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ABSTRACT Many Gram-negative bacteria infect hosts and cause diseases by translocat-
ing a variety of type III secreted effectors (T3SEs) into the host cell cytoplasm. However,
despite a dramatic increase in the number of available whole-genome sequences, it re-
mains challenging for accurate prediction of T3SEs. Traditional prediction models have
focused on atypical sequence features buried in the N-terminal peptides of T3SEs, but
unfortunately, these models have had high false-positive rates. In this research, we inte-
grated promoter information along with characteristic protein features for signal regions,
chaperone-binding domains, and effector domains for T3SE prediction. Machine learning
algorithms, including deep learning, were adopted to predict the atypical features
mainly buried in signal sequences of T3SEs, followed by development of a voting-based
ensemble model integrating the individual prediction results. We assembled this into a
unified T3SE prediction pipeline, T3SEpp, which integrated the results of individual mod-
ules, resulting in high accuracy (i.e., �0.94) and �1-fold reduction in the false-positive
rate compared to that of state-of-the-art software tools. The T3SEpp pipeline and se-
quence features observed here will facilitate the accurate identification of new T3SEs,
with numerous benefits for future studies on host-pathogen interactions.

IMPORTANCE Type III secreted effector (T3SE) prediction remains a big computa-
tional challenge. In practical applications, current software tools often suffer prob-
lems of high false-positive rates. One of the causal factors could be the relatively
unitary type of biological features used for the design and training of the models. In
this research, we made a comprehensive survey on the sequence-based features of
T3SEs, including signal sequences, chaperone-binding domains, effector domains,
and transcription factor binding promoter sites, and assembled a unified prediction
pipeline integrating multi-aspect biological features within homology-based and
multiple machine learning models. To our knowledge, we have compiled the most
comprehensive biological sequence feature analysis for T3SEs in this research. The
T3SEpp pipeline integrating the variety of features and assembling different models
showed high accuracy, which should facilitate more accurate identification of T3SEs
in new and existing bacterial whole-genome sequences.

KEYWORDS effector, machine learning, prediction, T3SEpp, T3SS, type III secretion
system

The type III secretion system (T3SS) is a complex needle-like nanomachine used by
many Gram-negative bacteria to interact with host cells (1, 2). A variety of bacterial

virulence proteins can be recognized and delivered into the host cell cytoplasm via
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T3SS conduits (3). These virulence proteins are called type III secreted effectors (T3SEs),
which are often enzymes that cause a sequence of host cell changes and disease (2, 4).
The number, function, and sequences of T3SEs vary significantly among different T3SSs
or bacterial species. Only a small subset of T3SEs has been disclosed for most bacterial
strains with a functional T3SS (5). Thus, it remains important to identify new effectors,
which together play essential roles in the establishment of infection for many patho-
gens.

It is a difficult challenge to identify new T3SEs, since they lack sequence conserva-
tion or typical common features (6, 7). The first T3SEs were identified experimentally
due to their location adjacent to T3SS apparatus genes (8, 9). Other features were also
used for T3SE identification, for example, common motifs in signal peptides (10, 11) and
proximity to genes encoding chaperones (12). In 2009, two bioinformatic tools were
published to predict T3SEs (13, 14). Since then, machine learning algorithms have been
introduced to the field (15–19), with new features or feature representation schemes
added to further improve their performance (20–23). Most recently, a deep convolu-
tional neural network (CNN) model was also proposed to predict T3SEs (24). Despite the
promise of machine learning strategies, their practical significance remains to be
evaluated. Only a few T3SEs have been identified with the assistance of these tools
(14, 25).

Most T3SEs have been identified based on homology searching of known effectors,
despite the “common view” that there is low conservation between T3SEs (8, 10, 11). An
N-terminal reassortment hypothesis was proposed to explain the evolution of T3SEs
and their signal sequences (26), and the complete conservation of signal sequences was
further used to screen new T3SEs (27). Conserved motifs present in effector domains of
T3SEs, e.g., EPIYA and LPX, have been discovered and used successfully for prediction
of new T3SEs (28, 29). Conservation was also found in the promoter regions for effector
genes, and several T3SEs were successfully predicted using this feature (30, 31). In a
previous study, we predicted more than 8,000 new T3SEs from diverse bacteria based
on full-length homology searching against a comprehensive list of validated effectors,
further indicating the power of homology searching in prediction of new T3SEs (5).

Homology-based or machine learning algorithms for detection of T3SEs each have
their own drawbacks. It would be meaningful to design an integrated prediction
pipeline to consider the multi-aspect biological features and algorithms comprehen-
sively and take the advantages but avoid the limitations of each model. Recently,
computational biologists have realized the importance of integrating both strategies.
For example, pEffect (32) and BEAN2 (21) can implement both homology searching and
machine learning algorithms to increase the prediction sensitivity. However, a simple
combination did not relieve the false-positive problem for the results of machine
learning methods. Most recently, Wang and colleagues proposed a two-layer ensemble
T3SE predictor, which considered multiple features, including the two arms stated
above and integrated them in a general hierarchical model (23). The method was
reported to reach significantly improved performance compared to that of other tools
(23).

In this research, we also proposed a new hybrid strategy but integrated more
comprehensive biological features for analysis and T3SE prediction. First, a full-length
protein-, domain-, and gene promoter-based pipeline was developed based on the
homology among known effectors and signal sequences. This pipeline was evaluated
to screen effector candidates of either global or local homology within known families.
Furthermore, we integrated machine learning modules into this prediction pipeline,
which was used to predict novel candidates without homology to known effectors. For
the machine-learning modules, previously developed BPBAac (16) and T3_MM (18)
were updated with the latest version of manually annotated effector data and phylo-
genetic information on T3SSs and bacterial species (5). Recently, deep learning tech-
niques have been successfully introduced to models predicting the subcellular local-
ization of proteins (33, 34). In fact, two CNN-based T3SE prediction models were
proposed recently (24). Here, we have developed an integrated prediction pipeline
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employing two different deep learning models based on the signal sequences of T3SEs
and taking into account various biological properties of candidate proteins, for exam-
ple, the presence or absence of a transmembrane domain or classical signal peptide.
Each module was weighted, and a general score was generated from a linear model, to
reflect the likelihood of a protein being a T3SS effector.

RESULTS
Sequence homology among verified effectors and the integrated prediction

framework. The T3Enc data set contains 519 manually annotated effectors, represent-
ing the newest and most comprehensive list of experimentally validated T3SEs (see
Materials and Methods) (5). Pairwise sequence alignment was performed for the
full-length (FL) effector proteins or their N-terminal peptides of 100 or 50 amino acids
(N100 or N50, respectively). For FL proteins, with a relatively strict homology measure
(i.e., larger than 30% identity [ID] for longer than 70% aligned fragments), 431 nonho-
mologous clusters were identified after homology filtering (Fig. 1A) (FL_70%_30%_ID).
When N100 sequences were analyzed, however, 297 homologs were identified with
larger than 30% identity, and 323 nonredundant clusters were retained (Fig. 1A)
(N100_30%_ID). This reduced number of clusters showed that there was more homol-
ogy in the N-terminal 100 amino acids than in the full-length effector proteins (EBT

FIG 1 Sequence homology among T3Enc effectors and the integrated prediction framework. (A) Sequence homology network of T3Enc-verified effectors. The
nodes represented effectors with homology with at least one other effector. The pairs with homology (identified by the criteria defined at the top) were
connected by green lines. (B) Homology-based modules developed for T3SEpp, based on the full-length effector proteins (flBlast) or signal sequence (sigHMM),
chaperone binding (cbdHMM), and effector (effectHMM) domains or based on the promoter region of the effector genes (transHMM). (C) The machine learning
models that were preexisting but have been improved with updated training effectors (black font with gray background), newly developed with similar feature
representation schemes (red font with gray background), or developed with new algorithms (red font with white background) are shown. T3SEdl has two deep
learning models, i.e., T3SEdnn and T3SErnn. (D) Procedural flowchart for T3SEpp prediction. The weighted sum of the prediction score for each individual
module is incorporated into the probability that a protein is a T3SE.
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P � 1.8e�7). The N50 sequences further reflected the more typical N-terminal homol-
ogy among effectors: 430 peptides were found with homology among each other,
while only 231 clusters remained after homology filtering (Fig. 1A) (N50_30%_ID,
323/519 versus 231/519, EBT P � 6.0e�5). For machine learning applications in se-
quence analysis and effector recognition, strict homology filtering is a prerequisite. The
sequence homology is often measured with similarity (SIM) instead of identity, and the
cutoff is set as 30% or lower. Therefore, a loosened homology measure was also
adopted to examine the sequence similarity among the verified effectors, with homol-
ogy defined as �30% similarity. Surprisingly, all 519 N100 peptides showed homology
with at least one other peptide. After filtering, only 20 clusters remained that did not
show homology with each other (Fig. 1A) (N100_30%_SIM). Taken together, the results
demonstrated that the verified T3SEs showed unexpected striking homology between
each other, with higher homology near the N termini.

An integrated prediction pipeline (T3SEpp) was designed, taking full advantage of
the fragmental similarity among T3SEs, together with machine learning techniques
(Fig. 1B and C). We developed several modules to identify homologues of full length
(flBlast), N-terminal signal regions (sigHMM), chaperone-binding domains (cbdHMM),
effector domains (effectHMM), and putative T3 transcription factor binding promoter
sites (transHMM) of known T3SEs. Previous machine learning models such as BPBAac,
SeqAac, and T3_MM were improved by integrating information from T3SS clusters,
newly validated effectors, and new algorithms (16, 18). A new prediction module,
T3SEdl, was developed to use deep learning algorithms and new features. An example
was given to illustrate the T3SEpp prediction framework (Fig. 1D). The modules
described above (flBlast, sigHMM, cbdHMM, effectHMM, and transHMM) were applied
and fragmental scores were calculated, followed by analysis of machine learning
modules and other established protein subcellular localization tools, e.g., PSORTb,
TMHMM, and SignalP (34–36). The final probability was calculated by integrating the
prediction results of all steps, which represented the likelihood of an input protein to
be an effector.

Signal sequence families and homology screening of T3SEs. Thousands of T3SE
candidates were detected based on the homology with the full-length protein se-
quences of known effectors with flBlast (see Materials and Methods) (5). However, the
proteins that have general homology with known effectors could have lost the
N-terminal signal sequence that is necessary to be recognized by T3SSs. On the other
hand, new effector proteins could have type III secretion (T3S) signal sequences but lack
general sequence similarity with known effectors (27). Therefore, we reasoned that
homology searching based on signal sequences would facilitate the identification of
T3SEs.

An alignment-based clustering strategy grouped the N-terminal 50 amino acids of
the 519 verified effectors into 379 signal sequence families, with 84 multicomponent
and 295 singleton families (see Data Set S1, sheet 1, in the supplemental material). The
sequences within each multicomponent family showed striking similarity, and multiple
positions appeared conserved, as shown for one example, SigFAM_3 (Fig. 2A). The
amino acid composition (AAC) showed apparent preference in multiple positions, e.g.,
serines in positions 3, 6, 22, and 23, glutamine in position 43, and asparagine in position
49 of SigFAM_3 (Fig. 2B). Despite the homology among the N50 signal sequences
within each signal family, the effectors were classified into different groups based on
full-length protein homology clustering (Fig. 2C). Effectors from other signal families
displayed the same trends (data not shown).

A profile hidden Markov model (HMM) was built for each signal sequence family.
The similarity cutoff was determined by aligning the signal sequence-containing effec-
tors (full length or N50) against the corresponding HMM profile (Fig. 2D, left; for the
example SigFAM_3). Effector prediction can be conducted with the similarity cutoffs
determined. For example, the SigFAM_3 HMM was able to detect 8 new proteins with
high homology and 10 with intermediate homology in 11 species with putative T3SSs

Hui et al.

July/August 2020 Volume 5 Issue 4 e00288-20 msystems.asm.org 4

https://msystems.asm.org


(Fig. 2D, right). It should be noted that signal sequence homology was only detected
in the N-terminal region and not elsewhere in the protein.

Screening with the HMMs for all signal families detected 10,939 T3S signal homologs
from the proteome of strains with putative T3SSs (Data Set S1, sheet 2): 4,236 were
detected with flBlast for full-length homologs and 6,703 (61.2%) were only found with
T3S signal sequences. Meanwhile, 4,504 (51.5%) full-length effector homologs were not
detected with putative T3S signal sequences (Fig. 2E).

Sequence signatures of chaperone-binding domains. Successful translocation of
T3SEs is often dependent on the binding of chaperone proteins. The mechanisms by
which effectors and chaperones interact have not been fully clarified yet. However,
structural signatures have been identified in the chaperone-binding domains (CBDs) of
effectors, such as a conserved �-motif (37). Sequence alignment of the known �-motifs
disclosed striking amino acid composition preference in some positions of the motif,
e.g., L and F in position 1 and I, L, or V in position 2 (Fig. 3A).

FIG 2 Effector screening based on the fragmental homology with signal sequences of verified T3SS effectors. (A) Multiple-sequence alignment of a homologous
cluster (i.e., SigFAM_3) of T3SS effector signal sequences. The N-terminal 50 amino acids, after the starting M was removed, were retrieved from each effector
and aligned. Gaps are represented with “-.” The positions with �40% of sequences showing identical amino acid composition were highlighted with uniformly
colored backgrounds, while the positions without a highlighted background are shown in uniformly colored font, for which more than 40% of sequences
showed amino acid compositions with conserved physicochemical properties. (B) Sequence logo of the position-specific amino acid composition (AAC)
corresponding to the alignment shown in panel A. The height of the amino acid in each position indicated the AAC preference. (C) Family clustering of the
corresponding full-length (FL) effectors of SigFAM_3 members. (D) Similarities of SigFAM_3 members (N50) and their FL effectors (FL) aligned against the HMM
profile built with SigFAM_3 member sequences (left), and the new proteins predicted with sequence similarity with the HMM profile of SigFAM_3 (right). The
lowest similarity score of the known FL SigFAM_3 member is indicated, which represented the strict cutoff. Predicted proteins with higher similarity scores than
the strict cutoff are shown in red, and those with lower similarity are shown in green, with GI accession numbers shown. *, protein was from a different strain
of the corresponding species. (E) Venn diagram showing proteins predicted with N-terminal sequence HMM profiles only (6,703), full-length homology only
(4,504), or with both sequence features (4,236).
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An HMM profile was modeled for the �-motif of T3SE CBDs, followed by screening
for homologs of the verified effectors. In total, �46% (240/519) of the effectors
contained the motif located between possible translocation signal sequences and
effector domains (Fig. 3B; Data Set S1, sheet 3). The motifs screened by the HMM profile
showed conserved amino acid composition in key positions and a similar � helix
secondary structure as predicted with PROMALS3D (see Fig. S1). Previous tertiary
structure analysis also demonstrated the similar three-dimensional (3D) conformation
of the motifs (37). Similar percentages of the full-length effector homologs (47%�

[4,113/8,740]) contained the �-motif within possible CBDs, especially those also with
putative T3SS-recognized signal sequences (54% [2,297/4,236]) (Fig. 3C; Data Set S1,
sheet 3). �-Motifs were also detected in 3,413 proteins that were not general homologs
of known effectors but contained putative T3S signals (Fig. 3D; Data Set S1, sheet 3).

Function domain families present in verified T3SS effectors. After removal of the
signal sequences (N50) for all effector proteins in the T3Enc set, 508 verified effectors
remained with length �30 amino acids, among which 356 were classified into 107
multimember families and 152 were singletons (Fig. 4A; Data Set S1, sheet 4). The most
widely distributed families included YopJ and YopM (EffectFAM_1 and_2; 15 members),
YopH (EffectFAM_3; 14 members), and YopB (EffectFAM_4; 12 members) (Fig. 4A; Data
Set S1, sheet 4). Different effector families also showed varied T3S signals, consistent
with Fig. 2C. For example, 13 of 15 YopJ effector family members classified into 13
different signal families (Data Set S1, sheet 5). Only a small proportion of the validated
effectors showed conservation for both signals and effector domains; the NleB family
in Escherichia coli, Citrobacter, and Salmonella (i.e., Effect_FAM8) had 5 of 7 effectors also
in the SigFAM_7 T3S signal pattern group (Data Set S1, sheet 5). An HMM profile was

FIG 3 �-Motifs of chaperone-binding domains and CBD-based effector screening. (A) WebLogo-based signature
of the position-specific amino acid compositions of � motifs. The key positions with conserved physicochemical
properties are indicated with arrows. (B) Distribution of �-motifs in 519 verified effectors. The distributions of
�-motifs in full-length effector homologs with or without putative T3SS-recognized signal sequences (C) and in
nonhomologs of full-length known effectors with or without putative T3SS-recognized signal sequences (D).
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built for each multimember family and used to screen different protein data sets. Half
of the full-length effector homologs (4,474/8,740 [51%]) contained effector domains
that belonged to the multimember families (Fig. 4B; Data Set S1, sheet 6). Surprisingly,
the domains were also detected in 1,784 proteins that were not identified by flBlast as
having homology to full-length effectors (Fig. 4B; Data Set S1, sheet 6). From the 8,740
full-length effector homologs, 2,771 (32%) contained both T3S signal sequences and
effector domains (Fig. 4C; Data Set S1, sheet 6). One thousand five hundred eighty-
seven (18%) of the full-length homologs contained all three features: signal sequences,
the chaperone binding �-motif, and effector domains (Fig. 4C; Data Set S1, sheet 6).
From the 1,858,761 proteins in bacterial strains with T3SSs that were not homologues
of known effectors, only 40 proteins contained both T3S signal sequences and putative
T3SS effector domains, and 35 of these also contained �-motifs (Fig. 4D; Data Set S1,
sheet 6).

Consensus motifs within regulon promoters of pivotal T3SS transcription
regulators. We previously identified 10 pivotal regulators of T3SSs from different
bacterial species (5). The binding motifs for these well-studied regulators were anno-
tated from the literature and used to train HMMs (Fig. 5A; see also Table S1). This

FIG 4 Effector domain families of know effectors. (A) Schematic of effector domain families showing the number of members in each family; the individual
members of each family are listed in Data Set S1, sheet 4, in the supplemental material. (B) Distributions of proteins with putative effector domains in full-length
homologs (black) and nonhomologs (red). The family accessions are listed in increasing order along the horizontal axis, and only the odd numbers are shown
due to the space limitation. Interplay of proteins with T3SS signal sequences, effector domains, and �-motifs in full-length effector homologs (C) and in
nonhomologs of full-length known effectors (D).
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module (transHMMs) was used to screen for corresponding regulons in species that
have a T3SS(s).

Only 22% (115/519) of the validated effectors had one or more of the T3SS binding
motifs within their gene promoter regions (Fig. 5B; Data Set S1, sheet 7). A smaller
percentage of the full-length effector homologs showed these DNA motifs (1175/8740
[13%]) (Fig. 5C; Data Set S1, sheet 7). However, nearly all of these full-length homologs
with DNA regulation motifs (1057/1175 [90%]) were simultaneously detected with at
least one of the other protein-specific features (Fig. 5D; Data Set S1, sheet 7). Two
hundred seventy-seven contained all four conserved sequence features: DNA regula-
tion, signal domains, CBD motifs, and effector domains (Fig. 5D; Data Set S1, sheet 7).

The transHMMs module was also applied to the 1,858,761 effector nonhomologs,
screening for regulation motifs in the upstream regions (with 2-kb length) of protein-
encoding genes of T3SS-bearing strains. However, very few of the proteins (448) were
meanwhile detected with signal domains and/or effecting domains (Fig. 5E; Data Set S1,
sheet 7). Only 3 proteins were detected with the DNA motifs, signal domains, CBD
motifs, and effecting domains simultaneously (Fig. 5E; Data Set S1, sheet 7).

New machine learning-based T3SS effector prediction models. Within T3SE
protein sequences, there can be atypical features buried in the signal sequence as well
as adjacent regions that are not easily detected by homology screening. Therefore, we
retrained two previously developed models with updated effector data sets, analyzing
the position-specific amino acid composition (BPBAac [16]) and adjacent-residue con-
straints (T3_MM [18]) in T3S signal sequences to identify proteins with these atypical
features (Table 1). We also trained BPBent, a modified version of BPBAac that calculates
individual relative entropy of position-specific amino acid composition between effec-
tors and noneffectors. Thirty sequential AAC features were identified within signal
sequence regions with striking difference between verified effectors and noneffectors,
and they were used for development of SeqAac, a decision tree model (see Table S2).
Finally, two deep learning models, together named T3SEdl, one with fully connected
neural networks (DNN) and the other with convolutional neural networks combined
with long short-term memory cells (CNN-LSTM), were trained to compare the hierar-

FIG 5 Binding motifs of T3SS regulators and their application in effector identification. (A) Binding motifs of pivotal transcription regulators of T3SS genes. The
most conserved sites are indicated, with names according to previous studies (Table S1). Screening the regulatory motifs in the promoters of genes encoding
validated effectors (B) and full-length effector homologs (C). The numbers of proteins screened with individual regulatory motifs are shown in the bars, and
the total proteins detected with one or more regulatory motifs are shown in the circles. Interplay of proteins with DNA regulatory motifs, T3SS signal sequences,
effector domains, and chaperone-binding �-motifs in full-length effector homologs (D) and in nonhomologs of full-length known effectors (E).
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chical amino acid composition features within T3S signal sequences. Among the
models, T3_MM performed best. For the 10-fold cross-validated receiver operating
characteristic (ROC) curves, the average area under the curve (AUC) reached 0.91
(Table 1). Another T3SE prediction model, ANN, was also retrained with the data set
curated in this research, and the performance was not comparable to that of T3_MM or
T3SErnn (see Fig. S2). The models considered different profiles from various aspects of
T3SE signal sequences, and an ensemble model would be desired that take the pieces
of atypical features together to make more precise prediction. T3SEppML, for which a
voting-based method was adopted to integrate the individual models by counting the
models with positive predictions, generated better performance with an average AUC,
Matthews correlation coefficient (MCC), and accuracy (ACC) of 0.96, 0.74, and 0.90,
respectively (Table 1).

To further test whether T3SEs can be recognized more accurately with more specific
prior information, we retrained T3_MM with an integration of animal or plant patho-
gen/symbiont, T3SS group, and bacterial genus information according to Hu et al. (5).
As shown in Fig. 6A, the plant microbe-specific model outperformed the animal model
(AUC, 0.96 versus 0.81) (Fig. 6A, top left). We also retrained a T3SS category-specific
model for each T3SS group with more than 10 nonredundant validated effectors (I to
VII and X; for T3SS categories and their representative T3SSs, refer to http://www.szu
-bioinf.org/T3Enc/browse_t3ss_type.html) (5). Models IV and VI, which are two large
groups exclusively composed of T3SSs from plant-related microbes, performed the
best, reaching 0.96 for AUCs (Fig. 6A, top right). There was also a small group (V) that
was composed of the T3SSs of plant symbionts (Rhizobium and others), for which the
model performance was relatively poor (AUC, 0.60). For groups composed of T3SSs
from animal microbes, however, model performance varied a lot. One small group (X)
composed of the chromosome II T3SSs of Vibrio showed the best model performance
(AUC, 0.95), three large groups showed moderate performance (AUCs of 0.86 for II, 0.82
for III, and 0.75 for VII), whereas a model based on the other large group performed
poorly (AUC, 0.62 for I) (Fig. 6A, top right). We also developed genus-specific models for
each genus with more than 10 nonredundant validated effectors (including Shigella,
Escherichia, Salmonella, Chlamydia, Yersinia, Vibrio, Pseudomonas, Xanthomonas, Ralsto-
nia, and Burkholderia). Performance of the models for animal genera showed large
variance (Fig. 6A, bottom left) compared to that of the models of plant genera, which
were much more uniform (Fig. 6A, bottom right). The Shigella- and Escherichia-specific
models performed best among the animal genus-specific models (Fig. 6A, bottom left,
Shi and Esc), and the effectors from these two genera are known to be secreted
through a single group of T3SSs. By comparison, in the two animal models with the
poorest performance (Fig. 6A, bottom left, Vib and Yer), the effectors are known to be
secreted through two different groups of T3SSs (38, 39). The Burkholderia-specific
model was the exception among the plant genus-specific models, with deteriorated
performance (Fig. 6A, bottom right, Bur), but it was trained with only a few validated
effector sequences.

TABLE 1 Newly, retrained, and integrated models predicting T3SEs

Model Feature Algorithma

Tenfold cross-validation value (mean � SD)b

AUC MCC ACC

BPBAac Position-specific AAC SVM 0.824 � 0.068 0.524 � 0.114 0.760 � 0.056
BPBent Relative entropy of position-specific AAC SVM 0.818 � 0.069 0.492 � 0.147 0.744 � 0.073
T3_MM Conditional probability on adjacent residue MM 0.907 � 0.039 0.708 � 0.102 0.850 � 0.053
SeqAac Sequential AAC DT 0.758 � 0.032c 0.523 � 0.068 0.758 � 0.032
T3SEdnn Hierarchical AAC DNN 0.859 � 0.001 0.539 � 0.005 0.870 � 0.001
T3SErnn Hierarchical AAC CNN-LSTM 0.891 � 0.001 0.617 � 0.006 0.866 � 0.001
T3SEppML All of the above Voting 0.960 � 0.010 0.740 � 0.065 0.904 � 0.013
T3SEpp Unified LM 0.976 � 0.005 0.876 � 0.012 0.941 � 0.011
aSVM, support vector machine; MM, Markov model; DT, decision tree; LM, linear model.
bAUC, area under the (receiver operating characteristic) curve; MCC, Matthews correlation coefficient; ACC, accuracy.
cThe AUC of SeqAac was approximated by the accuracy because the prediction results were not continuous.
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Despite the advantages of T3SE prediction with bacteria/T3SS-specific models for
many groups, the paucity of validated effectors reduces their effectiveness. Therefore,
we used the general (nonspecific) models to predict proteins with atypical T3S signal
features from the T3SS-bearing bacterial proteomes. The integrated model T3SEppML
was used to make predictions with an optimized cutoff value of 0.5, by which three of
the six models copredicted a protein to contain T3S signals (Fig. 6B). Eighty percent
(7,017/8,740) of the full-length effector homologs were predicted by at least one
machine learning model to contain a T3S signal sequence, and 56% (4,938/8,740) were
predicted by T3SEppML to be T3SE candidates above the target cutoff (Fig. 6C, top left).
Only 10% of the effector nonhomologs were detected with T3S signals, however, the
absolute number reached 192,215, since the total number of nonhomologs was huge
(Fig. 6C, bottom left). Both sigHMM and T3SEppML were used to analyze the atypical
features buried in T3S signal regions; these two models identified 2,969 (�two-thirds)
of the same proteins that were identified as effector homologs by flBlast (Fig. 6C, top
right), and yet they showed large complementarity between each other. For the
effector nonhomologs, the overlap between sigHMM and T3SEppML prediction hits
was much smaller, representing only 0.06% of the total proteins screened (Fig. 6C,
bottom).

Unified pipeline to predict T3SS effectors weighting homology, machine learn-
ing results, and other biological features. We developed an integrated pipeline
(T3SEpp) to consider the multi-aspect and multifragmental signatures of T3SEs simul-
taneously, with the goal to improve the prediction accuracy and reduce the false-
positive rate. T3SEpp is a linear model that weighs the contribution of each T3SE
prediction module described above (i.e., both homology-based and machine learning

FIG 6 Performance of cluster-specific models and the voting-based ensemble model on prediction of T3S signal sequences. (A) Tenfold cross-validated receiver
operating characteristic (ROC) curves of models categorized by bacterial host (top left), T3SS cluster (top right), animal-microbial genus (bottom left), and
plant-microbial genus information (bottom right). (B) Tenfold average ROC curve of the integrated model T3SEppML and the optimization of cutoff values. (C)
Prediction of T3S signal sequences from full-length effector homologs (top) and nonhomologs (bottom). The pie charts represent the proportion of proteins
identified by machine learning models. The category number (0 to 6) indicates the number of models predicting the proteins. The Venn diagrams show the
overlap in proteins detected with sigHMM and T3SEppML signal sequence models.
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models). The model architecture and optimized weights are described in Materials and
Methods (and at http://www.szu-bioinf.org/T3SEpp/modules.html). The prediction per-
formance was improved, with 10-fold cross-validated AUC reaching 0.976 (Table 1).
Leave-one-genus-out (LOGO) assessment demonstrated the superior performance of
T3SEpp in cross-species prediction, with a recall rate of greater than 80% for the known
T3SEs in various genera (Fig. 7A). Similar to previous results (Fig. 6A), the recall rates of
animal pathogens (Fig. 7A, red genera) varied more than those of plant pathogens
(Fig. 7A, blue genera).

We also compared the performance of T3SEpp with that of other state-of-the-art
software tools, including EffectiveT3 (13), BEAN2 (21), pEffect (32), and Bastion3 (23).
DeepT3 (24) was not included because of a failure in running it on a local system. From
the literature, we compiled an independent testing data set, containing 42 new T3SEs
and 34 non-T3SEs that were experimentally validated to be translocated or nontrans-
located through T3SS conduits. Bastion3 showed the highest sensitivity (95% [40/42])
but was only slightly higher than T3SEpp (93% [39/42]) (Fig. 7B). However, T3SEpp
showed increased specificity (71% [24/34]), precision (80% [39/49]), and accuracy (83%
[63/76]) compared to those of Bastion3 and the other tools (Fig. 7B). Another indepen-
dent data set from Xue et al. (24) was tested, which also yielded higher specificity,
accuracy, MCC, and F-value for T3SEpp than for Bastion3 and pEffect (see Fig. S3). To
further demonstrate the main advantage of T3SEpp (i.e., high specificity and sensitivity),
we screened the 8,740 full-length T3SE homologs and 1,858,761 T3SE nonhomologs.
Although Bastion3 recalled slightly more homologous T3SEs than T3SEpp (6,016 [69%]
versus 5,871 [67%]), it predicted almost double the T3SEs from the nonhomologous
protein set (186,371 versus 100,273) (Fig. 7C).

To illustrate the differences between T3SEpp and other prediction tools, we tested
the performance on two proteins, thermostable direct hemolysin (TDH) from Vibrio
parahaemolyticus and HopAJ1 from Pseudomonas syringae (Fig. 7D). TDH is secreted
through a type II secretion system (T2SS) and a T3SS in Vibrio parahaemolyticus (40). The
full-length TDH protein contains an N-terminal signal peptide that guides the Sec

FIG 7 Prediction performance of T3SEpp. (A) Cross-genus prediction effect of T3SEpp with a leave-one-genus-out (LOGO) strategy. (B) Classification
performance of T3SEpp and other machine learning models for independent testing data set. The ROC curves are shown on the right. SN, sensitivity; SP,
specificity; ACC, accuracy; PRE, precision. (C) T3SE candidates predicted by different tools from full-length homologs of verified T3SEs (left) and nonhomologs
(right). (D) Examples correctly predicted by T3SEpp rather than other tools. The protein structures of full-length and cleaved mature TDH (val, validated) and
HopAJ1 (pred, predicted) are shown. The table at the bottom shows the prediction of TDH and HopAJ1 by different tools.
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pathway secretion (i.e., T2SS), while the form of TDH with the Sec signal peptide
cleaved (i.e., cmTDH) exposes an N-terminal T3S signal sequence and is then translo-
cated through the T3SS conduit. Therefore, full-length TDH is not a true T3SE, while
cmTDH is a T3SE (both being validated by translocation assays) (40). With T3SEpp,
full-length TDH was correctly identified as non-T3SE and cmTDH was identified as a
T3SE, whereas none of the other tools were able to make this distinction (Fig. 7D).

HopAJ1 is a T3SS coregulated gene in P. syringae pv. tomato DC3000 with a
predicted lytic transglycosylase domain (41). Although T3SS translocation assays were
negative for this protein (41), all of the software prediction tools identified HopAJ1 as
a T3SE, except T3SEpp (Fig. 7D). We also identified a putative �25-amino-acid signal
peptide at the N terminus of HopAJ1 (Fig. 7D). Interestingly, when the truncated version
of HopAJ1 (i.e., cmHopAJ1) was screened, T3SEpp software identified it as a T3SE
(Fig. 7D). The cmHopAJ1 protein possesses a T3 signal sequence successfully predicted
by 5 of the 6 machine learning models compared to only 1 of 6 models of positive
prediction for the full-length HopAJ1 (http://www.szu-bioinf.org/T3SEpp/20200329
.php). Based on these findings, we hypothesize that HopAJ1 could be secreted by P.
syringae in a way similar to that of TDH in V. parahaemolyticus.

DISCUSSION

We have developed a unified T3SE prediction pipeline, T3SEpp, consisting of
multiple modules to incorporate a wide variety of T3S sequence-based features. The
result is a highly sensitive and specific prediction software that is improved compared
to other state-of-the-art software. We are introducing a webserver to implement the
T3SEpp pipeline efficiently and that also provides the analysis results of the individual
modules. The standalone version of T3SEpp and individual modules can also be
downloaded and used on a local system independently (http://www.szu-bioinf.org/
T3SEpp/download.html).

When the individual prediction modules that comprise T3SEpp are used in isolation,
they can successfully identify T3SEs, but they also predict many false positives. For
example, we know that T3SE signal sequences are important, and these are usually
mined as common features for T3SE prediction. Since the introduction of machine
learning techniques for prediction of bacterial type III secreted effectors (13, 14), more
than a dozen software tools have been developed, and these most frequently rely on
the N-terminal signal region. However, the signal regions are only necessary but not
sufficient for T3SS translocation. In this study, we unexpectedly found high sequence
similarity among known effectors, especially in the N-terminal signal regions. It is our
hypothesis that this undetected homology in the training data sets could cause bias
and lead to severe overfitting in the established machine learning algorithms. In our
experience, there was often a large discrepancy between the reported accuracy and the
practical accuracy of these methods. On the other hand, there is potential for the
N-terminal homology we detected among T3SS effectors to be useful in the identifi-
cation of new effectors (5, 27).

Clustering the N-terminal signal sequences from 519 verified effectors based on
homology generated 379 signal sequence families. In general, there was not great
consistency between signal sequence families and full-length effector families. This was
not surprising because terminal reassortment happens frequently among T3SS effec-
tors (26, 27). The low occurrence of verified effectors for both conserved domains and
signal families further indicated the possibility of frequent reassortment events (see
Data Set S1, sheet 5, in the supplemental material). The variety of effector proteins
could be further broadened by the combinations with distinct T3S signal patterns and
effector domains, among which 424 unique clusters were detected (Data Set S1, sheet
5). The conservation of �-motifs in chaperone-binding domains also facilitated the
identification of new effectors with increased specificity. However, only 46% of the
verified effectors appeared to have this �-motif (Fig. 3B), suggesting that the remaining
effectors could have a different motif, a degenerate one, or even no such motifs. On the
other hand, many other proteins that we screened contained the �-motif but did not
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show homology to full-length known effectors or T3SS signal sequence regions. This
indicated that screening for a �-motif in isolation could lead to a large number of false
positives. We concluded that �-motif screening must be combined with that for other
sequence features to increase model precision but has little contribution to the overall
predictive power.

A large number of proteins (1,784) were predicted based on homology to known
T3SS effector domains (Fig. 4B and D) but remained undetected by full-length homol-
ogy screening. This demonstrated the advantage of incorporating effector domain
homology searching in T3SE prediction. Very few of these proteins contained both
putative T3SS signals and effector domains (Fig. 4C and D), which supports the
independent evolution hypothesis of T3SS signal families and functional domain
families (26, 27) and highlights the value of fragmental homolog detection algorithms.
We hypothesize that some proteins with putative effector signal sequences but without
known effector domains could represent new effector domain families, especially for
proteins that also contained CBD motifs.

The timed release of T3SS effectors is a product of fine and coordinated regulation
of gene expression. We previously identified that T3SS gene regulation displays high-
level diversity and low-level conservation (5). A typical T3SS often has a pivotal
regulator that directly regulates the expression of the effector genes. Many of the
pivotal regulators from different T3SSs belong to the same transcription factor families,
which share similar promoter binding motifs (5, 42). Identification of DNA regulatory
motifs can assist in finding new effector genes (30, 31), but when this module (i.e.,
transHMM) was used alone, it showed only limited sensitivity. This low sensitivity can
likely be attributed to the lack of knowledge about other T3SS regulators as well as the
evolution or degeneracy of promoter binding motifs. However, positive detection of
these motifs would improve the precision of effector recognition.

Despite a large number of false-positive predictions, machine learning algorithms
still have advantages for the identification of atypical features and prediction of novel
effector candidates. In this study, we newly trained or retrained six machine learning
models, each focusing on different feature profiles of T3S signal sequences. T3_MM,
which is a Markov chain model based on amino acid composition probability condi-
tional on the amino acid composition at the preceding position within the N-terminal
region (13), performed the best in our hands; however, other models should also have
their own merits for identifying specific atypical T3S signal features. Therefore, we
developed an ensemble model, T3SEppML, to make an integrated consideration of the
results from the six different models. T3SEppML outperformed each of the individual
models (Table 1). When we compared T3SEppML and sigHMM, we concluded that
although T3SEppML was capable of identifying novel T3S signal sequences, the num-
bers of false positives remained a big problem for whole-genome predictions. In our
estimation, instead of making the programs more stringent, it was better to combine
them with modules that identify features in regions outside the T3S signal sequences.

We also tested the potential influence of prior clustering information on model
prediction performance, e.g., bacterial host, T3SS cluster, and bacterial evolution. We
found that performance varied a lot with T3SS categories derived from animal-
associated microbes, whereas the plant-associated microbes were more consistent,
with only a few exceptions. This could be due to several animal-associated microbes
containing multiple T3SSs (5). Although it is possible for genus-specific models to be
improved in the future, it is not possible to retrain the models due to a limitation in the
numbers of validated effectors.

Although it remains a challenge to predict T3SEs accurately, especially when using
whole genomes, we hypothesize that combining multi-aspect features is the best way
to reduce the rate of false positives. Accordingly, our T3SEpp software had the lowest
false-positive prediction rate compared to those of other state-of-the-art software tools
(i.e., Bastion3, EffectiveT3, BEAN2, and pEffect) when tested against an independent
data set containing experimentally validated T3SEs and non-T3SEs. For the full-length
effector homologs, T3SEpp showed similar positive prediction rates with those of other
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tools; however, T3SEpp predicted nearly 1-fold fewer T3SEs from the nonhomologs.
T3SEpp can also disclose many important biological features for the T3SEs or candidate
proteins, including the T3S signal family, effector domain family, presence of a chap-
erone binding motif, and putative regulation by key T3SS transcription factors. For
example, T3SEpp was the only tested tool that correctly classified full-length TDH as a
non-T3SE and mature TDH as a T3SE (Fig. 7D). The software also correctly predicted
full-length HopAJ1 to be a non-T3SE and indicated that loss of a putative Sec signal
peptide might allow the truncated HopAJ1 protein to become a functional T3SE
(Fig. 7D). To this end, it would be interesting to examine if HopAJ1 can be secreted by
P. syringae in a mechanism similar to that for TDH in V. parahaemolyticus.

Despite the advances with the T3SEpp model described here, there are still many
features that can be improved. Better precision involves the understanding of the
length, position, and key residue composition of T3S signal sequences and/or
chaperone-binding domains. Similarly, it is a problem to select the proper negative
training data sets with respect to protein size and composition. New features such as
the phylogenetic conservation of proteins or the genomic adjacency of effectors and
chaperones could be further examined and integrated to improve the prediction
precision. Other aspects related to the specificity of T3SEs (e.g., bacterial host, T3SS
cluster, and bacterial genus or species) are dependent on the validation of more T3SEs.
As this information becomes available, the prediction accuracy could be further im-
proved.

Conclusions. To our knowledge, we have compiled the most comprehensive bio-
logical sequence feature analysis for T3SEs in this research. The T3SEpp pipeline
integrating the variety of features and assembling different models showed high
accuracy, which should facilitate more accurate identification of T3SEs in new and
existing bacterial whole-genome sequences.

MATERIALS AND METHODS
Data sets. Five hundred nineteen prefiltered, manually annotated T3SS effectors were downloaded

from T3Enc (http://www.szu-bioinf.org/T3Enc). Prefiltering was performed according to Hu et al. (5), by
which effector families were identified for each bacterial genus, with only one validated effector retained
in a genus for each effector family. JAligner (http://jaligner.sourceforge.net/) was applied to implement
the Smith-Waterman algorithm to find the similarity between any pair of full-length or designated
lengths of effector proteins. By default and not specified, the homology between two proteins was
defined as �30% similarity for �70% average coverage of the full length. The identity or similarity
percentage between any pair of sequences was recorded and compared with the cutoff defined in
context to determine the homology level. To retain the most clusters after homology filtering, a recursive
hub-filtering algorithm was developed, by which the effector with the largest number of homolog edges
was removed from the homolog network recursively until no edge remained. For the full-length verified
effectors or fragments, the overall interprotein homology was measured by the number of homologous
clusters, which was reversely related with the overall homology. For example, with the same homology-
clustering criteria, clustering into 519 homologous groups would suggest an apparently lower homology
among proteins than those clustered into only one homologous group. EBT, a statistical method similar
with but showing higher precision than chi-square or Fisher’s exact test, was applied to compare the
interprotein general homology (43). For the bacterial strains of verified effectors, the genome-derived
proteome was filtered for known effectors. In total, 2,000 proteins with more than 100 amino acids (aa)
in length were selected randomly from the remaining proteins of the strains to form the parental
negative data set. BLAST was used to align the verified effector sequences against the parental negative
protein sequences, and the possible effector homologs were removed if the similarity was higher than
30% for larger than 70% average aligned protein length (https://blast.ncbi.nlm.nih.gov/). The remaining
full-length or designated-length proteins were compared with JAligner and those with intra- or inter-
data set homology were removed. The proteins or peptide fragments surviving the homology filtering
steps constituted the final negative data sets.

The 8,740 full-length homologous effectors were downloaded from T3Enc (5). The genomes and their
encoding proteome sequences of bacterial strains with one or more T3SSs annotated in T3Enc were
downloaded from NCBI Genome database, while the effector homologs were removed, and the remain-
ing proteins comprised the effector nonhomolog data set.

Homology-based T3SS effector prediction models. Full-length homology searching and family
clustering was according to Hu et al. (5), and a gene ontology (GO) program, flBlast, was developed to
implement the procedure automatically. Briefly, the 519 validated full-length T3SEs were clustered into
families based on similarity measured by BLASTp alignment results (https://blast.ncbi.nlm.nih.gov). Two
proteins showing �30% similarity for �70% of the full length of either protein were considered to have
homology (5). A network approach was used to cluster the homologous proteins into families, i.e., a
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protein was clustered into a family only if it showed homology with at least one member of the family,
with no homology allowed between any members of any two families. All 519 proteins were collected
and used as a database for sequence alignment. GO scripts were prepared to implement the BLASTp
program to make alignment of candidate proteins against the T3SE database and report the most
significantly homologous hit and corresponding full-length T3SE families. The homology searching
criteria were same with those for effector clustering, i.e., �30% similarity for �70% of the full length of
either candidate protein or any one known T3SE.

For homology searching of known T3SS effector signal sequences, the N-terminal 50-aa peptides of
the verified effectors were grouped to signal clusters based on the homologous network at a minimum
cutoff of 30% identity for 70% aligned protein length. The multiple peptides in each single cluster were
further aligned with ClustalW to define signal families more precisely (https://www.ebi.ac.uk/). The cluster
could be separated into different families if the homologous blocks showed no overlap. Each singleton
cluster, i.e., with only one member that did not show above-cutoff similarity with other effector peptides,
represented an independent signal family. For each multimember family, all the peptide sequences were
used for building the family profile. For each singleton family, the orthologs from other strains of the
same genus were retrieved, and the N-terminal 50-aa peptides were aligned against the counterpart of
the reference singleton sequence; only the ones with at least 70% identity for the whole 50-aa length
were retained and used for the family profile building. The HMM profile of each signal sequence family
was built with the hmmbuild module of HMMER 3.1, followed by alignment and homology searching
with hmmsearch (44). A GO program (sigHMM) was also developed to implement the T3S signal
searching, with the cutoffs (hmmsearch E values) optimized by allowing all the signal-bearing validated
effectors being detected.

Lilic et al. first reported a common structural �-motif located within CBD domains, where the
sequences were downloaded and aligned for HMM profile building (37). HMMER 3.1 was also used to
build the HMM profile for the CBD motif sequences (44). Intraprotein location analysis indicated that the
�-motifs mainly started from the N-terminal 21st to the 90th amino acid of known effectors; therefore,
only the N-terminal 100-aa peptide fragment of a candidate protein was extracted for �-motif screening,
using a GO program developed specifically (cbdHMM) to implement the hmmsearch (with default
parameter) and pattern search automatically. Secondary structure modeling and alignment for the
�-motifs were performed with PROMALS3D (45).

N-Terminal 50-aa signals were also removed from each known effector protein sequence, and the
remaining peptide fragment was used for effector domain clustering if it was longer than 30-aa. Pairwise
alignment was repeatedly performed with BLAST among the domain sequences of known effectors, and
a homologous pair was defined with optimization as average protein coverage of aligned length �
identity of �10. A recursive algorithm was adopted to cluster the families (5). HMM profiles of the
effector domain families were also built with HMMER 3.1, and the screening of family homologs was
performed using a similar procedure as described above with a modified E value cutoff of 0.01. A GO
program, effectHMM, was developed for implementing effector domain searching automatically.

Pivotal transcription regulators of T3SSs were annotated previously (5). The binding motifs within
promoters of the regulated genes were annotated from the literature. HMM profiles or sequence patterns
were built. To screen these motifs or patterns, the genome sequences of representative bacterial strains
with T3SSs were downloaded from NCBI Genome database, the 5= upstream 2,000-nucleotide sequence
preceding the effector open reading frame (ORF) was retrieved, and the HMM profiles were screened one
by one. Motif patterns were also screened with a pattern recognition method implemented in an
in-house GO programming script (transHMM). For promoter motif searching, the true promoter sequence
of a candidate gene is the best choice. The 5= upstream 2,000-nucleotide sequence of the operon is the
secondary choice if the exact promoter is unknown. However, for many cases, it could also be unclear
for operon organization, and the 5= upstream 2,000-nt nucleotides preceding the target gene are the
only choice. In this study, for convenience of genome-wide analysis, the third choice was applied.

Data set preparation for training and performance evaluation of machine learning models. For
general models, the N-terminal 100 amino acids were retrieved from the verified effectors and nonef-
fector proteins with length larger than 100 amino acids (with the starting methionine removed), followed
by homology filtering with JAlign using the strategy described above and the homology criterion of 30%
identity for whole length. The procedure led to 309 nonredundant effector signal peptides, which served
as the positive data set. From the nonredundant noneffector peptides, 310 were selected randomly to
serve as negative data set, making an �1:1 ratio of sequence size between positive and negative data
sets. Both the positive and negative data sets were randomly split into 10 parts with identical numbers
of sequences. For each 10-fold cross-validation, nine parts of the positive and negative data sets were
merged as positive and negative training data sets, respectively, while the remaining one part of either
the positive or negative data set was used as the corresponding testing data set.

For bacterial host-, T3SS-, or genus-specific models, the homology-filtered signal sequences were
retrieved from the corresponding group, and an identical number of homology-filtered negative
sequences were sampled from strains of the corresponding group. Bacterial hosts, T3SS category, and
genus information were referred to T3Enc (5). Tenfold cross-validation training and testing data sets were
prepared as described above.

Modified BPBAac, BPBent, T3_MM, and SeqAac models classifying proteins containing or not
containing type 3 secreted signals. Feature representation, parameter optimization, and model
training for BPBAac and T3_MM were according to the procedure described previously (16, 18). Briefly,
BPBAac represented the N-terminal 100-aa sequences in vectors with biprofile position-specific amino
acid composition features extracted from both positive and negative training data sets, which were
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further trained in support vector machine (SVM) models. Four SVM kernel functions, i.e., linear, polyno-
mial, sigmoid, and radial base function (RBF), and corresponding parameters (gamma and cost), were all
optimized with a 10-fold cross-validation grid search strategy. An R package, e1071, was used for
implementing SVM model training and kernel/parameter optimization (https://cran.r-project.org).
T3_MM calculated the probability values of any species of amino acids conditional on the amino acid
composition in its adjacently preceding position for both positive and negative N-terminal 100-aa
training sequences. For each sequence, two Markov chains were built with each amino acid represented
with the conditional probability values extracted from the positive or negative training data set, followed
by calculation of the logarithm likelihood ratio (positive/negative), which was used for eventual classi-
fication. The cutoff was adjusted to find an optimal solution for both specificity and sensitivity.

For BPBent, instead of position-specific AACs, the individual relative entropy was calculated for
position-specific AACs between T3S signal sequences and total bacterial proteins, between non-T3S
sequences and total bacterial proteins, and between T3S signal sequences and non-T3S sequences. The
triprofile relative entropy values were represented as a vector for each sequence, and the feature
matrixes were trained with SVM models as performed for BPBAac (16). The kernel selection and
parameter optimization were also similar to the procedure for BPBAac as described above.

For SeqAac, in total, 431 sequential features were observed and compared between T3S and non-T3S
sequences, including composition of individual amino acids (20), biresidues (20 � 20 � 400), and amino
acids of 11 specific properties (aliphatic, aromatic, hydrophobic, alcohol, polar, tiny, small, bulky,
positively charged, negatively charged, and charged) (see Table S3 in the supplemental material).
Bonferroni-corrected Student’s t tests were performed between the sequential composition of features
between T3S and non-T3S sequences, and the top 30 features were selected for model training
(Table S2). For each sequence, the composition of each feature was calculated and put into a vector. The
matrix composed by the 30-feature vectors for each training data set was used for a decision tree
building and pruning with the R rpart package (https://cran.r-project.org).

Deep learning models predicting type 3 secreted signals. The T3SErnn model used in this study
is composed of convolution layers, recurrent layers, and fully connected dense layers. The architecture
used in our model is summarized as follows: the input is a 100 � 20 matrix, where 100 is the length of
sequence and 20 is the size of amino acid vocabulary. The convolutional neural network extracts motif
information using 30 filters with different sizes (5 for each of the sizes 1, 3, 5, 7, 9, and 11). By
concatenating the above-described features, we obtained a 120 � 5 feature map. Then, we applied
another convolution layer with 50 filters of size 3 � 120 to this feature map and obtained a 120 � 50
feature map as input to the recurrent layer. The recurrent neural network scans the above-described
feature map using 256 LSTM units in two directions and returns the last output in the output sequence.
Finally, the concatenation of the outputs of the recurrent neural network is used as input to a fully
connected dense layer with 512 units and outputs the final prediction score. The parameters are
optimized using adaptive moment estimation (Adam) with cross entropy as the loss function.

The T3SEdnn model is composed of three components, i.e., the input layer, the hidden layers, and the
output layer. The input of the model is the stretch of a 100 � 20 one-hot matrix. Then, the model projects
the input feature into new spaces layer by layer. In particular, the model includes five hidden layers with
1,024, 512, 256, 128, and 10 units. The output layer of the model is a logistic repression classifier with a
sigmoid function as activation function. The parameters are optimized using root mean square propa-
gation (RMSProp) with cross entropy as the loss function.

Both deep learning models were trained and implemented in Python3. The models are freely
accessible at http://www.szu-bioinf.org/T3SEpp/download.html. The current T3SEdl models were trained
on N-terminal 100-aa sequences of T3SEs and non-T3SEs and therefore only support the prediction of
input protein sequences with no fewer than 100 amino acids.

T3SEpp model and weight optimization. For external modules PSORTb 3.1, TMHMM 2.0, and
SignalP 4.1, the web-based versions were used with default settings (except for SignalP with sensitive
mode) (34–36). A linear model was built to integrate the predictive results of different modules in an
empirical architecture considering signal sequences (sigHMM/T3SEppML), transcriptional regulatory
motifs (transHMM), effector domains (effectHMM/flBlast), chaperone-binding motifs (cbdHMM), and
other subcellular location information (SignalP, PSORTb, and TMHMM). The factor value was set as 1 for
a module if there was a positive prediction or 0 otherwise. The positive predictions for sigHMM,
effectHMM, cbdHMM, transHMM, and flBlast specified that there was at least one homologous hit with
the corresponding module and cutoff described before and shown in http://www.szu-bioinf.org/T3SEpp/
modules.html. T3SEppML integrated the predictive results of T3_MM, BPBAac, BPBent, SeqAac, T3SErnn,
and T3SEdnn with a voting strategy, and a positive prediction was defined with a general prediction
value not smaller than the optimized cutoff of 0.5 (�3 tools predicting the candidate protein to be with
a true T3S signal). For each machine learning section model (e.g., T3_MM, etc.), the parameters were
optimized as described before and shown in http://www.szu-bioinf.org/T3SEpp/modules.html. For Sig-
nalP, PSORTb, and TMHMM, the positive predictions were defined as “no signal peptide” (sensitive
mode), “not cytoplasmic,” and “no transmembrane domain,” respectively.

Prior weights for each module were preset empirically (sigHMM, 0.45; T3SEppML, 0.40; transHMM,
0.20; effectHMM, 0.20; T3SEppML, 0.20; cbdHMM, 0.10; SignalP, 0.05; PSORTb, 0.04; and TMHMM, 0.01).
The sum of weights (S) for T3SEppML, transHMM, effectHMM/flBlast, cbdHMM, SignalP, PSORTb, and
TMHMM was 1.00, while sigHMM weight was set as “T3SEppML weight � 0.05” and the maximum
prediction was set as 1.00 for the whole model. A 10-fold cross-validation based grid search with the
training data sets was performed to optimize the weight parameters. The searching space for each
weight was within 0.00 to 1.00, starting from the prior settings with a step increase/decrease and the S
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constraint of 1.00. To reduce the searching space, we used a rough step increase/decrease of 0.1 to
determine the boundary of optimized weights, followed by gradually decreasing the step increase/
decrease to 0.05 and 0.01 to find the best-optimized parameters. For each combination of weights, the
average AUC was calculated for the 10-fold cross-validated prediction results. The best-optimized
parameters were those for any of which an increase or decrease did not increase the average AUC. The
optimized weights are shown in http://www.szu-bioinf.org/T3SEpp/modules.html.

Besides a 10-fold cross-validation evaluation of the T3SEpp models with the training data sets
curated in this study, two independent testing data sets were also prepared for performance comparison
with other models. The first testing data set (T3SEpp testing data set) was curated manually from the
literature and included the newly validated T3SEs and non-T3SEs that were experimentally validated not
to translocate through T3SS conduits. For the detailed information on the testing data set, including the
annotation, sequences, etc., refer to http://www.szu-bioinf.org/T3SEpp/download.html. Briefly, we
searched “type III secretion system” or “type 3 secretion system” in PubMed and retrieved the publica-
tions posted after March of 2016. The abstracts were skimmed for each paper, and the ones with effector
translocation analysis were identified for further annotation. T3SEs and non-T3SEs were all verified by
translocation experiments. None of the T3SEs and non-T3SEs overlapped with the sequences in the
training data set. The second testing data set was adopted from Xue et al. (24) (independent testing data
set). None of the sequences from this second data set were found in the T3SEpp training or testing data
sets.

Model performance assessment and comparison. Sensitivity, specificity, precision, F value, ROC
curve, AUC, MCC, and accuracy were utilized to assess the predictive performance or compare the
performance among different models. An ROC curve is a plot of sensitivity versus 1 � specificity and is
generated by shifting the decision threshold. MCC considers true and false positives and negatives and
is generally regarded as a balanced measure that can be used even if the classes are of very different
sizes.

ACC �
TP � TN

TP � FP � TN � FN

MCC �
(TP � TN) � (FN � FP)

�(TP � FN) � (TN � FP) � (TP � FP) � (TN � FN)
,

where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and false
negatives, respectively.

A leave-one-genus-out (LOGO) strategy was also used to measure the cross-species prediction effect
of the models. Briefly, the models were retrained on data sets with the sequences from a certain genus
removed and used to make predictions on the left-out sequences. For T3SEpp, the different modules
were retrained and optimized for the parameters. However, the weights of the integrated linear model
were not optimized but used the ones of the final model.

For performance comparison of the different tools, we submitted the testing data sets to the
webservers of Bastion3 (23), pEffect (32), EffectiveT3 (13), and BEAN2 (21) and predicted with the default
parameters. ROCs and AUC comparison were only performed for T3SEpp, Bastion3, and EffectiveT3, since
pEffect and BEAN2 do not give an overall prediction score integrating the prediction results of homology
searching and machine learning modules. For Bastion3, a total score of 1 was given to replace the “-” for
those experimentally validated effectors included in the training data set.

Data availability. GO scripts were prepared to assist implementation of the homolog screening
modules. T3SEppML was developed with Perl, R, GO, and Python. The executable package and source
codes are freely accessible at http://www.szu-bioinf.org/T3SEpp/download.html. A webserver was also
developed with PHP to help users make on-line predictions automatically, available at http://www.szu
-bioinf.org/T3SEpp.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 0.8 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 0.1 MB.
DATA SET S1, XLSX file, 4.0 MB.
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