algorithm on, these sets are
indivisible.

Using the same procedure performed with two frequencies, the
process is repeated with four of them. The compatibility and the
score actualization rules are still the same. The only difference is
the distance measure for Equation (2) calculated as:

dxy =
∑2k

i = 1

∑2k
j = 1

∣∣fi − fj
∣∣

2k · (2k − 1)
(5)

where k is the number of frequencies of each set (in this case 2),
and fi and fj are the individual frequencies taken from the union
of the sets x and y. Note that here x and y refer to sets of two
frequencies while in Equation (4) x and y referred to individ-
ual frequencies. This distance expresses the arithmetic mean of
all possible pairs in the set resulting from the union of the initial
sets x and y. Note that for k = 1, this distance measure is exactly
the same distance (Equation 4) as used in the first part of the algo-
rithm. In this second part �3N/8� iterations are performed, which
is N/2 (the number of disjoint sets) times 3/4 (see above).

Second closed-loop in the ACL-algorithm: online auditory feedback
of SSVEP magnitudes
In order to offer additional dynamic information to the subject
related to his/her brain activity beyond the SSVEP detection con-
firmation cue, we provide a continuous online auditory feedback
during the trials which represents the distance between the actual
state and the pre-defined goal. The feedback signal consists of a 20
possible sinusoids with a range between 100 and 575 Hz which are
updated every 0.25 s. The represented distance measure is defined
as the difference between the EEG-SSVEP signal to noise ratio
for the target frequency (S

target
f ) and the threshold. Once S

target
f

has reached this threshold level, the auditory feedback is muted.
Previously, subjects are instructed that their goal is to raise the
pitch of the sinusoids as high as possible, and that after possi-
ble success their further goal would be trying to keep the sounds
muted for 1.75 s; after this silence, the program automatically pro-
ceeds to the trial’s next step. This kind of continuous auditory
feedback aims to help subjects to learn to gain control in their par-
ticular way over SSVEP magnitudes by attracting their attentional
resources to these voluntary attempts to increase self-regulation
of their resonating brain states.

Concluding, there are two assisted closed loops in our system:
the first one operates over the stimulation frequency set with the
aim to directly improve the ITRs of each subject. This closed-loop
informs the system about subject and environment specificities.
The second one informs the subject about his/her brain activity
in relation to the use of the interface and helps him/her to do so
faster and more accurately. This closed loop works several times
for each step of a trial.

SSVEP DETECTION
In order to reduce the experiment’s complexity in terms of a
reductionistic paradigm, we choose a simple SSVEP detection
strategy in our study. During the top and prefixed frequency stim-
ulation, the S

target
f value is calculated every 0.25 s. If this value

exceeds the threshold for 1.75 consecutive seconds, then this
SSVEP is defined as “detected.” The threshold value was set to
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10 which reflects the observed noise flow (see Figure 5). To avoid
longer waiting periods when the subject is unable to exceed the
threshold, a time limit of 4 s is used, after which that step is
considered as fault.

During the ACL, to favor SSVEP detection in case that the sub-
ject exceeds the threshold and more time than the 1.75 s is needed
to be classified as “detected,” there is a small modification in this
protocol to allow adaptive time extensions. When S

target
f exceeds

the threshold in a given 0.25 s time step, the time limit is increased
for another 0.25 s.

EFFICIENCY MEASURES
After each iteration of the algorithm, both the success rate and
time needed are saved. For the prefixed and top frequencies,
standard Information Transfer Rate (ITR) is calculated:

ITR(SR, t) = (
log2(N) + SR · log2(SR) + (1 − SR)·
log2((1 − SR)/(N − 1))

) · Norm/t (6)

where N is the number of targets (N = 4 in our case). The value
SR represents the success rate and t is the time taken in minutes.
Norm is a normalization value set to 960 (60 s times 16 steps in
each iteration). Note that if SR ≤ 1/N, then ITR(SR, t) = 0.

In contrast to the conditions prefixed and top, ITR is measured
several times during the ACL. Thus, for further a-posteriori anal-
yses these ITR distributions have to be represented by descriptive
statistics: for condition ACL therefore M and Mdn of success rates
and needed times are used to calculate ITRMean and ITRMedian,
completed by maximum ITR (ITRMax).

CONVERGENCE MEASURE
For a-posteriori analyses, a convergence measure for the algo-
rithm in terms of the stimulus frequency exploration was defined:
the duration of the 2 freq. search of the algorithm is divided
into two parts. For each part, the numbers of explored frequen-
cies are determined and divided by the maximal number of
possible frequencies which could be explored (twice the num-
ber of iterations). The decrease comparing this measure in the
second part vs. in the first part is a sign for how much the fre-
quency exploration is converging. As can be seen in Table 1, the
number of iterations varies over the subjects. The convergence
measure is not reported for the first part because in our sam-
ple all subjects had the same maximal value 1, i.e., all possible
frequencies were explored. We will use this measure to discuss
how the ACL algorithm seems to adapt to subjects’ interindividual
differences.

STUDY DESIGN
A three conditions (ACL, top, prefixed) balanced within-subjects
design with three times full permutation of presentation order
(ABC, ACB, BAC, BCA, CAB, CBA) and with random assignment
of subjects, resulting in N = 18 was employed.

BASELINE RESTING STATE EEG MEASURES AS POSSIBLE
INTERINDIVIDUAL CORRELATES OF ITR PERFORMANCES
Aiming to investigate possible correlations between baseline
resting state EEG measures and the variables of the experiment,

the 30 s baseline EEG (see Figure 3) at all eight electrodes
reported above were manually cleaned from artifacts with the
result of M = 20.02 s, SD = 5.54 artifact free epochs. Under
MATLAB 7.11.0.584 win64, EEG signals were preprocessed in a
first step by linear detrending followed by a 8th order Butterworth
1.5–70 Hz band pass filter and finally by a 8th order Butterworth
45–55 Hz notch filter against 50 Hz power line electromagnetic
interferences. Then, preprocessed EEG signals were converted
into frequency domain by a sliding windows FFT transform of
2 s window length (2048 sample points) with 3.906 ms displace-
ment (4 sample points, which correspond to a 256 Hz sample
frequency in the resulting frequency domain signals), after linear
detrending and treatment by a Hann-window function. Obtained
FFT coefficients were squared to obtain the power spectrum
and then normalized by dividing by 2048 sample points. In
order to obtain absolute PSDs for the defined EEG frequencies
bands of interest, corresponding coefficients were summed:
thetaLow (3.5–6.5 Hz), thetaHigh (6.5–7.5 Hz); alphaLow
(7.5–9 Hz), alphaHigh (9–12.5 Hz); betaLow (12.5–18 Hz),
betaMid (18–24 Hz), betaHigh (18–30 Hz); totalSpectrum
(0.5–70 Hz). In a first step, those absolute frequency domain
PSDs signals were normalized dividing every sample point by the
corresponding one of totalSpectrum which resulted in dimen-
sionless ratios. These ratios indicate for every 256 time points per
second the relative energy contribution of the frequency band
of interest to the EEG total energy at this particular moment.
In a last step, in order to represent EEG baseline resting state
activities in the analyzed artifact free epochs by one single value
for every frequency band, means of these normalized signals
were computed over all corresponding time points. Thus, finally
we obtained the desired baseline resting state EEG measures
as relative mean PSDs for further correlational analyses, single
values for every frequency band over all subjects.

Another measure of interindividual EEG variability is the rest-
ing state individual alpha frequency (IAF), because it has been
found to be remarkably stable within subjects, but relatively vari-
able between subjects (Kondacs and Szabó, 1999). In order to
determine IAF in our experiment, coefficients of PSDs corre-
sponding to the frequency band 8–13 Hz at Oz were normalized
by totalSpectrum PSDs and averaged over all sliding windows in
the artifact free baseline resting state epochs. In this averaged and
normalized power spectrum the alpha frequency with the highest
PSD was manually measured and defined as IAF (peak frequency
method).

STATISTICAL ANALYSES
All statistical analyses were computed using SPSS 17.0 and
STATISTICA 6.0. Previously, Shapiro–Wilk tests were calculated
to check each of the three conditions for normal distribution in
the underlying populations. If one or more conditions showed
significant departures from normality, non-parametric tests were
preferred for further analyses: a Friedman test was performed as
an omnibus test to investigate whether the central tendencies of one
or more conditions differed significantly from the rest. In case
of such a significant result, post hoc pairwise comparisons were
performed in order to find out what conditions exactly differed
significantly from each other, based upon comparison of mean
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Table 1 | Data of the N = 18 subjects under the three experimental conditions.

No. of subject SR SR SR SR SR ITR ITR ITR ITR ITR Age SNR Convergence

Pre Top Mean Mdn Max Pre Top Mean Mdn Max SSVEPs in measure

ACL ACL ACL ACL ACL ACL scanning

phase N trials 2nd half

1 0.31 0.88 0.77 0.78 0.88 0.24 21.19 15.01 15.34 21.57 23 15.20 13 0.5

2 0.56 0.63 0.57 0.5 0.75 5.65 7.34 5.03 3.06 11.7 23 15.89 11 0.4

3 0.75 0.38 0.80 0.88 0.94 11.88 0.82 15.25 19.48 26.33 27 14.44 14 0.57

4 0.81 0.94 0.95 0.97 1 17.89 27.29 26.62 29.21 34.9 33 31.38 15 0.71

5 0.75 0.56 0.68 0.59 0.69 16.9 7.09 12.08 8.42 12.98 24 8.02 15 0.36

6 0.06 0.25 0.35 0.25 0.63 0 0 0.56 0 6.98 25 8.08 9 0.5

7 0.81 0.69 0.85 0.81 1 19.32 11.68 21.18 18.58 36.92 59 23.76 12 0.92

8 0 0.44 0.59 0.59 0.75 0 1.88 5.12 5.12 10.56 18 8.03 5 0.5

9 0.63 0.44 0.69 0.69 0.75 6.76 1.79 9.17 9.17 12.47 52 8.68 4 1

10 0.75 0.75 0.83 0.84 0.94 16.53 16.18 21.16 22.31 30.02 23 59.20 14 1

11 0.56 0.81 0.88 0.88 1 5.35 18.23 21.84 22.16 31.47 50 37.70 14 0.64

12 0.19 0.25 0.56 0.69 0.69 0 0 4.67 9.42 9.73 24 6.35 6 0.33

13 0.69 0.81 0.81 0.81 0.94 10.07 19.32 18.06 18.06 28.32 34 8.43 8 0.87

14 0.69 0.75 0.66 0.69 0.75 12.7 16.53 11.13 12.7 16.18 27 48.58 14 0.93

15 0.31 0.31 0.58 0.56 0.69 0.21 0.22 5.4 4.96 9.57 45 12.01 14 0.43

16 0.18 0.5 0.63 0.56 0.94 0 3.43 6.34 4.42 21.14 20 16.35 9 0.38

17 0 0 0.34 0.34 0.38 0 0 0.42 0.42 0.76 22 14.15 11 0.6

18 0.5 0.69 0.76 0.75 0.81 3.43 12.98 15.43 14.63 18.58 32 30.03 13 0.67

Shapiro–Wilk’s W 0.883 0.961 0.947 0.952 0.896 0.850 0.886 0.950 0.960 0.956 0.832 0.819 0.876 0.909

p 0.030 0.631 0.385 0.460 0.049 0.008 0.034 0.420 0.594 0.520 0.005 0.003 0.022 0.082

Mdn 0.56 0.60 0.69 0.69 0.78 5.5 7.22 11.61 11.06 17.38 26.00 14.82 12.50 0.59

Percentile 25 0.19 0.36 0.58 0.56 0.69 0.00 0.67 5.10 4.83 10.35 23.00 8.34 8.75 0.42

Percentile 75 0.75 0.77 0.82 0.82 0.94 13.66 16.96 18.84 18.81 28.75 36.75 30.37 14.00 0.88

Note: Information transfer rates (ITRs) in bits/min as measures of individual BCI performances under the different experimental conditions and all Mdn values are

highlighted in bold for further analyses.

N trials refers to the number of iterations in the first part of ACL (using two flicker LEDs).

Convergence measure first half is not reported in the table because all subjects had the same value 1.

SNR SSVEPs in Scanning phase are means over all used 20 flicker frequencies.

rank differences using as significance criteria the critical rank dif-
ferences proposed by the more progressive approach of Conover
(1980) vs. the more conservative of Schaich and Hamerle (1984).

In order to quantify the effect sizes of those post hoc pairwise
comparisons which resulted in significant differences, we used
the probability of superiority of dependent scores, PSdep, recom-
mended by Grissom and Kim (2012) and developed in Grissom
(1994). It expresses the probability that in a randomly sampled
matched pair the value from the condition containing the higher
scores is indeed larger than that from the one containing lower
scores. PSdep is calculated by dividing the number of positive dif-
ferences between the condition containing the higher scores minus
the condition containing the lower scores by the total number of
matched pairs. For classifying PSdep into small, middle and large
effect sizes based upon the standards of Cohen (1988), the cut-off
values reported by Grissom (1994) are used: small 0.56, medium
0.64, and large 0.71. The same author offers a table to directly con-
vert PS into equivalent Cohen’s �. Thus, as effect size measures
both PSdep and Cohen’s � are reported with standards small � =
0.20, medium � = 0.50 and large � = 0.80 (Cohen, 1988).

In order to check whether significant differences over all six
possible permutations of the presentation order might be found,
a mixed-design repeated measures ANOVA was computed with
stimulation condition as repeated within-subjects factor with three
levels (i) ACL algorithm represented as ITRMedian, (ii) prefixed
and (iii) top and presentation order as between-subjects factor
with the six possible permutations as levels (ABC, ACB, BAC
etc.). Previously, Levene’s tests were performed in order to check
for homogeneities of error variance. Moreover, the assumption
of sphericity of the covariance matrix was verified previously by
a Mauchly’s sphericity test in order to assure that the F ratios
match an F distribution. If there was a significant departure
from sphericity, Greenhouse-Geisser estimates were used to cor-
rect degrees of freedom which results in fractions instead of usual
integers. Although data may not follow a normal distribution,
ANOVA has been demonstrated to be relatively robust against
moderate deviations from normality (see e.g., Khan and Rayner,
2003). Univariate analyses were used to examine whether there
is a significant between-subjects main effect of presentation order
and further if there is a significant interaction effect between
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presentation order × stimulation condition. Analyses were repeated
representing condition (i) ACL algorithm also as ITRMean vs.
ITRMax.

For the investigation of linear correlational relationships,
Spearman’s rank order correlation coefficient Rho was additionally
used apart from the common Pearson product-moment correlation
coefficient r due to its relative robustness firstly against outliers,
but also against other than linear, but still monotonic relation-
ships and against departures from normality or homoscedas-
ticity. Whenever relevant influence of outliers was suspected,
Spearman’s rank correlation coefficient Rho was preferred.

A-priori statistical test power analyses with the program
G∗Power 3 (Faul et al., 2007) show that Pearson correlation sig-
nificance tests in the employed sample size of N = 18 and with
standard significance level α = 0.05 have test powers (1 − β) ≥
0.80 as recommend by Cohen (1988), when they have effect sizes
in the underlying population ρ ≥ 0.60, as compared to H0 : ρ =
0.00. For ρ = 0.50 test power is (1 − β) ≥ 0.60, for ρ = 0.40
(1 − β) = 0.40 and for ρ = 0.30 (1 − β) ≈ 0.20. Thus, although
the employed sample size N = 18 is relatively small, hypothesis
testing of Pearson correlations with full recommended strictness
is definitely possible at the level of assumed large effect sizes.

RESULTS
Table 1 reports the data for all N = 18 subjects under the
three experimental conditions, representing (i) ACL algorithm as
ITRMean, ITRMedian and ITRMax. Inferential statistical hypothe-
ses testing that (i) outperformed the other two flicker stimulation
conditions is reported below.

Figure 6 shows the SSVEP frequency-response curves in our
experiments. For all subjects, the 20 flicker frequencies in the
scanning phase were presented in the same order: 23, 37, 30,
31, 36, 22, 29, 33, 39, 24, 35, 21, 25, 27, 32, 34, 28, 20, 26, and
38 Hz. Sequential randomness of this order is confirmed with
Z = −0.230 and pexact = 0.828 (Wald–Wolfowitz runs test after
Mdn split dichotomization). Our findings that in the 20–39 Hz
range, lower flicker frequencies over all subjects (Figure 6A) evoke
higher SSVEP magnitudes are in line with other studies which
reported a global maximum SSVEP amplitude around 10 Hz
with additional local maxima around 20, 40, and 80 Hz (Regan,
1989; Herrmann, 2001; Bayram et al., 2011). In our sample, we
found that SSVEP frequency-response curves differed remark-
ably between subjects (Figure 6B) probably due to trait and state
variabilities which justifies that they are determined in our exper-
iment in the scanning phase for every subject individually.

FIGURE 6 | (A and B) SSVEP-SNR frequency-response curves.
(A) Mdns over all N = 18 subjects, (B) example of two subjects with
opposed frequency-response curves (black # subject 16, blue #9).
(C) Frequency-dependent interindividual association between SSVEP-SNR

magnitudes and ITR performances under the three experimental
conditions, computed as Spearman’s rank order correlations: (i) ACL
algorithm (red), (ii) top (blue) and (iii) prefixed (black), filled circles
represent significant p < 0.05.
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Analyzing Figure 6C, higher frequencies ≥30 Hz lead to higher
correlations; no relevant differences can be seen comparing
the three experimental conditions. Interestingly, following e.g.,
Zschocke and Hansen (2012), 30 Hz is the upper boundary of beta
activity observable in scalp EEGs by conventional amplifiers.

SIGNIFICANT AND LARGE IMPROVEMENT OF SSVEP-BCI EFFICIENCY
BY THE NOVEL ACL ALGORITHM
Analyzing the differences in the central tendencies between the
three experimental conditions (i) ACL algorithm (ii) prefixed
(iii) top we represented condition (i) based upon three different
descriptive statistics, (a) ITRMean, (b) ITRMedian, (d) ITRMax (see
section “Materials and Methods” and Table 1). Applying non-
parametric inferential statistics we found a very significant and
very large superiority of condition (i) ACL algorithm over the
other two (ii) and (iii) which is independent of its three types
of representation (a), (b), and (c), while there is no significant
difference between (ii) and (iii). The used statistical methods and
measures for the following results are found in section “Statistical
Analyses.”

(a) A Friedman omnibus test comparing the ITRs between the
three experimental conditions (i) ACL algorithm represented
as ITRMean, (ii) prefixed and (iii) top shows a significant
overall difference with χ2(2) = 10.116, p = 0.006.
Post-hoc pairwise comparisons based upon critical mean
rank differences 0.82 (Schaich and Hamerle, 1984) vs. 0.58
(Conover, 1980) indicate that ITRs are significantly higher in
(i) ACL algorithm as compared to (ii) prefixed (mean rank dif-
ference = 1.03, very large effect size PSdep = 0.83, � = 1.37)
and also as compared to (iii) top (mean rank difference = 0.64,
large effect size PSdep = 0.72, � = 0.83). Comparison of (ii)
prefixed with (iii) top results in a non-significant difference
(mean rank difference = 0.39).

(b) A Friedman omnibus test comparing the ITRs between the
three experimental conditions (i) ACL algorithm represented
as ITRMedian, (ii) prefixed and (iii) top shows a significant
overall difference with χ2(2) = 9.262, p = 0.01.
Post-hoc pairwise comparisons based upon critical mean
rank differences 0.82 (Schaich and Hamerle, 1984) vs. 0.57
(Conover, 1980) indicate that ITRs are significantly higher in
(i) ACL algorithm as compared to (ii) prefixed (mean rank dif-
ference = 0.94, very large effect size PSdep = 0.81, � = 1.25)
and also as compared to (iii) top (mean rank difference = 0.64,
very large effect size PSdep = 0.76, � = 1.21) applying the
less conservative criterion of (Conover, 1980). Comparison
of (ii) prefixed with (iii) top results in a non-significant
difference (mean rank difference = 0.31).

(c) A Friedman omnibus test comparing the ITRs between the
three experimental conditions (i) ACL algorithm represented
as ITRMax, (ii) prefixed and (iii) top shows a significant overall
difference with χ2(2) = 22.986, p = 0.00001.
Post-hoc pairwise comparisons based upon critical mean
rank differences 0.82 (Schaich and Hamerle, 1984) vs. 0.41
(Conover, 1980) indicate that ITRs are significantly higher
in (i) ACL algorithm as compared to (ii) prefixed (mean rank
difference = 1.47, extremely large effect size PSdep = 0.94,

� = 2.25) and also as compared to (iii) top (mean rank dif-
ference = 1.19, extremely large effect size PSdep = 0.94, � =
2.25). Comparison of (ii) prefixed with (iii) top results in a
non-significant difference (mean rank difference = 0.28).

THE ACL ALGORITHM SEEMS TO ADAPT TO SUBJECTS’
INTERINDIVIDUAL DIFFERENCES
NTrials in condition (i) ACL algorithm using two flicker LEDs
(see Table 1) is deterministically given by 3/4 of the total num-
ber of the SSVEP-SNR responses under the 20 flicker frequencies
in the scanning phase of the experiment which had exceeded
the defined threshold value of 10 (suitable frequencies), see ACL
Algorithm of section “Materials and Methods.” Thus, in order
to make the investigation of possible interindividual associations
between the SSVEP-SNR magnitudes with the convergence mea-
sure second half (see section “Materials and Methods”) relatively
independent from NTrials, all subjects with NTrials < 25th per-
centile (8.75 ≈ 9) were excluded, # subject 6, 8, 9, 12, 13, and 16.
The resulting rest of N = 12 subjects showed a relatively small
variability with range of NTrials between 11 and 15. The mea-
sure SSVEP-SNR mean magnitudes in the scanning phase of the
experiment (a) over all flicker frequencies from 20 to 39 Hz was
split into two measures, one for (b) lower frequencies from 20
to 29 Hz and the other for (c) higher frequencies from 30 to
39 Hz. In this subsample, convergence measure second half shows
large and highly significant correlations with (a) of r = 0.839, p =
0.001, with (b) of r = 0.843, p = 0.001 and with (c) of r = 0.763,
p = 0.004. Checking these relationships against the remaining
variability of NTrials and age as controlled third variables in par-
tial correlation analyses, indeed no changes are observed; those
found relationships can be considered as linearly independent
from NTrials and age. Hence, these findings show that the con-
vergence of the ACL algorithm highly depends on the subjects’
trait ability to generate higher SSVEP-SNR magnitudes, with
no relevant differences observed between lower vs. higher flicker
frequencies: focusing on a subsample with a more or less con-
stant number of suitable frequencies, the ACL algorithm explored
the more distinct frequencies in those subjects who displayed
the larger SSVEP-SNR magnitudes in the scanning phase of the
experiment.

In conclusion, these findings imply that the ACL algorithm
shows a distinct exploration behavior for different subjects and
thus indeed is able to adapt to subjects’ interindividual differ-
ences. Whether this adaptation is the cause for the ACL algo-
rithm’s outperformance of (ii) top and (iii) prefixed cannot be
examined in depth with the employed experimental design and
has to be investigated in further studies.

BASELINE RESTING STATE EEG MEASURES AS CORRELATES OF
INTERINDIVIDUAL DIFFERENCES
Searching for significant and relevant associations between
interindiviudal variabilities of ITR performances under the three
experimental conditions vs. of baseline resting state EEG rela-
tive mean PSDs in all computed frequency bands at all eight
used electrodes, effects were only found in thetaHigh (6.5–7.5 Hz)
and betaMid (18–24 Hz). In all the other bands nothing could be
observed.
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Whereas Pearson correlations showed no relationships
between the resting state relative mean thetaHigh PSDs at Oz vs.
ITRs in conditions (iii) prefixed (r = 0.034, p = 0.894) and (ii)
top (r = 0.196, p = 0.436), a significant positive correlation with
condition (i) ACL algorithm was found (r = 0.467, p = 0.048)
representing the performance as ITRMedian. Searching for similar
relationships in the other seven used electrodes, no associations
were observed; these effects exclusively occur at Oz in our sample.
Following the effects size classifications of Cohen (1988), this
correlation is to be considered as moderate. Partial correlation
analyses confirmed that this correlation is linearly independent
against age and all means of SSVEP-SNRs in the previous scan-
ning phase of the experiment over (a) all 20 flicker frequencies,
(b) also over the lower frequencies 20–29 Hz and (c) also over the
higher frequencies 30–39 Hz.

At least in the examined sample, interindividual variability
in relative mean thetaHigh PSD at Oz seems to differentiate
between ACL algorithm and the other two conditions: the larger
the observed relative mean PSDs among subjects in the base-
line resting state are, the better will be their later SSVEP-BCI
performance exclusively under the use of ACL algorithm.

At first sight, analyzing baseline resting state relative mean
betaMid PSDs, an exclusive relationship with only the ITRs in
condition (iii) top was found for F3 (r = 0.484, p = 0.042),
although its neighbor electrodes also showed relationships not
very far away from significance, probably due to small sample

size: F4 with r = 0.425, p = 0.117 and Fz with r = 0.410, p =
0.091. All the other used electrodes showed no associations.
After further graphic inspection of relevant scatterplots and Box-
Whisker-Plots, a possible negative relationship between baseline
resting state relative mean betaMid PSDs at Oz and ITRMean in
condition (i) ACL algorithm was suspected, hidden by outliers.
Box-Whisker-Plots suggested case 15 and 11 as outliers, so for
further analysis Mahalanobis distances were computed in a lin-
ear regression analysis with the ITRsMean of condition (i) ACL
algorithm as criterion variable and baseline resting state relative
mean betaMid PSDs at Oz as predictor variable. The inspec-
tion of Mahalanobis distances and the scatterplot (see Figure 7)
suggest that subject 15 and 11 might be considered as out-
liers. Excluding them changes the correlation from r = −0.262,
p = 0.294 to significant r = −0.530, p = 0.042. Partial correla-
tion analyses confirmed that this correlation is linearly indepen-
dent against age and all means of SSVEP-SNRs in the previous
scanning phase of the experiment (a), (b), and (c) mentioned
above.

Interestingly, excluding case 15 and 11, baseline resting state
relative mean PSDs betaMid vs. thetaHigh both at Oz show an
almost significant correlation over the subjects with r = −0.482
and p = 0.059, probably due to the small sample size, which
is stable against the third variables age and all SSVEP-SNRs in
the previous scanning phase of the experiment (a), (b), and (c),
mentioned above.

FIGURE 7 | Scatterplot of baseline resting state relative mean betaMid

PSDs at Oz vs. ITRMean in condition (i) ACL algorithm, 95% confidence

regression bands as dotted lines, subject numbers in bold, Mahalanobis

distances in brackets calculated in a linear regression analysis with the

ITRMean as criterion variables and relative mean betaMid PSDs as

predictor variables. Subject 15 and 11 (in red) might be considered as
outliers (see text). Excluding them changes the Pearson correlation from
r = −0.262, p = 0.294 to significant r = −0.510, p = 0.043.
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In conclusion, baseline resting state relative mean betaMid
PSDs seem to predict ITR performances under (i) ACL algorithm
vs. (iii) top in an opposed fashion depending on the electrodes:
the lower baseline resting state relative mean betaMid PSDs are at
Oz, the higher will be the ITRs under condition (i); and the higher
baseline resting state relative mean betaMid PSDs are at frontal
electrodes (F3, Fz, F4) the higher will be the ITRs under condi-
tion (iii). In addition to these findings in betaMid, the higher the
baseline resting state relative mean thetaHigh PSDs at Oz are, the
higher will be the ITRs exclusively under condition (i).

Returning to the above described subsample of N = 12
obtained by exclusion of all subjects with NTrials < 25th per-
centile (8.75 ≈ 9), an interesting observation was found: IAF
shows differentiating relationships with ITR performances: a sig-
nificant correlation of r = 0.577, p = 0.0496 was only found with
ITRs under (i) ACL algorithm (see scatterplot Figure 8), but nei-
ther under (ii) top with r = 0.394, p = 0.205 nor under (iii)
prefixed r = 0.283, p = 0.373. The higher subjects’ IAF are in
the subsample, the better will be their ITR performance exclu-
sively under the ACL algorithm. Partial correlation analyses con-
firmed that this association is linearly independent against age.
Repeating this analysis for the entire sample of N = 18 no sig-
nificant correlations between individual alpha frequency (IAF)
and ITR performances under the three experimental conditions
become apparent (i) with r = 0.282, p = 0.257, (ii) r = 0.198,
p = 0.432 and (iii) r = 0.243, p = 0.332. These findings imply
that subjects with low ITRs in all three conditions might represent
another population as compared to the rest. Further studies may
try to replicate these findings and identify dimensions which
discriminate between these possible two different populations.
Moreover, these findings could be relevant for the understanding

FIGURE 8 | Scatterplot of individual alpha frequency (IAF) vs. ITRMean

under condition (i) ACL algorithm (best-fit regression line for N = 12

as continuous line, 95% confidence regression bands as dotted lines).

A significant Pearson correlation with r = 0.577, p = 0.0496 was found in
the remaining subsample of N = 12 (blue points), removing subjects with
NTrials < 25th percentile (8.75 ≈ 9) (red points), while over the entire
sample of N = 18 the correlation is hidden with r = 0.282, p = 0.257 (all
points). This relationship seems to exist exclusively for condition (i) ACL
algorithm: the higher subjects’ IAF are in this subsample, the better will be
their ITRMean performance exclusively under (i). Partial correlation analyses
confirmed that this association is linearly independent against age.

of the so-called BCI illiteracy phenomenon (Blankertz et al., 2010;
Vidaurre and Blankertz, 2010; Volosyak et al., 2011), see section
“Discussion.”

Inspired by the findings of Koch et al. (2008) who found corre-
lations of IAF with both magnitudes of visually evoked potentials
(VEPs) and also with cortical oxygenation measured by near-
infrared spectroscopy (NIRS), Spearman rank order correlations
were computed between IAF and means of SSVEP-SNR magni-
tudes in the scanning phase of the experiment (a) over all 20
used flicker frequencies 20–39 Hz, (b) over the lower frequen-
cies 20–29 Hz and (c) over the higher frequencies 30–39 Hz in the
described subsample of N = 12. Although not fully reaching sig-
nificance level, probably due to the relatively small sample size,
an interesting pattern was found: IAF vs. (a) with rho = 0.561,
p = 0.058, IAF vs. (b) with rho = 0.183, p = 0.568 and IAF vs.
(c) rho = 0.557, p = 0.060. Although not fully significant, prob-
ably due to the small sample size, interindividual differences in
SSVEP-SNR magnitudes under the employed higher flicker fre-
quencies seem to show a tendency of positive association to
higher IAFs while this relationship might not exist for the stim-
ulation with the lower frequencies (or if so, it may presumably
be lower). These findings motivated the re-analysis of the found
relationship in Figure 8 by partial correlations whether it would
be linearly independent against SSVEP-SNR magnitudes in the
scanning phase of the experiment (a), (b) and (c) as described
above. While (a) and (b) showed no relevant influence on this
relationship, controlling for (c) resulted in a reduction from
former Pearson r = 0.577, p = 0.0496 to r = 0.396, p = 0.228.
Hence, these findings imply that IAF and (c) the magnitude
of SSVEP responses to only the employed higher flicker fre-
quencies share remarkably amounts of common interindividual
variability while explaining variability of ITRMean under the ACL
algorithm.

EFFECTS OF THE PERMUTATION OF PRESENTATION ORDER
Investigating possible effects of the permutation of presentation
order, a mixed-design repeated measures ANOVA was computed
with stimulation condition as repeated within-subjects factor with
three levels (i) ACL algorithm represented as ITRMedian, (ii) pre-
fixed and (iii) top and presentation order as between-subjects
factor with the six possible permutations as levels (ABC, ACB,
BAC etc.). Levene’s tests showed homogeneities of error vari-
ances. There was no significant between-subjects main effect of
presentation order with F(5, 18) = 2.26, p = 0.115, η2

p = 0.485.
Because Mauchly’s sphericity test indicated a significant departure
from the assumption of sphericity with χ2(2) = 6.54, p = 0.038,
Greenhouse-Geisser estimates were used to correct degrees of free-
dom (ε = 0.691). There was no significant interaction between
presentation order × stimulation condition with F(10, 18) = 0.67,
p = 0.738, η2

p = 0.219. ANOVA analyses were repeated also
for condition (i) ACL algorithm represented as ITRMean and
ITRMax which resulted in similar findings. In conclusion, neither
significant main effects nor significant interactions could be
found over all six possible permutations of presentation order.
Hence, the found effects in the central tendencies reported above
with regard to all ITR performances can be considered as inde-
pendent from possible presentation order effects.
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DISCUSSION
Although electrophysiology-based closed-loop interactions with
biological nervous systems have been used since the 1940s, mod-
ern computers and online software control techniques allow a
wide variety of novel activity dependent protocols in neuroscience
research and related applications. Current BCI bring up a num-
ber of problems related to relatively long previous training times
and still relatively low efficiencies (ITRs). This calls for novel
techniques which can also address context and subject specifici-
ties, e.g., adaptive detection of SSVEPs (e.g., Krauledat et al.,
2008).

In this paper we described an assisted closed-loop protocol
which enhances BCI efficiency, as compared to classic BCI pro-
tocols, by providing both the subject and the system with online
information which helps them to reach the BCI goal in their
interaction. We used a reductionistic paradigm to constrain the
inherent complexity of closed-loop exploration: four simultane-
ous frequencies, a basic SSVEP detection strategy and a relatively
simple task to be accomplished by the user. More complex BCI
systems might further benefit from the described approach. Our
paradigm calls for many possible improvements, ranging from
advanced SSVEP detection algorithms, stimuli which inform the
user more effectively, up to a more adaptive online control of the
interface itself by measuring and exploring additional dimensions
(multimodality).

The literature on SSVEP-BCIs does not report general recom-
mendations for the selection of the properties of the visual stimuli
(Wu et al., 2008; Zhu et al., 2010), although it is known that
the SSVEP magnitudes depend on extrinsic and intrinsic dimen-
sions (Ding et al., 2006; Lopez-Gordo et al., 2011). Our study
shows that a closed-loop subject-specific selection of the stimula-
tion frequencies together with the closed-loop auditory feedback
lead to increased BCI ITR performance which outperformed the
employed control conditions.

Although assisted closed-loop protocols seem to enhance BCI
efficiency, their use is limited by the additional time needed for
the exploration process. In the protocol discussed in this paper,
the average time to perform the experiment was around half an
hour, flicker frequency selection took most of this time. Due to
time restrictions, the parameter space can never be explored com-
pletely, so BCI efficiency improvement might remain suboptimal.
Thus, there is some unknown trade-off between improvement
and time needed, which should be explored in further studies.
Furthermore, the question how replicable the found flicker fre-
quencies are in the same subjects over multiple follow-up time
points could be explored. Probably, observing this stability over
time (e.g., test-retest reliability) may help to discover important
trait vs. state dimensions related to variability of BCI perfor-
mance. Another limitation due to the SSVEP physiology is that
the time window for the auditory feedback is relatively short, so
subjects have to establish control over the BCI goal in the range
of a few seconds. This implies possible interactions with sub-
jects’ traits and states related to cognitive processing speed and
dimensions of learning abilities.

ACL algorithms offer new possibilities as compared to tra-
ditional open-loop paradigms, but require additional decisions
and new perspectives for their design and analysis, e.g., with

regard to online measurement of actual states and performance,
parameter search responding to the particular dynamic behavior
of the system, properties of the feedback stimuli, actuation laws,
etc. However, our findings imply that this additional effort can
improve BCI efficiency and contribute to reveal dynamics of the
nervous system which would remain hidden under traditional
paradigms. Because our analyses showed that EEG resting state
measures can predict assisted closed-loop SSVEP-BCI perfor-
mance, our novel approach seems to flexibly adapt/interact with
interindividual cerebral variabilities. Although found in the con-
text of a sensory motor rhythms (SMRs) based BCI, other recent
work also demonstrated that EEG resting state measures can be
relevant predictors of BCI performance (Blankertz et al., 2010).
In this emerging field, it could be fruitful to identify possible EEG
resting state measures which can differentiate/predict between
BCI performances based on biosignals originating from distinct
physiological mechanisms: SSVEPs, P300, SMRs, slow cortical
potentials (SCPs), electrocorticogram (ECoG), magnetoencephalog-
raphy (MEG), NIRS or blood-oxygen-level-dependent (BOLD).
Apart from these biosignals reflecting brain activity, periph-
eral psychophysiological measures have been investigated in the
context of BCIs, especially as performance predictors, such as
parasympathic/vagal parameters of resting state heart rate vari-
ability (HRV) (Kaufmann et al., 2011).

Our proposed approach of new adaptive-interactive
paradigms might offer innovative ways how to address the
problem of the so-called BCI illiteracy, i.e., the incapacity of
some subjects to achieve control of BCIs (Blankertz et al.,
2010; Vidaurre and Blankertz, 2010; Volosyak et al., 2011).
It might be fruitful to explore the possible different impact
of ACL algorithms in BCIs based on the mentioned distinct
physiological mechanisms, especially with regard to their specific
BCI illiteracies.

As mentioned in section “Baseline Resting State EEG Measures
as Possible Interindividual Correlates of ITR Performances,” the
IAF is a measure of interindividual EEG variability because it is
remarkably stable within subjects, but relatively variable between
subjects (Kondacs and Szabó, 1999). IAF seems to be highly her-
itable, e.g., Posthuma et al. (2001) found in a study comparing
mono- vs. dizygotic twins, analyzing a large representative sam-
ple of healthy Dutch adults (N = 688), that 71–83% of total IAF
variance could be ascribed to genetic variances. Thus, IAF may
be considered as an endophenotype following the definition of
Gottesman and Gould (2003). Klimesch (1997) found in a sample
of age matched subjects that the IAF of good working memory
performers is about 1 Hz higher vs. that of bad performers. Jin
et al. (2006) found that IAF is positively correlated with con-
flict reaction time. Severity of Alzheimer’s disease is positively
related to the extent of typical IAF slowing in this pathology
(Rodriguez et al., 1999). On the neurophysiological level, Steriade
et al. (1990) reported that IAF depends on membrane properties
of the thalamic neurons which project to the cortex, implying
thalamo-cortical feedback loops as one of the important gen-
erators of alpha activity (Lopes da Silva, 1991). Mayer et al.
(2007) successfully modeled the synchronization of locally cou-
pled bistable thalamic oscillators as controlled by the influence of
corticothalamic projections, probably responsible for widespread
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spindle oscillations in the thalamus. Given these findings, IAF
might be understood as a positive correlate of thalamo-cortical
information processing speed. With regard of possible correla-
tions of IAF with SSVEP magnitudes, Koch et al. (2008) found
interesting correlations of IAF with both magnitudes of VEPs and
cortical oxygenation measured by NIRS. Concluding, IAF seems
to open new insights into the understanding of the neural circuits
underlying BCI performance and thus should be considered as a
promising predictor for further studies.

In this study, only eight EEG electrodes were used to investi-
gate EEG resting state measures as performance predictors, but
further works might use more electrodes of the 10–20 system
to allow a-posteriori offline analyses of scalp maps and the use
of source localization techniques, e.g., LORETA (for a review see
Grech et al., 2008). Findings of research concerning the cerebral
resting-state networks call for further studies which use simultane-
ous EEG/fMRI recordings (for reviews see e.g., Fox and Raichle,

2007; Van den Heuvel and Hulshoff-Pol, 2010; for typical stud-
ies see e.g., Damoiseaux et al., 2006; Van den Heuvel et al., 2009;
Yuan et al., 2012).

Opening the scope to other uses, the demonstrated advan-
tage of our adaptive-interactive BCI protocol can be expanded
conceptually, e.g., to innovative applications such as diagnos-
tic/therapeutic tools in clinical contexts: exploring the subject-
specific dynamical trajectory of machine-subject interaction
could extract information which otherwise would remain undis-
covered. Thus, far beyond an engineering focus, the proposed
approach might be employed as a new paradigm for basic neu-
roscientific and biomedical research.
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