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Hepatocellular carcinoma (HCC) is usually diagnosed in an advanced stage and has
become the second deadliest type of cancer worldwide. The systemic treatment of
advanced HCC has been a challenge, and for decades was limited to treatment with
tyrosine kinase inhibitors (TKIs) until the application of immune checkpoint inhibitors (ICIs)
became available. Due to drug resistance and unsatisfactory therapeutic effects of
monotherapy with TKIs or ICIs, multi-ICIs, or the combination of ICIs with
antiangiogenic drugs has become a novel strategy to treat advanced HCC.
Antiangiogenic drugs mostly include TKIs (sorafenib, lenvatinib, regorafenib,
cabozantinib and so on) and anti-vascular endothelial growth factor (VEGF), such as
bevacizumab. Common ICIs include anti-programmed cell death-1 (PD-1)/programmed
cell death ligand 1 (PD-L1), including nivolumab, pembrolizumab, durvalumab, and
atezolizumab, and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4), including
tremelimumab and ipilimumab. Combination therapies involving antiangiogenic drugs and
ICIs or two ICIs may have a synergistic action and have shown greater efficacy in
advanced HCC. In this review, we present an overview of the current knowledge and
recent clinical developments in ICI-based combination therapies for advanced HCC and
we provide an outlook on future prospects.

Keywords: hepatocellular carcinoma, immune checkpoint inhibitors, tyrosine kinase inhibitors, vascular endothelial
growth factor, tumor microenvironment
INTRODUCTION

Liver cancer is a global health burden with an increasing incidence and a leading cause of cancer-
related deaths (1). Hepatocellular carcinoma (HCC) is the most common type of liver cancer, and
72% of cancer-related death cases are observed in Asia (2). Most cases (80-90%) of HCC can be
considered prototypical inflammation-driven cancers for the backdrop of chronic liver injury/
cirrhosis caused by hepatitis B virus (HBV) or hepatitis C virus (HCV) infections, alcohol abuse,
obesity, and aflatoxin B1 (3). The high mortality of HCC is attributed to an advanced-stage
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presentation and a high prevalence of liver dysfunction. For
delayed diagnosis, postsurgical recurrence and metastasis, there
is a poor 5-year survival rate of less than 50% (4).

The Barcelona Clinic Liver Cancer (BCLC) system is the most
commonly recommended staging system for HCC. Based on the
underlying liver function evaluated by the Child–Pugh score and
the performance status, HCC patients can be divided into five
classes, including BCLC stage 0, A, B, C and D (5). This
classification is associated with the treatment strategies and
prognosis of HCC. For early-stage (BCLC stage 0 and A) HCC
patients, those with solitary nodules less than 3 cm or multiple
nodules less than 3 cm limited in the liver with preserved liver
function and without macrovascular invasion, curative
approaches, such as surgical resection, ablation, and liver
transplantation could be effective. For large, multinodular
without vascular invasion intermediate-stage HCC (BCLC
stage B), transcatheter arterial chemoembolization (TACE) is
the preferred treatment option if liver function is preserved.
Unfortunately, most patients are diagnosed at a relatively
advanced stage (BCLC stage C) with a poor prognosis and a
survival time of less than 1 year. In this state, tumors have
expanded outside the liver or vascular invasion or liver
dysfunction (6). Due to the strong and extensive resistance of
chemotherapy, as well as the increasing toxicity for the
underlying altered liver function, the use of cytotoxic agents is
frequently restricted in HCC. Clinical trials using doxorubicin in
combination with cytotoxic chemotherapy have proven that
there are low response rates with no survival benefit (7).
Therefore, systemic therapies are required at an advanced
stage. For patients in the terminal stage (BCLC stage D) with
poor liver function, supportive care is required when they are not
considered suitable for transplantation (8).

The common pathophysiological features of hypervascularity
and vascular abnormalities include sinusoidal capillarization and
overexpression of proangiogenic growth factors, such as vascular
endothelial growth factor (VEGF) and platelet-derived growth
factor (PDGF) in HCC. In recent decades, anti-angiogenesis has
attracted attention as a potential therapeutic target (9). Sorafenib,
an oral small molecule multityrosine kinase inhibitor (TKI) that
can suppress angiogenesis, exerts an anticancer effect by
inhibiting vascular endothelial growth factor receptor (VEGFR)
and fibroblast growth factor receptor (FGFR) (10). In 2007, two
phase III trials (one is the SHARP trial in Europe and the USA,
one is the ORIENTAL trial in Asia-Pacific regions) showed
promising results that sorafenib significantly prolonged the
survival of advanced-stage HCC patients compared with the
placebo (11, 12). Based on the results of these two clinical trials,
sorafenib was recommended as a first-line targeted agent for
advanced HCC worldwide in the 2008 NCCN guidelines (10).
Even for transplant recipient patients with unresectable HCC,
sorafenib is generally well-tolerated and associated with
improved overall survival (OS) (13, 14). Lenvatinib, another
oral small molecule multi-TKI that inhibits tumor angiogenesis
and growth, was found to be no less effective than sorafenib.
Hence, lenvatinib therapy became the second recommended
first-line targeted molecular therapy in the 2019 NCCN
guidelines (15). Other multitarget TKIs, regorafenib and
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cabozantinib, were recommended as second-line agents for
HCC patients who progressed on sorafenib treatment in the
2017 and 2019 NCCN guidelines, respectively (15, 16).
Ramucirumab, a recombinant IgG1 monoclonal antibody
(mAb) and an inhibitor of VEGFR2, showed efficacy after
sorafenib among advanced patients with elevated levels of a-
fetoprotein (AFP) (17). In view of this, ramucirumab was
included in the second-line therapy in the 2019 NCCN
guidelines (15). However, low objective response rates (ORRs),
an improvement in OS of only 2-3 months, resistance, and
cancer progression after standard treatment, regardless of first-
and second-line settings, were observed, and therefore, more
efficacious therapeutics should be explored (18).

HCC is a chronic inflammation-induced type of cancer that
expresses various antigens that can mediate immune responses.
Over the past decade, immune-based therapies that modulate the
balance of immune homeostasis have been increasingly explored
and have shown beneficial outcomes in HCC (19). Immune
checkpoints include coinhibitory receptors on T cells and their
ligands on tumor cells and stromal cells in the tumor
microenvironment (TME). Immune checkpoint inhibitors
(ICIs) prevent the inactivation of T cells by blocking
interactions between checkpoint proteins and their ligands,
such as those mediated by programmed cell death-1 (PD-1)/
programmed cell death ligand 1 (PD-L1), cytotoxic T-
lymphocyte-assoc ia ted prote in 4 (CTLA4) , T-ce l l
immunoglobulin, mucin domain containing-3 (TIM3), and
lymphocyte-activation gene 3 (LAG3), thereby exerting
antitumor effects (20, 21). However, not all patients (especially
in the era of pre-liver transplantation) with HCC respond to
immunotherapy, and more importantly, the ORR is low, and OS
does not significantly improve with single-agent immunotherapy
(22, 23). Given these data, more effective combination therapies
for the treatment of HCC are explored, including ICIs combined
with other ICIs, TKIs, anti-VEGFs, and other agents (24). In
recent years, the emergence of combination therapies using
multi-ICIs or ICIs with antiangiogenics represents the main
avenue for the treatment of advanced HCC (5, 25). The
objective of this review is to focus on the current knowledge of
ICI monotherapy or in combination with other ICIs or
molecularly targeted therapies (TKIs or anti-VEGFs) in
advanced HCC and to provide an outlook on future prospects.
IMMUNE MICROENVIRONMENT OF
THE LIVER

The liver is an organ with metabolic function and immune
regulatory function. Liver cells are commonly exposed to food
antigens and gut pathogens in terms of the dual supply of arterial
and portal systemic blood (26). Therefore, the liver not only
regulates immune responses but also has the ability to maintain
immune tolerance to self and foreign antigens. This tolerogenic
environment is maintained by specialized immunocytes,
including Kupffer cells (KCs), liver resident dendritic cells
(DCs), liver sinusoidal endothelial cells (LSECs), hepatic
June 2022 | Volume 13 | Article 896752
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stellate cells (HSCs), natural killer (NK) cells, and innate T and B
cells (27). Among them, KCs, DCs, HSCs, and LSECs are
antigen-presenting cells (APCs). DCs (conventional APCs)
exist in multiple subtypes with different functions. Under
physiological conditions, in the hepatic microenvironment,
DCs appear as a tolerogenic phenotype and can secrete an
array of immunosuppressive cytokines, including interleukin
10 (IL-10), prostaglandin E2 (PGE2), and indoleamine 2,3-
dioxygenase (IDO), which can promote regulatory T cell (Treg,
derived from naive CD4+ T cells) activation, thus playing an
inhibitory role in innate immune responses (28). Under
homeostatic conditions, non-conventional APCs (KCs, LSECs,
and HSCs) in the liver are known to act as weak T-cell activators
due to low expression of major histocompatibility complex
(MHC) molecules and APC activation markers CD80 and
CD86 (29). KCs eliminate high-affinity antigen-specific CD8+
T cells in the liver and express heightened amounts of IL-10 and
transforming growth factor beta (TGF-b) to promote the
activation of Tregs (Figure 1) (30, 31). In addition, a variety of
immune checkpoint proteins limit T-cell hyperactivation in
physiological circumstances. T cells express CTLA4, PD-1,
LAG3, and TIM3, which interact with ligands on APCs (such
Frontiers in Immunology | www.frontiersin.org 3
as PD-L1) and play a key role in immune tolerance in
the liver (32).
TUMOR MICROENVIRONMENT OF HCC

It is an immense challenge to produce immune tolerance or
immune response by distinguishing between benign foreign
antigens and pathogenic antigens. Failure to respond to HBV and
HCV infections would markedly induce immunosuppression and
impair immune surveillance, which increases the risk of chronic
infections and ultimately gradually develops into HCC (33). The
TME of HCC is composed of immune cells (cytotoxic CD4+ T cells,
CD8+ T cells, and NK cells), abundant immunosuppressive cells,
such as Tregs, myeloid-derived suppressor cells (MDSCs), tumor-
associated macrophages (TAMs), stromal cells, the extracellular
matrix (ECM), blood vessels, tumor cells, and lymphatic vessels,
which play an important role in tumor survival, proliferation,
invasion, and metastasis (34). Immune cells recognize and kill
cancer cells. Moreover, deficiencies and malfunctioning of
immune cells can influence the balance of the TME and lead to
an immunosuppressive microenvironment. Several factors,
FIGURE 1 | Immune microenvironment of liver and tumor microenvironment of hepatocellular carcinoma. The liver not only regulates immune responses, but also
maintains immune tolerance to self and foreign antigens. Liver sinusoidal endothelial cells (LSECs) line the liver sinusoid wall that controls the exchange of materials
between hepatocytes and blood. Kupffer cells (KCs) and liver resident dendritic cells (DCs) can access to the Disse space to get in touch with hepatocytes and
hepatic stellate cells (HSCs). KCs are key regulators of tolerance by expressing a large amount of IL-10 and transforming growth factor beta (TGF-b). Moreover, liver
DCs produce elevated amounts of IL-10, resulting in immune tolerance. Continuous hepatitis B virus (HBV) or hepatitis C virus (HCV) infections, and alcohol abuse
can lead eventually to the development of HCC. HCC is hypervascularity and overexpresses VEGF, which can recruit several inhibitory cells, such as myeloid-derived
suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells (Tregs) to form an immunosuppressive microenvironment. In addition, HCC-
related cancer-associated fibroblasts (CAFs) can induce the differentiation of MDSCs by IL-6/STAT3 signaling. Tregs can produce suppressive cytokines IL-10 and
TGF-b to impair the inflammatory functions of CD8+ cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells through inhibiting tumor necrosis factor-a (TNF-a),
interferon-g (IFN-g), and the release of perforin. Furthermore, Tregs and TAMs also secrete IL-10 to attenuate the capacity of CD8+ CTLs and NK cells. Moreover,
MDSCs express TIM3 ligand galectin-9 and induce T-cell apoptosis.
June 2022 | Volume 13 | Article 896752
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including immunity suppression, chronic inflammation, and the
decreased recognition of cancer cells have been suggested to play a
role in promoting tumor antigen tolerance, which induces
hepatocarcinogenesis (35). In a number of recent clinical trials, it
was highlighted that the onset of HCCmay be favored by alterations
in cytokine levels as well as in immune cell function and number.
IL-6 is a pleiotropic cytokine that exerts its biological effects mainly
through the IL-6/STAT3 signaling pathway. IL-6 is abundantly
present in the TME, and an abnormally activated IL-6/STAT3
signaling pathway can play a role in the occurrence and
development of HCC by affecting tumor cell proliferation,
migration, invasion, angiogenesis, and apoptosis (36, 37). IL-10
and TGF-b are important regulatory cytokines of hepatocytes.
Moreover, in addition to overcoming the tumor suppressor effect
of hepatocytes, the mechanism of action of tumor cell development
involves other pathways related to IL-10 and TGF-b, such as
epithelial-mesenchymal transition (EMT) and suppressing IFN-g
production, which contributes to tumor progression and metastasis
(38). The TME is shaped by complex interactions between tumor
cells and immune cells. HCC has a high degree of malignancy and
the poor survival rate of patients is closely related to an imbalance of
the immune microenvironment, the breakdown of immune system
surveillance, and the suppression of host immune system responses.
These components synergistically construct an immunosuppressive
microenvironment in HCC via a variety of mechanisms
(Figure 1) (19).

Immunosuppressive Cells in the TME
of HCC
MHC I/II is usually functionally depleted in HCC, is unable to
activate T cells, and downregulates the expression of the
costimulatory molecular receptor B7 family (such as B7.1/
B7.2), leading to immune escape, which is a prerequisite for
tumorigenesis (39). Low expression of MHC-I (binding to
cytotoxic CD8+ T cells) and high expression of MHC-II
(binding to immunosuppressive CD4+ T cells) is the reason
for immune escape in terms of the failure of antigen presentation
related to HCC. The result is that a large number of
immunosuppressive cells are recruited into the TME of
HCC (40).

Regulatory T Cells (Tregs)
Tregs play a pivotal role in antitumor suppression and are mainly
derived from peripheral blood or resident naive CD4+ T
lymphocytes, and are recruited by the CC chemokine receptor
6 (CCR6)-CC chemokine ligand 20 (CCL20) axis (41). The
differentiation of Tregs from CD4+ T cells requires the action
of cytokines IL-2 and TGF-b, followed by the production of the
suppressive cytokines IL-10 and TGF-b by expressing the
transcription factor Foxp3, which in turn promotes further
differentiation and suppresses inflammatory functions (42, 43).
Compared with normal liver tissue, the proportion and number
of CD4+CD25+ Tregs are markedly increased in HCC. Among
these, CD4+ CD25+ Foxp3+ subtype Tregs have been found to
suppress CD8+ cytotoxic T lymphocyte (CTL) activation and
disable the killing capacity of CTLs by inhibiting tumor necrosis
Frontiers in Immunology | www.frontiersin.org 4
factor-a (TNF-a) and interferon-g (IFN-g) and the release of
granzyme A, B (GrA, B), and perforin (44, 45). Another
mechanism is the disruption of antigen presentation by
downregulation of CD80 and CD86 expression in DCs and
direct lysis of APCs via GrA and GrB (46, 47).

Myeloid-Derived Suppressor Cells (MDSCs)
MDSCs are immature myeloid cells that originate from the bone
marrow that are increased in HCC and upregulate the expression
of immune suppressive factors to suppress antitumor immunity
in HCC (48). HCC-related cancer-associated fibroblasts (CAFs),
which are components of the extracellular matrix in the TME,
can induce MDSC differentiation from peripheral blood
monocytes via IL-6/STAT3 signaling (49). In a previously
established mouse model, it was demonstrated that
granulocyte-macrophage colony-stimulating factor (GM-CSF),
IL-6, VEGF, and other tumor-associated cytokines could
promote the accumulation and migration of MDSCs. Recent
evidence has shown that a cell cycle-related kinase (CCRK)
unique to HCC can also induce MDSC infiltration into the
TME by promoting the expression of IL-6 by activating the
zeste homolog 2 (EZH2)/nuclear factor-kB (NF-kB) signaling
pathway (50). In addition, local hypoxia (a crucial factor in the
TME of solid tumors) is another key factor for the recruitment of
MDSCs with the action of the chemokine (C-C motif) ligand 26
(CCL26)/CX3CR1 pathway (51). MDSCs exert continuous
immune-suppressive effects by inducing CD4+ CD25+ Foxp3+
Tregs, damaging CD8+ T cells, expanding immune checkpoint
signaling and inhibiting NK-cell cytotoxicity (52, 53). MDSCs
express the TIM3 ligand galectin-9 and induce T-cell apoptosis
(54). Furthermore, PD-L1 expression can be induced by MDSCs
in concert with KCs in advanced HCC, which mediates the
inhibition of NK-cell cytotoxicity (55).

Tumor-Associated Macrophages (TAMs)
TAMs are predominant tumor-infiltrating leucocytes and vary
depending on the cancer type (56). In HCC, TAMs arrive from
CCR2+ inflammatory monocytes after the induction of the
HCC-derived cytokines IL-4, CCL2, CXCL12, and others.
Based on the state of macrophage activation, TAMs can be
divided into two polarizing phenotypes, M1 and M2. M1 is the
classical phenotype and activated by interferon-a, b or g (IFNa/
b/g), which induces antitumor immune responses. In contrast,
M2 is the alternative phenotype and activated by IL-4 and IL-10,
which stimulate tumor promotion and metastasis by various
mechanisms (57, 58). This suggests the presence of both
antitumorigenic (M1) and protumorigenic (M2) macrophages
in HCC, and the balance of M1/M2 is regulated by various TME
components. TAMs contribute to malignant progression and
metastasis by the production of IL-6, epithelial-to-mesenchymal
transition (EMT) and immunosuppression (59). TAMs are
highly associated with immune checkpoint molecules, such as
PD-1/PD-L1, CTLA4, and TIM3, to exert immune inhibitory
regulation. TAMs in the tumor stroma of HCC secrete pivotal
cytokines (e.g., NF-a, IL-6, IL-23) and expand IL-17-producing
CD4+ T helper 17 cells (Th17), which inhibit antitumor
June 2022 | Volume 13 | Article 896752
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immunity by upregulating PD-1 and CTLA-4 (60). Moreover,
TAMs can directly promote Treg expansion via surface
expression of PD-L1. In addition, TAMs in HCC promote the
expression of TIM3 by TGF-b stimulation, thereby ultimately
facilitating tumor progression and immune tolerance (61).

CD8+ Cytotoxic T Lymphocytes (CTLs)
Naive CD8+ T cells (without cytotoxic activity) can become
CTLs when they receive a signal from costimulatory molecules
and then have the ability to protect against APCs. CD8+ CTLs
can recognize abnormal cells, such as tumor cells by cooperating
with helper T1 cells (Th1) and mediate antitumor immune
responses by releasing perforin, granzyme, and TNF-a to
damage tumor cells (48). However, the efficacy of CD8+ CTLs
in HCC is functionally limited through a variety of mechanisms.
Hypoxia, in conditions of an acidic environment (overload of
lactic acid and low pH), lack the help of CD4+ T cells,
and overabundant immunoregulatory molecules (IL-10,
VEGF, IDO), may be responsible for restricted CD8+
CTL-specific cytotoxic responses (62). Unlike other TME
immunosuppressive cells, the infiltration of CD8+ CTLs can be
reduced by liver fibrosis (a striking feature of HCC) by disrupting
CD8+ T-cell recognition of platelet-derived CD44 (63). Most
CTLs are exhausted after their effect, but some remain memory
killer cells that respond to the same tumor cells quickly when
they are encountered in the future. In HCC, TOX, a novel T-cell
exhaustion transcription regulator, is heavily overexpressed in
CD8+ T cells, thereby suppressing cytotoxic effector and
memory function (64). Notably, immune checkpoint signaling
has recently been found to remarkably induce CTL exhaustion.
PD-1/PD-L1 signaling is a crucial driver of CTL exhaustion
(inhibition of T-cell survival and growth) in HCC and plays a
role by blocking T-cell receptor (TCR) sequences through the
PI3K/AKT pathway. CTLA-4 is upregulated after the activation
of T cells and acts as a competitive antagonist of CD80 and CD86
in APCs and inhibits downstream AKT signaling, thereby
ultimately exerting inhibitory effects (65). Other drivers of T-
cell exhaustion include TIM3 and LAG3, which are expressed on
CD8+ T cells and Tregs in HCC and lead to hypofunctional CD8+
responses by reducing CTL capacity (66, 67).

Natural Killer (NK) Cells
NK cells are innate immune cells with a high frequency (~30%)
in the liver and a low frequency in peripheral blood. Upon NK-
cell activation triggered by virus-infected cells and tumor cells,
NK-cells function rapidly without antigen presentation (68). NK
cells are crucial in maintaining the balance of immune defense/
tolerance. The antitumor effect of NK cells is induced by
secreting several killer cytokines (e.g., IFN-g and TNF-a) and
chemokines and by inducing tumor cell apoptosis via the Fas/
FasL pathway as well as the release of cytotoxic granules (mainly
perforin and granzyme) (69). In HCC, increasing evidence has
shown that hypoxia can dysfunction the antitumor immunity of
NK cells by utilizing TME immunosuppressive components to
influence the switch of activating/inhibiting NK receptors
(NKRs). For example, AFP (known to be overexpressed in
HCC), especially when extended, decreased the expression of
Frontiers in Immunology | www.frontiersin.org 5
natural killer group 2, member D (NKG2D), an activating NKR,
and negatively regulated NK-cell viability (70, 71). Other
modulators in the TME, such as Tregs, release the cytokines IL-
8, IL-10, and TGF-b to downregulate NKG2D ligand membrane
expression in HSCs, which suggests tumor progression in
HCC patients (72).

Extracellular Matrix (ECM) in TME of HCC
Chronic liver inflammation/injury causes liver fibrosis, which is
characterized by the continuous accumulation of ECM-
producing myofibroblasts and results in the gradual
substitution of liver parenchyma by fibrous or scar tissue and
liver cirrhosis (73). In the physiological liver, quiescent HSCs
localize in the space of Disse but are activated in myofibroblasts
and secrete ECM components in the pathological liver (74).
CAFs are most important components that form the ECM and
promote EMT (normal epithelial cells transform into
mesenchymal cells) in the TME. CAFs mostly stem from HSCs
or bone marrow (BM)-derived activated mesenchymal stem cells
(MSCs). CAFs can alter stiffness of the ECM, secrete cytokines,
including epidermal growth factor (EGF), TGF-b, and PDGF,
and in turn promote tumorigenesis of the liver. Moreover, CAFs
have been found to indirectly promote HCC through crosstalk
with immunosuppressive cells (mostly MDSCs and Tregs) in the
TME, and reduce immune surveillance (75). Specifically, MDSC
production can be induced by CAFs through the IL-6/STAT3
signaling axis and secretion of stromal cell-derived factor (SDF)-
1a. More recently, in several studies, it was demonstrated that
MDSC differentiation from blood monocytes can be promoted
by PGE2 secretion in a CD44-dependent manner (76). CAFs also
caused T-cell hyporesponsiveness and an increased number of
Tregs, followed by inhibition of T-cell-mediated cytotoxicity (77).
In summary, CAFs play a critical role in contributing to the
occurrence of liver fibrosis and the progression of HCC in
the TME.

Cytokines in the TME of HCC
The abundance of cytokines in the TME of HCC can mediate
intercellular crosstalk and have multiple other functions. Based
on their function, these cytokines can be classified into two
groups. One type involves immune response cytokines, including
TNFa, IFN-g, IL-1, and IL-17, and the other type involves
immunosuppressive cytokines, including IL-10, IL-4, IL-8, and
TGF-b (78, 79). IL-10 is produced by DCs, TAMs, T cells, and
Tregs and is elevated in HCC, thereby directly impairing the
function of NK cells and downstream CD8+ T cells. Moreover,
IL-10 inhibits the stimulatory function of APCs and promotes
elevation of PD-L1 in monocytes, thus exerting immune escape-
promoting effects (56, 80). High expression of a large amount of
TGF-b in the HCC TME is made possible by tumor cells,
macrophages, and Tregs. It not only attenuates the activation of
DCs but can also trigger the activation of Tregs and impair the
effector functions of T cells and NK cells to inhibit antitumor
efficacy (81). Additionally, TGF-b increases TIM3 expression on
TAMs, subsequently facilitating immune tolerance through the
TNF-a/NF-kB signaling pathway (61). IFN-g and TNFa are two
pivotal cytokines that play a role in antitumor immune
June 2022 | Volume 13 | Article 896752
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responses, while lower serum levels of these two cytokines were
found in HCC. As mentioned above, the production of
immunosuppressive cytokines, such as IL-10, TGF-b, and PD-
L1 can suppress IFN-g/TNFa production derived from NK cells
or effector T cells (82).
ICIS IN HCC

As shown above, in the TME of HCC, immune checkpoint
molecules (PD-1, PD-L1, CTLA4, TIM3, LAG3) are associated
with immunosuppressive cells to promote tumor growth and
immune escape. This novel finding indicates that there are strong
reasons to treat HCC patients with immunotherapies, especially
ICI therapy. Increasingly, monoclonal antibodies aimed at
blocking these immune checkpoint molecules have attracted
increased attention in the HCC landscape (Figure 2 and
Table 1) (83).

PD-1/PD-L1 Monotherapy
PD-1 is mainly expressed on activated CD4+ and CD8+ T cells
and NK cells. PD-L1, the ligand for PD-1, is mainly expressed on
APCs and HCC tumor cells. Coinhibitory signals are mediated
by the binding of PD-1 and PD-L1 to suppress T-cell immunity.
In HCC, it has been shown that the upregulation of PD-1 and
PD-L1 induced by various cytokines contributes to the
Frontiers in Immunology | www.frontiersin.org 6
dysfunction of effector T cells, which eventually promotes
tumor aggressiveness and recurrence (84, 85). Clinically, the
CheckMate-040 study is a multicohort, open label, phase 1/2 trial
on the anti-PD-1 antibody nivolumab in patients with advanced
HCC. In the dose-escalation phase, a total of 48 advanced HCC
patients were enrolled into 3 groups (virus-uninfected, HBV,
HCV-infected). The objective response rate (ORR) was 15%
(95% CI, 6-28), and the disease control rate (DCR) was 58%
(95% CI 43-72). Furthermore, the median progression-free
survival (PFS) was 3.4 months (95% CI, 1.6-6.9), and the
median overall survival (OS) was 15.0 months (95% CI 9.6-
20.2). Severe grade 3/4 treatment-related adverse events
(TRAEs), including diarrhea and hepatitis, were observed in 12
(25%) out of 48 patients. In addition, in the dose-expansion
phase, a total of 214 advanced HCC patients were enrolled into 4
cohorts, including uninfected sorafenib refractory (n = 57),
uninfected sorafenib intolerance (n = 56), HCV infected (n =
50), and HBV infected (n = 51). The ORR was 20% (95% CI 15-
26), the DCR was reported as 64% (95% CI, 50-71), and the
median PFS was 4.0 months (95% CI, 2.9-5.4). The OS was not
reached. Nivolumab may offer favorable efficacy with a
manageable safety profile, and a phase 3 randomized trial
compared with sorafenib is underway (86). In another phase 3
trial (CheckMate-459) 743 systemic therapy-naive patients with
advanced HCC were recruited to verify the effects of nivolumab
compared with sorafenib. The median OS was 16.4 months (95%
FIGURE 2 | Molecularly targeted therapies and immune checkpoint inhibitors for the treatment of hepatocellular carcinoma. Vascular endothelial growth factor
(VEGF) is overexpressed in hepatocellular carcinoma (HCC) and interacts with vascular endothelial growth factor receptor (VEGFR) in the vascular endothelium to
promote tumor growth. Molecularly targeted therapies focus on VEGF/VEGFR inhibitors, including multi-tyrosine kinase inhibitors (Multi-TKIs) and anti-VEGF can
suppress angiogenesis and thus exert an anticancer effect. CD8+ T cells exhibit the expression of immune checkpoint molecules programmed cell death-1 (PD-1),
cytotoxic T-lymphocyte antigen 4 (CTLA-4), mucin domain containing-3 (TIM3), and lymphocyte-activation gene 3 (LAG3) on their surface. High expression of CTLA-
4 and TIM3 are displayed on the surface of Tregs. Tumor-associated macrophages (TAMs) and natural killer (NK) cells markedly express TIM3. Binding of PD-1 with
its ligand programmed cell death ligand 1 (PD-L1) expressed on tumor cells promotes CD8+ T-cell apoptosis. CTLA-4 inhibits the proliferation of T cells and induces
the activity of Tregs by binding to CD80/86 in antigen-presenting cells (APCs). The interaction between TIM3 and ligand galectin-9 on the surface of myeloid-derived
suppressor cells (MDSCs) also induces T-cell apoptosis. Immune checkpoint inhibitors (ICIs) prevent the inactivation of T cells by blocking the interactions between
immune checkpoint molecules with their ligands, thereby exerting antitumor effects.
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CI, 13.9-18.4) for nivolumab and 14.7 months (95% CI, 11.9-
17.2) for sorafenib. TRAEs were reported in 82 patients (22.3%)
and 180 patients (49.6%) treated with nivolumab and sorafenib,
respectively (87). In KEYNOTE-224, a phase 2 trial, the efficacy
and safety of pembrolizumab (anti-PD-1 antibody) were
evaluated in 104 HCC patients who had progressed or were
intolerant to sorafenib. The ORR was recorded as 17% (95% CI,
11-26), and the DCR was 62% (95% CI, 52-71). The median PFS
and OS were 4.9 months (95% CI, 3.4-7.2) and 12.9 months (95%
CI, 9.7-15.5), respectively. Twenty-six (25%) grade 3-4 TRAEs
Frontiers in Immunology | www.frontiersin.org 7
were observed (88). In addition, in a randomized, multicenter
phase 3 trial (KEYNOTE-240) the efficacy and safety of
pembrolizumab compared with a placebo were assessed in 413
HCC patients after progression on sorafenib. The results
indicated that the ORR and DCR of the pembrolizumab group
were 18.3% (95% CI, 14.0-23.4) and 62.2%, respectively, which
was significantly better than those of the control group (4.4%
(95% CI, 1.6-9.4) and 53.3%, respectively. The median PFS and
OS for pembrolizumab were 3.0 months (95% CI, 2.8-4.1) and
13.9 months (95% CI, 11.6-16.0) versus 2.8 months (95% CI, 1.6-
TABLE 1 | Clinical trials with ICIs in HCC.

NCT Number Drug Type Drug Stage ORR
(%)

DCR
(%)

mPFS
(months)

mOS
(months)

TRAEs
(%)

First Posted
(year)

Status

Monotherapy
NCT01658878 48/214 Anti-PD-1 Nivolumab Phase

1/2
15/20 58/64 3.4/4.0 15.0/NR 25.0 2012 Active,

not
recruiting

NCT02576509 743 Anti-PD-1 Nivolumab Phase
3

NA NA NA 16.4 49.6 2015 Active,
not
recruiting

NCT02702414 104 Anti-PD-1 Pembrolizumab Phase
2

17.0 62.0 4.9 12.9 25.0 2016 Active,
not
recruiting

NCT02702401 413 Anti-PD-1 Pembrolizumab Phase
3

18.3 62.2 3 .0 13.9 52.7 2016 Completed

NCT01693562 40 Anti-PD-L1 Durvalumab Phase
1/2

10.3 33.0 NA 13.2 20.0 2012 Completed

NCT03389126 30 Anti-PD-L1 Avelumab Phase
2

10.0 73.3 4.4 14.2 19.4 2018 Completed

NCT01008358 21 Anti CTLA-4 Tremelimumab Phase
2

NA 76.4 6.5 8.2 45 2009 Completed

NCT01853618 32 Anti CTLA-4 Tremelimumab Phase
1

NA NA 7.4 12.3 13.0 2013 Completed

ICIs Combinations
NCT01658878 148 Anti-PD-1 + Anti

CTLA-4
Nivolumab +
Ipilimumab

Phase
1/2

31.0 49.0 NA 22.8 2.1 2012 Active,
not
recruiting

NCT03222076 27 Anti-PD-1 + Anti
CTLA-4

Nivolumab +
Ipilimumab

Phase
2

NA NA 19.5 NA 43.0% 2017 Active,
not
recruiting

NCT02519348 332 Anti-PD-L1 + Anti
CTLA-4

Durvalumab +
Tremelimumab

Phase
1/2

24.0 NA 2.2 18.7 37.8 2015 Active,
not
recruiting

ICIs combined with Anti-angiogenesis
NCT03006926 104 Anti-PD-1

+ TKIs
Pembrolizumab +
Lenvatinib

Phase
1

46.0 NA 9.3 22.0 67.0 2016 Active,
not
recruiting

NCT03299946 15 Anti-PD-1
+ TKIs

Nivolumab +
Cabozantinib

Phase
1

NA NA NA NA NA 2017 Active,
not
recruiting

NCT03755791 740 Anti-PD-L1
+ TKIs

Atezolizumab +
Cabozantinib

Phase
3

NA NA NA NA NA 2018 Recruiting

NCT03794440 595 PD-1 inhibitor
+ Anti-VEGF

Sintilimab + IBI305 Phase
2/3

NA NA 4.6 NR 14.0 2019 Active,
not
recruiting

NCT02715531 223 Anti-PD-L1
+ Anti-VEGF

Atezolizumab +
Bevacizumab

Phase
1

20.0 NA 5.6 NR 5.0 2016 Completed

NCT03434379 501 Anti-PD-L1
+ Anti-VEGF

Atezolizumab +
Bevacizumab

Phase
3

27.3 NA 6.8 NR 61.1 2018 Active,
not
recruiting
Jun
e 2022 |
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ICIs, immune checkpoints inhibitors; ORR, objective response rate; DCR, disease control rate; mPFS, median progression free survival; mOS, median overall survival; TRAEs, treatment-
related adverse events; PD-1, programmed cell death-1; PD-L1, programmed cell death ligand 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; TKIs, tyrosine kinase inhibitors;
VEGF, vascular endothelial growth factor; NR, not reached; NA, not available.
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3.0) and 10.6 months (95% CI, 8.3-13.5) for the placebo,
respectively. The incidence of TRAEs of grade 3 and above was
52.7% in the pembrolizumab group and 46.3% in the placebo
group. Anti-PD-L1 monotherapy (durvalumab) was observed as
part of a randomized expansion phase 1/2 study in 104 HCC
patients who progressed or refused sorafenib treatment, with an
ORR of 10.6% (95% CI, 5.4-18.1) and a median OS of 13.6
months (8.7 to 17.6) (89). At the 2017 American Society of
Clinical Oncology (ASCO) annual meeting, an ongoing phase 1/
2 trial that was aimed at evaluating the safety and clinical activity
of durvalumab in advanced solid tumors showed promising
antitumor activity and management safety in 40 patients with
HCC (5). The fully human monoclonal anti-PD-L1 agent
avelumab underwent further assessment in a phase 2, single-
arm, single center in patients with advanced HCC who were
previously treated with sorafenib (NCT03389126). Preliminary
results were promising: ORR: 10.0%, DCR: 73.3%, median PFS:
4.4 months (95% CI, 2.9-5.9), median OS: 14.2 months (95% CI,
9.5-18.9). Avelumab was well tolerated with manageable toxicity,
with 7 grade 3 TRAEs and no grade 4 TRAEs (90).

CTLA-4 Monotherapy
CTLA-4 is present on Tregs and activated T cells and is an
inhibitory coreceptor that plays an important role in regulating
the function of CD4+ T cells. In many types of solid cancer,
including HCC, CTLA-4 suppresses the proliferation of T cells,
promotes the production of the suppressive cytokines IL-10 and
IDO, and induces Treg activity (91, 92). Many clinical trials on
anti-CTLA-4 are currently ongoing with promising results. The
antitumor effect of blocking CTLA-4 with tremelimumab in the
treatment of HCV-associated advanced HCC was demonstrated
in a phase 2 trial (NCT01008358), involving 21 patients. A
remarkable DCR of 76.4% was observed, and although there
was no complete response, the partial response rate (PRR) was
17.6%. In the study, the efficacy of tremelimumab was
investigated with a median PFS of 6.48 months (95% CI, 3.95-
9.14) and a median OS of 8.2 months (95% CI, 4.64-21.34) and a
manageable safety profile. In addition, tremelimumab has been
shown to play an antiviral role, and a progressive course of
decreased viral load was observed for almost 3 months in most
patients (93). In another recent communication, a phase 1 trial
(NCT01853618) was reported, evaluating tremelimumab in
combination with ablation in 32 patients with advanced HCC.
The study showed significant results, with a median PFS and OS
of 7.4 months (95% CI, 4.7-19.4) and 12.3 (95% CI, 9.3-15.4),
respectively. Four (13%) patients presented with grade 3/4
TRAEs (94).

ICI Combination
Most ICI combination trials in advanced HCC have previously
shown efficacy. The combination of the anti-PD-1 antibody
nivolumab and the anti-CTLA-4 antibody ipilimumab was first
tested in the phase 1/2 CheckMate-040 trial (NCT01658878).
Based on different dosages, 148 advanced HCC patients who
were previously treated with sorafenib were randomized into
three arms: (A) nivolumab 1 mg/kg + ipilimumab 3 mg/kg, (B)
nivolumab 3 mg/kg + ipilimumab 1 mg/kg every 3 weeks (Q3
Frontiers in Immunology | www.frontiersin.org 8
W), and (C) nivolumab 3 mg/kg + ipilimumab 1 mg/kg every 6
weeks (Q6 W). The primary endpoint ORR was 31.0% (95% CI,
18-45) in combination therapy compared to 15% (95% CI, 6-28)
in nivolumab monotherapy. At 24 months, the DCR was 48.8%,
and the OS was 40%. A promising effect on outcome was
observed, especially in arm A, with a median OS of 22.8
months (95% CI 9.4 - not reached). Grade 3-4 TRAEs were
reported in 5 out of 49 patients (10.2%) in arm A, 2 out of 49
patients (4.1%) in arm B, and 1 out of 48 patients (2.1%) in arm
C (95). Based on these promising results, in March 2020, the
FDA approved combination therapy (arm A) as a second-line
treatment after sorafenib. Recently, an open-label, randomized
phase 2 trial (NCT03222076) evaluated the efficacy of nivolumab
monotherapy versus nivolumab plus ipilimumab in the
treatment of HCC patients who could be treated by surgery.
All 27 patients were classified into nivolumab monotherapy (n =
13) and nivolumab plus ipilimumab combination therapy (n =
14) groups. Feasible data were observed, with a median PFS of
19.53 months (95% CI, 2.33 - not estimable) in the combination
group and 9.4 months (95% CI, 1.47 - not estimable) in the
monotherapy group. However, in combination therapy, grade 3-
4 TRAEs (6 of 14 (43.0%)) were higher than those of nivolumab
alone (3 of 13 (23.0%)). Overall, nivolumab plus ipilimumab
appeared to be safe and effective (96). Clinical data on
durvalumab (anti-PD-L1) in combination with tremelimumab
(anti-CTLA-4) were presented in a phase 1/2 study including 332
HCC patients. Four cohorts were assigned, including T300 + D
(tremelimumab 300 mg + durvalumab), durvalumab or
tremelimumab monotherapy, and T75 + D (tremelimumab 75
mg + durvalumab). The results showed that the ORR and
median OS of the T300 + D cohort were 24.0% (95% CI, 14.9-
35.3) and 18.7 months (95% CI, 10.8-27.3), respectively, which
were better than the data obtained from monotherapy and T75 +
D groups. However, the incidence of grade ≥ 3 TRAEs was the
highest (37.8%) in the 4 groups (86). Recently, TIM3 has been
shown to overcome resistance to PD-1 blockade (97). The results
for a phase 2 trial assessing the efficacy and safety of anti-PD-1
and anti-TIM3 combination therapy (NCT03680508) (98) are
still awaited. In addition, dual blockade of PD-1 with anti-LAG3
therapy is being conducted in a phase 1 trial (NCT01968109).
However, the clinical values of TIM3 and LAG3 need to be
further elucidated.

ICIs Combined With Anti-Angiogenesis
Additional strategies aimed at combining TKIs/anti-VEGFs with
ICI therapy after ICI progression may represent future treatment
options. A total of 104 patients were enrolled in a phase 1b,
multicenter, open-label trial of lenvatinib (TKIs) plus
pembrolizumab (anti-PD-1) in patients with unresectable HCC.
Patients received lenvatinib (12 mg if ≥ 60 kg, 8 mg if < 60 kg)
orally daily plus pembrolizumab 200 mg Q3 W intravenously on
day 1 of a 3-week cycle. The ORR was 46.0% (95% CI, 36.0-56.3),
with a median PFS of 9.3 months and a median OS of 22.0
months. Grade ≥3 TRAEs occurred in 67% of patients, and no new
safety signals were observed (99). A cohort study was launched
within the single arm phase 1b trial (NCT03299946) exploring the
combination of cabozantinib (TKIs) and nivolumab (anti-PD-1)
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in locally advanced HCC patients. A total of 15 patients were
included in the study; 12 out of 15 patients (80%) underwent
surgical resection after combination therapy, and 5 out of 15
patients (42%) had major pathologic responses (100). A COSMIC-
312 phase 3 study trial of cabozantinib in combination with
atezolizumab (anti-PD-L1) versus sorafenib is currently ongoing
(NCT03755791) in treatment-naive HCC patients. Approximately
740 patients were randomized into 3 groups: cabozantinib plus
atezolizumab (370 patients) and sorafenib or cabozantinib single-
agent (185 patients). For the combination group, cabozantinib was
administered orally (40 mg once daily) plus atezolizumab 1200mg
Q3 W intravenously (101). Currently, clinical trials are ongoing.
Recently, an open-label, phase 2-3 trial (NCT03794440) was
performed in 595 unresectable HBV-associated HCC patients in
China. First, a phase 2 study was performed in 24 patients, and
inspiring results were obtained. The ORR in the phase 2 part of the
study was 25.0% (95% CI, 9.8-46.7), and TRAEs were observed in
7 out of 24 patients (29%). Subsequently, a randomized phase 3
trial was started because of its preliminary safety profile and
effectiveness. The remaining 571 patients were randomly
assigned to the sintilimab (PD-1 inhibitor) plus IBI305 (anti-
VEGF agent bevacizumab biosimilar) group (n = 380) or sorafenib
group (n = 191). This trial demonstrated that patients with
sintilimab plus IBI305 combination treatment had a significantly
longer median PFS (4.6 months (95% CI, 4.1-5.7)) and median OS
(not reached) than patients in the sorafenib group (median PFS
and OS were 2.8 months and 10.4 months, respectively) (102). In
GO30140, an open-label, multicenter, phase 1b trial
(NCT02715531), two unresectable HCC cohorts, groups A and
F, from 26 academic centers were described. In group A, 104
patients were enrolled and treated with atezolizumab plus
bevacizumab (anti-VEGF). In group F, 119 patients were
enrolled and randomly assigned into 2 groups: atezolizumab
combined with bevacizumab (n = 60) and atezolizumab
monotherapy (n = 59). In group A and in the combination
therapy subgroup in group F, all patients received 1200 mg
atezolizumab and 15 mg/kg bevacizumab intravenously Q3 W.
P patients in the other group of group F were given only 1200 mg
atezolizumab intravenously Q3 W. The results showed that the
ORR (20%, (95% CI, 11-32)) and median PFS (5.6 (95% CI, 3.6-
7.4)) of patients in the atezolizumab plus bevacizumab group were
superior to those of patients who received atezolizumab
monotherapy (103). A total of 501 unresectable HCC patients
who had not previously received systemic treatment were enrolled
in a global, phase 3 clinical trial (IMbrave150, NCT03434379) and
were randomly divided in a 2:1 ratio into two groups:
atezolizumab plus bevacizumab therapy (336 patients) or
sorafenib therapy (165 patients). Patients in the combined
therapy arm were treated with a standard dose (1200 mg) of
atezolizumab followed by a high dose of bevacizumab (15 mg/kg)
Q3 W, and patients in the sorafenib arm orally received 400 mg
twice daily. After treatment, according to the RECIST 1.1 criteria,
we showed that the ORR was 27.3% (95% CI, 22.5-32.5) in the
atezolizumab plus bevacizumab group and 11.9% (95% CI, 7.4-
18.0) in the sorafenib group. A prognostic advantage of
combination therapy over sorafenib was also observed. The
Frontiers in Immunology | www.frontiersin.org 9
median PFS was 6.8 months (95% CI, 5.7-8.3), which was
significantly longer than the 4.3 months (95% CI, 4.0-5.6) in the
sorafenib group. The median OS was 13.2 months (95% CI, 10.4 -
not reached) with sorafenib but was not reached in the combined
group. For safety, 201 patients (61.1%) with serious TRAEs (≥
grade 3) were observed in the atezolizumab plus bevacizumab arm,
and 95 patients (60.9%) were observed in the sorafenib arm (104).
CHALLENGES IN COMBINATION
THERAPY FOR HCC

Despite encouraging preliminary data generated using
combination strategies of antiangiogenic therapy and ICIs of
advanced HCC, challenges still represent a burden in
HCC management.

Drug Resistance of Combination Therapy
One of the main challenges is drug resistance (primary or
acquired), which remains the major cause of treatment failure.
Drug resistance is complex and dynamic because abnormal
behavior at any step can lead to drug resistance. In recent years,
various molecular mechanisms underlying drug resistance have
been investigated and identified (105). First, HCC is generally
considered an “immune-cold” tumor, characterized by T-cell
deficiency, infiltration of immunosuppressive cells (MDSCs,
TAMs, Tregs) and poor antigen presentation, resulting in the
ability to maintain immune tolerance and an inability to
produce tumor immune responses (106). The characteristic of a
“cold” HCC tumor is the common mechanism for primary
resistance (107). Moreover, tumor heterogeneity is the other
underlying mechanism involved in primary resistance. Unlike
other primary tumors, multifocal lesions in the liver are
common and although these tumors genetically originate from
similar cells, they differ significantly from each other. It is not only
the multifocal tumors that cause the heterogeneity of HCC but
also the difference in patients for the differential expression of
immune checkpoint molecules (108). Thus, it is critical to develop
new ways to diminish primary drug resistance by transforming the
“cold” tumor microenvironment into a “hot” tumor as well as
circumventing tumor heterogeneity. In addition, the heterogeneity
of the HCC TME also plays an important role in later acquired
resistance. In previous studies, it has been shown that
approximately a quarter of HCC (classified as immune class)
has higher immune infiltration and higher PD-1/PD-L1
expression levels and thus has higher response rates to
immunotherapy than the rest of HCCs (109, 110). However, a
high response to treatment cannot be guaranteed for immune-
suppressive cells, including MDSCs, TAMs, and Tregs, in the TME
of HCC. These immune-suppressive components of the TMEmay
contribute to T-cell exhaustion and immune checkpoint protein
dysfunction, which further develop drug resistance to ICIs. Thus, a
model that stratifies HCC patients according to the status of
immune infiltration and immune checkpoint molecules may
help to adequately select candidates for ICI therapy (111).
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Intratumor heterogeneity is the key reason for sorafenib
therapy resistance. In a previous study, it was demonstrated
that sorafenib can induce the accumulation of autophagosomes
in an in vitro HCC model. Several studies have reported that
sorafenib induces an autophagic-protective response in HCC
cells, resulting in drug resistance and affecting therapeutic
efficacy. In addition, an imbalance between anti-apoptotic and
pro-apoptotic proteins is associated with sorafenib resistance.
Nonetheless, the exact underlying mechanism of sorafenib
resistance needs to be further elucidated (112).

In the author’s opinion, physicians need to consider individual
differences in the treatment process and specify individual diagnosis
and treatment plans to improve treatment efficacy. In addition,
further studies on HCC immunity and molecular pathology are
needed to elucidate the underlying mechanisms involved in the
TME that may lead to the failure of immunotherapy.

Potential Biomarkers of Clinical Response
in Combination Therapy
The potential of ICIs in combination with TKIs/anti-VEGFs for
HCC has been widely recognized. Moreover, many clinical trials
have indicated that not all HCC patients receiving combination
treatment will achieve the desired efficacy. Biomarkers are good
indicators for predicting and evaluating treatment response.
Recently, a meta-analysis indicated that patients with high PD-
L1 expression (>1% score) had longer survival than patients with
<1% PD-L1 expression. Therefore, the PD-L1 status may be a
potential predictive biomarker in the context of anti-PD-1/PD-
L1 therapy (98). Moreover, one study showed that HCC patients
with Wnt/CTNNB1 mutations were insensitive to anti-PD-1/
PD-L1 therapy and had a worse prognosis than patients without
mutations (113). Furthermore, relevant literature shows that
CD28/B7 may be a biomarker for the clinical response to anti-
PD-1 in mouse models and lung cancer patients. However,
clinical data from HCC patients are insufficient (114). In
another preclinical study, it was suggested that HCC patients
with high AFP levels (≥400 ng/mL) are more likely to profit from
combination therapy of ICIs and lenvatinib (115). Accordingly,
there is a need to develop predictive biomarkers with high
specificity and sensitivity to accurately identify HCC patients
who most likely benefit from combination therapy. As
mentioned above, comprehensive and systematic studies on the
molecular level of HCC immunity are warranted.

TRAEs of Combination Therapy
TRAEs are one of the most concerning issues in clinical trials and
not only affect the quality of life of patients but also affect treatment
compliance. TRAEs are classified into five grades based on severity,
and TRAEs of grade 3 or more are considered serious TRAEs. The
most common TRAEs occur in the skin, gastrointestinal, liver,
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lung, and endocrine systems (116). Skin toxicity and gastrointestinal
toxicity (diarrhea and colitis) were the first and second most
common TRAEs, respectively. The incidence of skin and
gastrointestinal toxicity in patients who were treated with anti-
PD-1/PD-L1 is approximately 30.0% and 10.0-20.0%, respectively.
For anti-CTLA-4 treatment, skin and gastrointestinal toxicity was as
high as 40.0% and 30.0-40.0%, respectively. It has been suggested
that anti-PD1/PDL1 results in fewer TRAEs than anti-CTLA-4.
Moreover, a combination of anti-PD1 with anti-CTLA-4 showed an
increased hepatic TRAEs in the early phase of treatment, although
most improved after six weeks (117). Of note, fatal cardiotoxicity
has been reported in patients who were treated with pembrolizumab
or a combination of nivolumab and ipilimumab. Most TRAEs are
reversible and controllable, but severe cardiac and autoimmune
diseases should receive more attention for early recognition and
intervention in the future (118).

In the author’s opinion, the proportion of patients with
advanced HCC complicated with HBV in China is high, and the
associated TRAEs are more complex. Therefore, no matter which
treatment method is chosen, special attention should be paid to a
patients’ underlying liver disease and other underlying diseases.
CONCLUSION

More than 70% of HCC patients are diagnosed at an
intermediate or advanced stage (BCLC stage B, C or D) and
require systemic therapy. The clinical efficacy of traditional TKI
drugs (sorafenib, lenvatinib etc.) is still not satisfactory, although
once brought patients hope. Thus, novel strategies are currently
being developed, including ICIs, ICI combinations, and ICI
combinations with antiangiogenics. More recently, the
application of ICI-based combination therapy has become a
growing field of study that has gradually displaced TKI
monotherapy in advanced HCC. However, challenges remain,
including drug resistance, predictive biomarkers of treatment
effectiveness, and TRAEs in combination treatment. More safe
and effective combination therapy strategies for advanced HCC
should be developed, and further studies are needed.
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