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Late onset Alzheimer’s disease (AD) is moderately to highly heritable. Apolipoprotein E allele ε4 (APOE4) has been replicated
consistently as an AD risk factor over many studies, and recently confirmed variants in other genes such as CLU, CR1, and PICALM
each increase the lifetime risk of AD. However, much of the heritability of AD remains unexplained. AD is a complex disease that
is diagnosed largely through neuropsychological testing, though neuroimaging measures may be more sensitive for detecting the
incipient disease stages. Difficulties in early diagnosis and variable environmental contributions to the disease can obscure genetic
relationships in traditional case-control genetic studies. Neuroimaging measures may be used as endophenotypes for AD, offering
a reliable, objective tool to search for possible genetic risk factors. Imaging measures might also clarify the specific mechanisms by
which proposed risk factors influence the brain.

1. Introduction

Alzheimer’s disease (AD) is thought to be at least 58–74%
heritable [1–3]. However, much of that heritability has yet
to be explained by variants in specific risk genes. Mutations
in the amyloid precursor protein (APP) [4], presenilin 1
(PSEN1) [5], and presenilin 2 (PSEN2) [6, 7] genes are
known to lead to early onset, familial AD. In familial AD,
the disease typically follows an autosomal dominant, usually
highly penetrant mode of inheritance. However, for many
years only the ε4 allele of apolipoprotein E (APOE4) [8]
was identified as a reliable genetic risk factor for late-onset
AD. On average, 24% of control subjects carry at least
one copy of APOE4 [9], and each risk allele carries more
than threefold odds of developing AD [9], although these
numbers vary across studies; this is a relatively large odds
ratio for a highly prevalent risk gene. Recently, large sample
genome-wide association (GWA) studies have successfully
identified and replicated associations between several single
nucleotide polymorphisms (SNPs) and AD [10] (Table 1),

namely, in the CLU [11, 12], PICALM [11–13], and CR1
[13] genes and near the BIN1 and EXOC3L2 genes [12].
Numerous other genetic polymorphisms also have been
associated with a diagnosis of AD, but with less statistical
evidence, and replication results are frequently inconsistent
[14] (http://www.alzgene.org/). Much work yet remains in
discovering the sources of AD heritability. As we note below,
large-scale neuroimaging studies provide an approach to
discover, replicate, and study new genetic risk factors.

AD is a complex disease whose onset and trajectory
are influenced by (1) environmental factors and (2) many
genetic polymorphisms having small effects and/or rare
polymorphisms having larger effects. Because contributing
genes have large effects in aggregate but small effects indi-
vidually, association studies typically require large samples to
reliably identify the individual contribution of any one poly-
morphism, especially since stringent corrections for multiple
comparisons are required by GWA studies. Additionally,
genes involved in either neurodevelopment or degeneration
or both may contribute to AD risk. The onset of AD is
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Table 1: Top AD risk genes.

Gene Protein Population Polymorphism

1 APOE e2/3/4 apolipoprotein E all APOE e2/3/4∗

2 CLU clusterin all rs11136000∗

3 EXOC3L2 exocyst complex component 3-like 2 all rs597668

4 BIN1 bridging integrator 1 all rs744373

5 PICALM phosphatidylinositol binding clathrin assembly protein all rs541458∗

6 SORL1 sortilin-related receptor Asian rs2282649∗

7 GWA 14q32.13 unknown all rs11622883

8 TNK1 tyrosine kinase non-receptor, 1 all rs1554948

9 ACE angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 Caucasian rs1800764

10 IL8 interleukin 8 all rs4073

11 LDLR low density lipoprotein receptor all rs5930

12 CST3 cystatin C Caucasian rs1064039∗

13 CR1 complement component (3b/4b) receptor 1 (Knops blood group) all rs6656401

14 hCG2039140 unknown all rs1903908

15 CHRNB2 cholinergic receptor, nicotinic, beta polypeptide 2 (neuronal) all rs4845378

16 SORCS1 sortilin-related VPS10 domain containing receptor 1 all rs600879

17 TNF tumor necrosis factor alpha Asian rs4647198

18 CCR2 chemokine (C-C motif) receptor 2 Caucasian rs1799864

Genes listed represent those most highly associated with AD per alzgene.org [9] as of August 22, 2010. Only those with high or moderate epidemiological
evidence are included above. Grading was based on HuGENet (Human Genome Epidemiology Network) interim criteria for the assessment of cumulative
evidence of genetic associations [132].
∗At least one neuroimaging study has investigated the effects of this polymorphism in the brain.

clinically detectable only when the pathological hallmarks of
the disease such as amyloid plaques, neurofibrillary tangles,
and neuronal loss have advanced to the point where memory
impairment and other behavioral changes become evident.
Therefore, symptoms may be manifest when abundant
pathology overwhelms an otherwise healthy brain, or limited
pathology occurs in a brain whose health and resilience is
compromised by cortical thinning, reduced white matter
integrity, or restricted blood flow.

It is difficult for case-control studies to identify genetic
risk factors for AD based on clinical diagnosis alone. This is
because AD diagnosis relies on evidence of cognitive deficits
identified using standard cognitive tests. Performance on
cognitive tests may be influenced by factors unrelated to
disease, such as fatigue, anxiety, general test-taking ability,
and practice effects. As such, well-educated people suffering
from cognitive decline can appear normal in a clinical
setting, while cognitively normal worriers may appear to be
impaired. Other late-life dementias also may be clinically
misdiagnosed as AD. Using brain endophenotypes that are
objective and highly reproducible over time may make it
easier to identify AD genetic risk factors and to understand
their impact on the brain.

In recent multisite efforts, researchers have performed
brain scans on and genotyped large numbers of cogni-
tively intact and impaired older adults. These studies have
improved the ability of researchers to identify AD-related
genes. In this article, we review the results of neuroimag-
ing studies that evaluate the effects on the brain of top

AD-related candidate genes other than APOE as well as
genetic contributions to brain vulnerability. We discuss the
findings from GWA studies that have used neuroimaging
measures as endophenotypes for AD, and we offer sug-
gestions for future studies. Finally, we discuss multigene
and more advanced genetic models as means to identify
specific genetic contributions to AD. The main findings of
the studies discussed here are summarized in Table 2 by
imaging phenotype.

2. Candidate Gene Approach

There are two main ways to investigate effects of AD-relevant
genes using brain imaging—the first is to study candidate
genes already associated with AD, and the second is to
use genome-wide scanning to perform an unbiased search
of up to a million genetic polymorphisms. Both types of
approach have been applied in neuroimaging studies of AD.
The earliest studies have focused on the most widely studied
candidate gene, APOE.

Although not without conflicting results, many studies
have linked APOE4 to neuroimaging measures such as
regional hypometabolism assessed using fluorodeoxyglucose
positron emission tomography (FDG-PET) (which measures
brain glucose metabolism) [15–17], functional magnetic
resonance imaging (fMRI) activity (which measures varia-
tions in regional levels of blood oxygenation and is thought
to reflect both blood flow and neuronal activity) during
memory tasks and at rest [18–26], regional brain volume
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Table 2: SNPs with AD-relevant effects detected by neuroimaging measures.

Neuroimaging measure SNP Gene Locationc Neuroimaging association

Hippocampal volume or gray matter density rs429358/rs7412 (ε2/3/4)b APOE 19q13.32 CG [47], GWA [104]

rs10501927 CNTN5 11q22.1 CG [47]

rs3851179b PICALM 11q14.2 CG [47]

rs4646994b ACE 17q23.3 CG [68]

rs2075650b TOMM40 19q13.32 GWA [104]

rs4692256 LOC391642 4p15.1 GWA [104]

rs10074258b EFNA5 5q21.3 GWA [108]

rs12654281b EFNA5 5q21.3 GWA [108]

rs10781380 PRUNE2 9q21.2 GWA [108]

rs1888414 FDPSP 21q21.1 GWA [108]

ERC thickness rs429358/rs7412 (ε2/3/4)b APOE 19q13.32 CG [47]

rs3851179b PICALM 11q14.2 CG [47]

rs10501927 CNTN5 11q22.1 CG [47]

rs1408077b CR1 1q32.2 CG [47]

rs7561528b BIN1 2q14.3 CG [47]

PHG cortical thickness rs429358/rs7412 (ε2/3/4)b APOE 19q13.32 CG [47]

rs10501927 CNTN5 11q22.1 CG [47]

Amygdala volume rs429358/rs7412 (ε2/3/4)b APOE 19q13.32 CG [47], GWA [104]

rs2075650b TOMM40 19q13.32 GWA [104]

rs4646994b ACE 17q23.3 CG [68]

MTL volume rs4935775b SORL1 11q24.1 CG [58]

Temporal pole cortical thickness rs429358/rs7412 (ε2/3/4)b APOE 19q13.32 CG [47]

rs10501927 CNTN5 11q22.1 CG [47]

rs7561528b BIN1 2q14.3 CG [47]

Temporal lobe volume rs429368/rs7412 (ε2/3/4)b APOE 19q13.32 GWA [81]

rs10845840 GRIN2B 12p13.1 GWA [81]

rs2456930
chromosome
15 intergenic
region

15q22.2 GWA [81]

Frontal lobe volume rs3751812 FTO 16q12.2 CG[76]

GM density-precuneus rs10932886 EPHA4 2q36.1 GWA [104]

GM density-frontal cortex rs10932886 EPHA4 2q36.1 GWA [104]

rs6463843 NXPH1 7p21.3 GWA [104]

Regional brain tissue volume in temporal lobe rs2429582 CADPS2 7q31.32 vGWA [113]

Regional brain tissue volume in parietal lobe rs476463 CSMD2 1p35.1 vGWA [113]

Whole brain volume rs1468063b FAS 10q23.31 CG [71]

Ventricular volume rs1468063b FAS 10q23.31 CG [71]
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Table 2: Continued.

Neuroimaging measure SNP Gene Locationc Neuroimaging association

WM lesion volumea rs10501927 CNTN5 11q22.1 CG [47]

rs560573b SORL1 11q24.1 CG [58]

rs668387b SORL1 11q24.1 CG [58]

rs689021b SORL1 11q24.1 CG [58]

rs641120b SORL1 11q24.1 CG [58]

rs2276346b SORL1 11q24.1 CG [58]

rs4646994b ACE 17q23 CG [65]

WM integritya rs11136000b CLU 8p21.1 CG [54]

This table summarizes the most promising single SNPs relevant to AD research and identified from associations with neuroimaging characteristics. These
characteristics show correlations with the SNP alleles either specifically in AD-related regions (in healthy adults) or anywhere in the brain (in normal adults
and those with AD and/or MCI).
Key: GM: gray matter; WM: white matter; MTL: medial temporal lobe; PHG: parahippocampal gyrus; ERC: entorhinal cortex; CG: candidate gene approach;
GWA: genome-wide association scan approach; vGWA: voxelwise genome-wide association scan approach.
aWhite matter lesion volume is calculated from a structural MRI scan (usually a T2-weighted scan), while white matter integrity is measured using diffusion
tensor imaging and reflects water diffusion directionality.
bPreviously identified as an AD risk allele [9].
cLocations were determined using http://genome.ucsc.edu/ [133], using values from dbSNP build 131.

or cortical thickness (measures of structural gray matter
integrity) [27–31], white matter integrity [32–35], cerebral
blood flow [36–39], and AD-related pathology such as
amyloid and neurofibrillary tangle load [40–44]. Results
from such APOE neuroimaging studies have been reviewed
previously [14, 45, 46].

Neuroimaging differences associated with the APOE
genotype may result from incipient AD, or they may relate
instead to differences specific to the genotype independent
of AD pathology (e.g., developmental differences). If other
AD risk genes were to resemble APOE in their effects on
the brain, it would support the notion that those brain
differences are related to the pathological processes of
AD. Additionally, determining the effects on the brain of
other AD risk gene variants would help to characterize the
mechanisms of those risk alleles, enabling more targeted
therapeutic treatments to be developed. Thus far, relatively
few neuroimaging studies have examined the effect of AD
candidate risk genes other than APOE on the brain (Table 1).

The most recent and comprehensive candidate gene
study to date was performed by Biffi and colleagues (2010),
who evaluated the effects of top AD risk polymorphisms on
six measures shown to predict AD risk and measure disease
progression [47]. The authors measured hippocampus,
amygdala, and white matter lesion volumes and thickness of
the entorhinal cortex, parahippocampal gyrus, and temporal
pole cortex in AD patients, mild cognitively impaired
(MCI) patients, and normal controls. People with MCI
have some degree of demonstrable cognitive impairment
not severe enough to warrant a diagnosis of dementia.

Approximately 10–15% of those with amnestic MCI convert
to probable AD each year compared with an estimated 1-
2% of similarly aged cognitively intact individuals [48].
MCI therefore can be used as an indicator of early AD-related
changes in the brain. The authors focused on confirmed risk
polymorphisms and other potential risk variants identified
in recent GWA studies. Among these were APOE, CLU,
PICALM, CR1, CNTN5, and BIN1. APOE, which encodes
apolipoprotein E—an apolipoprotein that interacts with β-
amyloid [49]—was correlated with all brain measures except
for white matter lesion volumes. CNTN5, which codes for
contactin 5—a protein that may play a role in regional
axonal development [50]—is not currently listed as a top
AD risk gene [9]. However, it was associated with all mea-
sures except for amygdala volume. All the genetic variants
except for CLU were statistically correlated with entorhinal
cortex thickness. The CLU gene encodes clusterin (also
known as apolipoprotein J)—another apolipoprotein that
interacts with β-amyloid [51]. Additionally, a variant in the
PICALM gene, which codes for phosphatidylinositol binding
clathrin assembly protein—a protein involved in regulating
the fusion of synaptic vesicles [52]—was correlated with
hippocampal volume. Finally, BIN1, which encodes bridging
integrator 1—a protein involved in neurite growth [53]—
was correlated with temporal pole cortical thickness [47].
The authors suggested that although sample sizes affect the
power to detect gene effects, the specificity of relationships
with particular polymorphisms may reflect the function
and expression patterns of the resulting proteins, possibly
elucidating mechanisms that contribute to AD risk [47].

http://genome.ucsc.edu/


International Journal of Alzheimer’s Disease 5

The CLU risk variant rs11136000 was not associated with
any of the measures here, but our research group recently
found that in young healthy adults, the risk allele of that
SNP was associated with reduced integrity of broad white
matter regions, observed with diffusion tensor imaging [54].
The lipid transport and membrane recycling performed
by the clusterin protein [55] may be important to myelin
development but not to medial temporal lobe gray matter.
Choosing measures that reflect the purported protein func-
tion associated with risk genes in question might help to
focus the search for gene effects in the brain.

Another AD gene with structural effects on the brain is
SORL1, which encodes the sortilin-related receptor. The gene
product is a low-density lipoprotein receptor that may be
involved in processing the amyloid precursor protein [56].
SORL1 may also play a role in cardiovascular health [57].
Cuenco and colleagues (2008) evaluated how 30 different
polymorphisms in the SORL1 gene related to general cerebral
atrophy, hippocampal atrophy, white matter hyperintensities
and cerebrovascular disease, which they measured semi-
quantitatively [58]. Among the variants tested in African-
American and white AD-control sibships was rs2282649—
a top AD genetic risk factor [9]. In whites, this variant was
associated with cerebral and hippocampal atrophy as part
of a 3 SNP haplotype [58]. SNPs within SORL1 also were
associated with white matter hyperintensities in two studies
[58, 59]. The strongest relationship between rs2282649 and
AD is in Asian populations (as determined in a large meta-
analysis) [9]. Future comparisons of SNP effects on the
brain in Asians versus Caucasians may clarify how this
polymorphism relates to AD.

Babiloni and colleagues (2006) used electroencephalog-
raphy (EEG) to examine how another AD risk gene, CST3,
affects resting cortical rhythmicity (the frequency of repet-
itive spiking of neuronal activity) in subjects with AD and
MCI. One haplotype evaluated contained an AD top risk
SNP (rs1064039) [60]. CST3 codes for cystatin C, a protein
that colocalizes with β-amyloid [61] and may be involved
in the proliferation of neural stem cells [62]. The amplitude
decrease of alpha 1 sources (parietal, occipital, and temporal
areas) was more pronounced in AD and MCI patients
with the CST3 risk haplotype, possibly indicating greater
amyloid load or neuronal death [60]. Follow-up studies of
this polymorphism that evaluate brain atrophy using MRI or
amyloid load using PET imaging may be valuable.

Some additional neuroimaging studies of major AD risk
genes examined the ACE gene, which codes for angiotensin
converting enzyme—a protein that modulates the cardio-
vascular system by helping to regulate extracellular volume.
ACE also affects the central nervous system by influencing
neurons in the hippocampus and amygdala and helping to
maintain the blood brain barrier [63, 64]. All these studies
evaluated the commonly evaluated ACE insertion/deletion
(I/D). The ACE D/D polymorphism was associated with
increased severity of white matter hyperintensities or cerebral
infarction in some [65, 66] but not all [67, 68] studies.
One study found that the I/I genotype was associated with
increased AD risk, and smaller hippocampi and amygdalae
[68]. Another found that D carriers with MCI showed

differences in resting state fMRI brain activity compared
with I homozygotes [63]. The I/D variant examined in these
studies is not one of the two currently listed by a large meta-
analysis (http://www.alzgene.org/) [9] as being significantly
associated with Alzheimer’s disease overall, although some
evidence links it with AD risk or unspecified cognitive
decline [69, 70]. Regardless, since this variant in the ACE
gene appears to modulate brain structure and function, it
would be valuable to investigate the effects of other ACE
polymorphisms having stronger relationships to AD: namely
rs1800764 and rs4291 [9].

Recently, Erten-Lyons and colleagues (2010) evaluated
the effects of a less studied AD risk gene, FAS, on the brain in
242 older adults who were cognitively intact or had MCI or
AD [71]. FAS codes for the Fas (TNF receptor superfamily,
member 6) protein, which may be involved in apoptosis
in AD [72]. The authors evaluated 97 SNPs in or near the
FAS gene that had been previously associated with AD. After
adjustment for multiple testing, they found that rs1468063
was associated with faster AD progression. Carriers of the
T allele of that SNP had greater ventricular volumes and
smaller brain volumes in a subgroup of 56 subjects [71].

The candidate gene approach also may be used to evalu-
ate the effects of genes predisposing subjects to characteristics
(such as hypertension, obesity, high cholesterol, and dia-
betes) that increase the risk of AD [73–75] without necessar-
ily being directly involved in the development of classic AD
pathology such as amyloid plaques or neurofibrillary tangles.
Examining the effects of these variants in healthy adults and
focusing on brain areas susceptible to earliest AD processes
may be productive in isolating polymorphisms that create a
vulnerability that AD-related pathology later exploits. Recent
work has already demonstrated that some such genes have
an effect in the brain. For instance, Ho et al. (2010) recently
demonstrated in 206 cognitively intact older adults from
the ADNI study that risk allele carriers for rs3751812 in
the fat mass and obesity associated gene (FTO) had smaller
average brain volumes in frontal and occipital lobes relative
to noncarriers (Figure 1) [76]. Those of European descent
carrying two copies of the common adverse variant of FTO
have increased risk for obesity, relative to those carrying
no copies [77]. The connection between FTO and brain
atrophy is important, as it suggests one mechanism whereby
cardiovascular risk factors (including risk genes) may make
the brain more vulnerable to the later effects of AD. The FTO
gene may cause brain atrophy by promoting a craving for
greater caloric intake resulting in higher body mass index
(which is also associated with brain atrophy; [78, 79]). It is
also possible that FTO affects the brain by direct gene action
to promote tissue atrophy or insufficiency. Even so, a variety
of lifestyle factors, including education, diet, and exercise, are
associated with reduced brain atrophy. This underscores the
value of controlling preventable risk factors for brain atrophy
[80].

Other studies have focused on variants associated with
genes important for blood pressure regulation and choles-
terol levels such as the previously mentioned ACE [65, 66]
and SORL1 variant studies [58, 59]. Studies focusing on
regions affected early in AD such as the hippocampus,

http://www.alzgene.org/
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Figure 1: Common genetic variants (single nucleotide polymorphisms) associated with temporal lobe volume in a GWA study are shown in
(a) along with an image showing the effects of the top hit, GRIN2b, on brain volume [81].The figure is adapted from Stein et al. (2010) with
kind permission from the authors and publishers. (b) shows the effect (regression coefficients) of the candidate obesity gene, FTO, on brain
atrophy in a cognitively normal adults and those with MCI and AD [76]. The figure is adapted from Ho et al. (2010) with kind permission
from the authors and publishers.

entorhinal cortex [82], and posterior cingulate cortex [15]
may be helpful in further elucidating the links between AD
and cardiovascular health.

3. Genome-Wide Association Studies

Recently, a small number of studies have used genome-
wide association (GWA) to search for novel genetic variants

associated with AD endophenotypes. Discovering new risk
genes would be extremely beneficial to the study of AD.
Clinical trials could then selectively enroll, or perform sub-
analyses on risk allele carriers, who are more likely to decline
than noncarriers. Those at heightened genetic risk might
also benefit the most from early treatment. Additionally,
using AD risk genes as covariates would boost power in
AD-related studies since modeling the identified genetic risk
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factors reduces otherwise unexplained variance in the disease
trajectory, making other influential factors easier to detect.

Several initiatives, such as Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (www.loni.ucla.edu/ADNI), are
now searching for new gene risk variants using neuroimaging
traits that are highly heritable, easily measured in a reliable
way, and associated with AD [83]. This may be a valuable
way to overcome some of the obstacles inherent in diagnosis-
based searches for risk polymorphisms. For instance, one
might use as an endophenotype the baseline regional neu-
roimaging measures known to predict longitudinal cognitive
decline in amnestic MCI or early AD. Such measures make
specific diagnoses unnecessary because they focus on symp-
toms, namely the confluence of longitudinally decreased
cognitive ability with specific functional or structural brain
deficits that predict that decrease. Also, as continuous mea-
sures that vary across the continuum of normalcy from MCI
to AD, neuroimaging measures may offer greater statistical
power for genetic analysis than binary diagnostic categories.
Suggested criteria for endophenotypes are that the measures
are associated with illness, are heritable, are apparent in an
individual regardless of whether the illness is active, and
that they co-segregate with illness within families [84]. Some
neuroimaging measures, such as hippocampal and ventric-
ular volume largely meet these criteria as endophenotypes
for AD. Both increased ventricular volume [85–88] and
decreased volume of medial temporal lobe structures, espe-
cially the hippocampus [87–92] predict cognitive decline, are
moderately to highly heritable [93–95], and are associated
with AD and genetic risk for AD (Table 2). Other measures
that show promise in predicting cognitive decline are brain
amyloid burden as measured using Pittsburgh Compound
B [96] and white matter integrity (in general and perhaps
more specifically in the parietal lobe) as measured with
diffusion tensor imaging [97] both of which are also highly
heritable [98, 99]. Some neuroimaging measures may not
yet be considered endophenotypes. For instance, glucose
metabolism as measured with FDG-PET [100–102], and
cerebral perfusion as measured with arterial spin labeling
[103] also may predict cognitive decline, but large-scale
heritability studies of these measures in healthy older adults
are needed to ascertain their potential for identifying genetic
influences. These guidelines may be useful when evaluating
the utility of a measure as an endophenotype.

One recent GWA study by Shen and associates (2010)
evaluated genetic associations with brain structure using
a large number of nonspecific phenotypes. They studied
733 AD and MCI patients and normal controls from the
ADNI cohort and controlled for age, sex, education, hand-
edness, and baseline intracranial volume [104]. The authors
examined 142 regions of interest and found that the well-
known variants in APOE (rs429358/rs7412 a.k.a. ε2/3/4) and
in a more newly identified gene, TOMM40 (rs2075650),
were strongly associated with bilateral hippocampus and
amygdala volumes. Four additional SNPs were associated at
the P < 10−7 level with regional gray matter density. In the
EPHA4 gene, rs10932886 was correlated with gray matter
density in the left precuneus and bilateral frontal regions—
regions in which atrophy occurs in late AD [105]. EPHA4

codes for the EPH receptor A4—a receptor tyrosine kinase
that regulates dendritic spine morphology in pyramidal cells
of the adult hippocampus. EPHA4 also helps to control glial
glutamate transport resulting in regulation of hippocampal
function [106]. Its association with hippocampal structure
and function makes this gene an intriguing target for future
study. Likewise, rs6463843 in the NXPH1 gene was associated
with gray matter density in the left middle orbital frontal
gyrus. NXPH1 encodes the neurexophilin 1 protein, which
is a physical ligand for α-neurexins—proteins that may
participate in synaptic function [107]. Finally, rs4692256
(LOC391642) was associated with gray matter density in the
right hippocampus, but the function of the genetic material
containing that SNP is unknown. The authors also reported
a number of other associations at the more liberal P < 10−6

level [104].
Two other recent ADNI-based GWA studies focused their

searches on temporal lobe structures; temporal lobe volume
is highly heritable and is also a relatively good predictor
of developing AD. Potkin et al. (2009) used a genome-
wide search for polymorphisms affecting hippocampal gray
matter density, and identified novel AD susceptibility genes
in 381 subjects who had AD or were normal controls [108].
AD cases differed in genotype from controls at rs429358
(one of the two SNPs comprising the APOE 2/3/4 genotype),
and at rs2075650 in the TOMM40 gene. Using a significance
threshold of P < 10−7 and covarying for age, sex, and the
number of APOE4 alleles, four SNPs were associated with
right or left hippocampal gray matter density [108]. Two
of these, rs10074258 and rs12654281, were in or near the
EFNA5 gene [108], which encodes the ephrin-A5 protein
implicated in nervous system development including in the
hippocampus [109]. The gene function and association with
hippocampal structure across multiple SNPs makes it an
alluring target for future study. Two other SNPs associated
with hippocampal gray matter density at the P < 10−7 level
were rs10781380 in the PRUNE2 gene and rs1888414 near
the FDPSP gene [108]. These two SNPs have a less clear tie
to AD-related symptoms compared with those in EFNA5. At
the P < 10−6 level, the authors also identified correlations of
right or left hippocampal gray matter density with genotypes
at an additional 11 SNPs.

In a larger study also using the ADNI dataset, Stein and
colleagues (2010) used MRI and GWA to identify SNPs
associated with temporal lobe and hippocampal volumes
in 742 AD and MCI patients and healthy elderly adults,
controlling for age and sex (Figure 1) [81]. The authors
also evaluated the relationship between temporal lobe
volume and the APOE2/3/4 genotype, which was not part
of the Illumina gene chip used in the GWA. As expected,
APOE4 was associated with lower temporal lobe volume.
Additionally, at a significance level of P < 5 × 10−7, the
authors identified two SNPs that were associated with
bilateral temporal lobe volume across diagnoses: rs10845840
in the GRIN2B gene (independent of an APOE4 effect), and
rs2456930, located in an intergenic region of chromosome
15 [81]. The GRIN2B gene codes for a regulatory subunit
2B (NR2B) of the NMDA (N-methyl D-aspartate) glutamate
receptor. NR2B is implicated in learning, memory, and
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structural plasticity, and cognitive deficits in Alzheimer’s
disease [110, 111]. The same glutamate receptor is also the
target of memantine [112], a drug designed to slow the
progression of AD. This makes GRIN2B an attractive target
for future AD investigations generally, and also specifically
with respect to how it may modulate memantine drug effects.

Finally, in the first voxelwise GWA (vGWA) study,
Stein and colleagues (2010) examined the effects of genetic
variation on brain structure as determined using tensor-
based morphometry, while controlling for age and sex [113].
Rather than testing for genetic associations with one or
a small number of structural measures, associations were
tested at each of hundreds of thousands of voxels in the
image—leading to a whole-brain, whole-genome search. The
authors evaluated 740 subjects from the ADNI study who
had AD or MCI, or were normal controls, and identified
only the most significant SNP association at each voxel. Top
SNPs identified within known genes in this GWA search
were rs476463 in the CSMD2 gene and rs2429582 in the
CADPS2 gene [113]. CSMD2 (CUB and Sushi multiple
domains 2) maps to a chromosomal region that may contain
a suppressor of oligodendrogliomas [114], although little
is yet known about the protein function. CADPS2 codes
for Ca++-dependent secretion activator 2, a protein that
regulates synaptic vesicle and large dense core vesicle priming
in neurons, and promotes monoamine uptake and storage in
neurons [115]. Although no SNP survived a false discovery
rate correction at P < .05 [113], this method remains
promising when larger sample sizes become available. Strin-
gent corrections are needed when searching an entire image
for genomic effects, but the size of the search space can be
greatly reduced by carrying forward promising voxels to later
analyses. Because of this, the sample sizes needed to replicate
a GWA finding, when searching an entire image, are typically
much smaller than the discovery sample size (as low as 300-
400 rather than 700 subjects [113]) as the voxels with no
effects can be discarded in the replication analyses.

The sample size needed to detect statistical relationships
between genetic risk factors and specific brain measures
depends upon the measure being studied. Beckett and
colleagues (2010) recently compared the ability of various
MRI- and PET-derived attributes to track the progression of
MCI and AD [116]. Regions of interest derived from specific
brain voxels showing significant relationships to cognitive
impairment in previous studies gave greater power to detect
a slowing of the disease than measures related to whole
structures such as the hippocampus. The increased power
of statistical voxel selection was later reinforced by studies
using both MRI [117] and FDG-PET [118]. Such statistically
predefined regions of interest may be promising targets of
genetic studies in which gene effects can be mapped using
statistical mapping approaches. By focusing on regions with
greatest statistical effects, the power to detect or replicate
genetic effects in follow-up studies is vastly increased [119].
In that regard, imaging studies can avoid a general problem
in large-scale genetics; by focusing on promising voxels,
replication samples may in fact be smaller than the discovery
samples, if the effects of the genes in the brain are somewhat
localized. The selection of sets of voxels showing significant

genetic associations is helpful to boost power, above and
beyond focusing solely on regions that are clinically impor-
tant to the disease of interest (which is also important).
Such an approach has been advocated by Chen et al. (2010)
and Wu et al. (2010) [118, 120]. There are at least three
advantages in focusing on specific voxels over predefined
anatomical regions of interest. First, although a given gene
variant may affect a region that shows dramatic effects
in a given disease, that whole region may not be equally
affected. Using a voxelwise approach may help to identify
subregions that would provide a more concentrated focus
for future replication efforts. An example is a recent study
of the brain derived neurotrophic factor (BDNF) genes, in
which common variants were associated with brain fiber
integrity on DTI, in 455 subjects [119]. When the sample was
split into two, the same regions of the white matter showed
associations in each subsample, but there would have been no
a priori reason to select those regions as implicated. Limiting
a search to significant voxels in follow-up studies boosts
power by avoiding image wide corrections for statistical tests
at voxels less likely to show an effect. Secondly, although
the focus of a study may be AD, pathways altered by a
specific gene variant may be relevant to multiple complex
diseases and disorders. Data collection and analysis are costly
in genetic neuroimaging studies. Therefore, reporting all
significant results can provide information that may not
otherwise be easily obtained but may be useful to researchers
at large. Thirdly, image based tests for replication, such as
conjunction tests, can be devised that allow specific sets of
brain regions, not just specific genes, to be replicated as
showing associations (see, e.g., Ho et al. 2010 [76]).

In GWA studies, it is conventional to enforce a sig-
nificance cut-off of P < 10−7 or 10−8. This represents a
Bonferroni-type correction for the false positives that could
occur when 500,000 SNPs are searched for statistical effects.
As adjacent SNPs are somewhat correlated (due to linkage
disequilibrium effects), the effective number of tests is
slightly fewer than the number of SNPs tested, but even SNPs
falling below P < 10−7 are considered to show “genome-wide
evidence” requiring replication in subsequent studies or in
meta-analyses of multiple independent datasets. So far, there
is no universal agreement as to what statistical threshold
for GWA studies is the best. The above ROI-based GWA
studies reviewed here all used a threshold of at least 10−7 to
report their top findings [81, 104, 108], which controls for
multiple comparisons in the tests performed. Dudbridge and
Gusnanto (2008) suggested that a genome-wide significance
threshold should not account only for markers that have been
tested in a study, but also for all possible genomic variation.
This leads to a more conservative threshold of P < 7.2×10−8

[121]. Because of the required time and cost of collecting and
analyzing neuroimaging data, the sample sizes here, although
large for imaging studies, remain small for genetic studies.
These smaller sample sizes may produce false positives unless
independent replication is performed. Still, functionally
promising SNPs have been identified in these studies,
highlighting numerous replication targets for future work.

All four of the above GWA studies were performed
using scans from the ADNI dataset with a high degree
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of overlap of subjects. Even so, the top SNPs were not
replicated across studies. This may be due to a number
of methodological factors. First, the sample sizes needed
to detect a genetic association depend on the minor allele
frequency and effect size, and are typically between a few
hundred and several thousand subjects. With this limitation,
measures that show association in one study may be missing
in another. Even different software used to measure the same
structure do not give perfectly correlated measures. Also,
many associations will be missed due to imprecision in the
measures—single gene effects are typically only detectable
for measures with the highest precision and reproducibility.
Additionally, across studies, the initial genetic searches did
not adjust for the same covariates in addition to age
and sex. For instance, Potkin and colleagues covaried for
APOE genotype [108], but Shen and colleagues covaried
for education, handedness, and baseline intracranial volume
[104], and the Stein et al. studies did not use additional
covariates [81, 113]. Finally, the choices of ROI and methods
of delineating those regions varied across studies. The
ENIGMA (Enhancing Neuro Imaging Genetics through
Meta-Analysis) project (http://enigma.loni.ucla.edu/) [122]
is one of several multicenter initiatives to standardize genetic
and imaging methods. Its goal is to empower future repli-
cation efforts and make it easier to perform meta-analyses.
Because different SNP sets are genotyped in different studies,
imputation methods are employed to allow the same set of
genomic variations to be queried across every dataset.

Using GWA to evaluate how genetic variance affects
AD endophenotypes in cognitively intact younger and older
adults may also aid in identifying AD genetic risk factors.
Genetic variants associated with brain measures in young
cognitively normal adults are less likely to be associated
with molecular pathology. More likely, they support early
vulnerabilities in the brain that AD pathology later exploits.
The polymorphisms may, for instance, relate to health factors
that increase the risk of AD, such as obesity and diabetes,
or may relate to neural development in regions affected in
early AD, such as the hippocampus and entorhinal cortex.
Variants identified in cognitively intact older adults may
relate to both AD molecular processes and vulnerabilities in
the brain. Using amyloid imaging measures in these subjects
may be helpful in identifying genetic risk factors for earliest
AD changes.

An imaging measure may be associated with a particular
polymorphism during development but may also be related
to other gene polymorphisms with respect to degeneration
later in life. Therefore, it is not the measurement, but rather
its context and other demographic factors that determine
whether gene effects relate to neurodevelopment or degen-
eration. This should be borne in mind when replicating
gene effects across cohorts. For instance, in Stein et al.
(2011), caudate volume was associated with commonly
carried variants in dopamine-related genes, and the effects
were found in an large elderly cohort scanned in North
America, and replicated in a young adult cohort scanned
in Australia [123]. Such replications of SNPs may indicate
gene effects that persist throughout life. The use of two
very different samples is likely to identify genes of enduring

relevance across the lifespan, but may miss or fail to replicate
effects that exist or are more dominant only in late or early
life. Naturally, there is a greater preponderance of apoptotic
events in an elderly sample and more developmental or
synaptogenic processes in the younger samples. For this
reason, genome-wide meta-analyses must not regard failure
to replicate as a sign that gene is not influential in a given part
of the lifespan, or in a given cohort or continent.

In a study of normal brain aging, Seshadri and colleagues
(2007) investigated genetic associations with measures of
total cerebral brain volume, lobar, ventricular and white
matter hyperintensity volumes, and scores on six cogni-
tive tests. They identified three SNPs (located in ERBB4,
PDLIM5, and RFX4) that were associated both with measures
of frontal or parietal brain volumes and with tests of
executive function and abstract reasoning. These results did
not survive testing for multiple comparisons, but they may
be used to generate future hypotheses or to offer support to
findings in future GWA studies [124]. As this study was one
of brain aging rather than of AD, cognitively normal adults
were studied and not all measures examined were specific to
AD risk. Therefore, some of the SNPs generated may relate
more to brain aging or normal development than to AD
risk.

Two GWA studies that we know of have examined
endophenotypes in healthy young adults—a GWA study of
caudate volume in 1198 young and old adults [123] and
the first voxelwise GWA study of diffusion tensor images
[125]. Further studies that focus on brain measurements
specific to AD would be useful additions to the field. Since the
brain differences that are likely to occur in normal adults are
subtle compared to those in studies of a brain disease, very
large numbers of subjects are needed to perform GWA in
healthy young adults and to show that the results are reliable
and reproducible across independent samples. The ENIGMA
network brings together researchers in imaging and genetics,
and current analyses are probing structural and functional
neuroimaging and GWA data from over 10,000 subjects.
This type of effort will prove invaluable in replication
studies. ENIGMA also allows for the identification of “slow
climbers”—genetic variants that may not be significant in all
studies or in any one study alone, but may become highly
significant when data is aggregated across studies.

GWA and vGWA involve huge numbers of comparisons,
which may result in false positives if not properly controlled.
It is therefore incumbent upon readers of such studies to
critically evaluate the significance levels of the studies before
basing potentially costly experiments upon their results.
However, such exploratory studies may provide information
that would not otherwise be easily obtained and can be
extremely useful in focusing future work. For instance, one
might not collect thousands of MRI scans to test the effect
of one SNP previously found to be marginally significant.
However, it may make sense to test the effects of that SNP
in conjunction with other more established ones when GWA
data has already been collected and the MRI scans have been
physically analyzed. In this way, it is possible to build easily
on previous results until they are strong enough to warrant
independent exploration.

http://enigma.loni.ucla.edu/
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In addition, the large number of statistical tests involved
in a genome-wide and/or image wide search requires special
methods to boost power, including gene-based tests [126],
ridge regression models [127], multilocus modeling, and
meta-analysis. In the first voxelwise GWA studies of MRI
and DTI [113, 125], no single SNP passed the conventional
threshold for genome-wide significance; even so, the top
SNPs can be prioritized when screening new imaging datasets
for replications of these hits. Efforts such as the ENIGMA
consortium have found that some SNPs identified by GWA
are robustly associated with hippocampal volume and total
brain volume. Although no single contributing site was able
to find results that were genome-wide significant, the effects
of several SNPs were robustly replicated when meta-analyzed
across imaging datasets of more than 6400 subjects from 16
imaging sites [128].

4. Multiple Genetic Risk Factors

A statistical test of association between a set of SNPs and a
disease can offer far greater power and success in determining
genetic risk than tests of single SNPs [129]. This is in part
because the risk conferred by different SNPs may depend on
the context and on several demographic and environmental
factors—the age of the cohort, their educational level, and
even their socioeconomic status [130]. Because of this, more
complex models of gene action in AD are likely to include
not only multiple SNPs, but also environmental and other
risk factors that affect whether those variants are relevant or
innocuous.

Multilocus genetic modeling refers to a large class of
methods that assesses the effects of sets of SNPs—within
the same or different genes—in predicting clinical diagnosis,
prognosis, or disease risk. Looking at the additive or epistatic
(interactive) effects of multiple risk gene variants may be
useful, especially when the genes in question have similar
effects. For instance, Szolnoki and colleagues (2003) found
in 961 subjects that carriers of APOE2 or APOE4 had
increased risk of white matter hyperintensities in their
brains only if they also carried risk variants in the ACE or
MTHFR (methylenetetrahydrofolate reductase (NAD(P)H))
genes [131]. All three are listed as top AD risk genes [9]
and also affect the cardiovascular system, so it makes sense
to examine their additive effects on the brain. Multilocus
genetic models can assess the combined effects of multiple
gene sets acting together.

Because adjacent SNPs in a genome-wide association
study may be highly correlated due to linkage disequilibrium,
it is not possible to use standard statistical methods, such
as multiple regression, to identify which SNPs exert an
influence on a trait. Machine learning methods that can
cope with high-dimensional sets of predictors include such
techniques as penalized regression, adaptive boosting, and
the “Bayesian lasso”. All of these methods have been used
widely in quantitative genetics, and show substantial promise
for analyzing brain imaging phenotypes.

Multilocus models are conceptually attractive as they
allow the testing of the aggregate effect of several SNPs in
the same gene, which individually may have effects too weak

to detect on their own. In one study [126], we applied a
novel method, multivariate principal components regression
(PCReg) to test whole genes for associations with imaging
data, not just single SNPs within them. When multiple
partial-F tests were used to test the joint effect of all SNPs
in a gene on regional brain volume differences, we identified
several genes associated with brain-related disorders that are
highly relevant to brain structure. GRB-associated binding
protein 2 gene, GAB2—the most significantly associated gene
in our analysis—has previously been linked to late-onset AD,
and GAB2 associations showed a symmetric signal in the
white matter superior to the lateral ventricles. As a caveat,
other methods that include multiple SNPs can sacrifice
power as increasingly stringent corrections are applied to
guard against finding spurious associations using high-
dimensional regression models with many parameters. Even
so, efficient gene-based association tests across the whole
brain can drastically reduce the number of independent
tests performed, detecting known genes highly relevant to
brain structure that may be missed by univariate methods
alone.

5. Conclusion

In summary, using neuroimaging endophenotypes to iden-
tify AD risk factors is a new and promising enterprise.
Future studies of the combined effects of multiple candidate
risk factors, and an expansion of genome-wide studies to
a wide variety of imaging modalities may help generate
new endophenotypes that predict AD. Additionally, a focus
on particular contributions to AD risk, such as deposition
of AD-related pathology, or developmental vulnerabilities
might prove productive in unraveling disease complexity.
For instance, searching for gene variants of an AD endophe-
notype in a large sample of healthy young adults would
be most likely to uncover genes affecting developmental
vulnerabilities to the disease. In contrast, examining a given
endophenotype in AD and MCI patients while controlling
for gene variants known to affect that measure in younger
adults would boost the power to identify polymorphisms
related to AD processes and cumulative environmental risk
factors, while excluding some developmental effects. Careful
selection of endophenotype, data pooling across studies and
analysis of multiple different aspects of AD pathology and
vulnerabilities may prove invaluable in the quest to explain
the genetic risk for AD.
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