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Abstract: Analysis of trends in the development of silicon photonics shows the high efficiency
regarding the creation of optical sensors. The concept of bimodal sensors, which suggests moving
away from the usual paradigm based only on single-mode waveguides and using the inter-mode
interaction of guided optical waves in a two-mode optical waveguide, is developed in the present
paper. In this case, the interaction occurs in the presence of an asymmetric periodic perturbation of
the refractive index above the waveguide surface. Such a system has unique dispersion properties
that lead to the implementation of collinear Bragg diffraction with the mode number transformation,
in which there is an extremely high dependence of the Bragg wavelength on the change in the
refractive index of the environment. This is called the “effect of dispersion-enhanced sensitivity”. In
this paper, it is shown by numerical calculation methods that the effect can be used to create optical
sensors with the homogeneous sensitivity higher than 3000 nm/RIU, which is many times better
than that of sensors in single-mode waveguide structures.

Keywords: optical sensors; bimodal interaction; silicon wire; segmented grating; numerical modeling;
finite difference time domain (FDTD) method

1. Introduction

Silicon photonics [1–6] are promising technologies with huge potential for the mass
production of modern optical elements and functional systems based upon them. Opti-
cal sensors [7–13] are among the most popular components of information technologies
systems that are manufactured, among other things, on the basis of silicon photonics and
nanotechnologies. For example, over the past 10 years, 20% of all publications on sensors
have been based on silicon photonics technologies, and 20% of publications on silicon
photonics are devoted to optical sensors [13]. The main factors influencing the scale of
optical sensor application include the sensitivity (S), intrinsic limit of detection (iLOD),
and manufacturability. Sensor research is conducted in the most developed countries, and,
in recent years, various types of sensors with very high technical parameters have been
developed using various design solutions and the highly advanced technologies [7–13].
There is also a fundamental possibility of increasing optical sensor sensitivity by using
two-mode optical waveguides in which bimodal interaction is implemented [14–27]. Bi-
modal interaction between the guided and leaky modes in a silicon waveguide with a
side grating provides very high sensitivity [28]. In this paper, focus is placed on study
of the dispersion properties of guided wave intermodal interaction in two-mode optical
waveguides in silicon-on-insulator (SOI) structures with an asymmetric periodic grating
on the top.

The study of guided wave propagation in optical waveguides in the presence of the
periodic perturbation of their properties has been a classical problem of integral optics since
the origin of the field. With the development of technology, the tasks solved have become
more diverse, and the results obtained have gradually moved from fundamental findings to
the field of practical use. Usually, the subject of research is the optical phenomena observed
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when an optical wave propagates along an optical waveguide (in our case, a silicon wire)
in the presence of a diffraction grating as a structure with a periodically changing refractive
index and/or a waveguide boundary [29,30]. The presence of a diffraction grating can
lead to the coupling of various optical waves that propagate in such a structure, usually
called grating-assisted couplers. The interaction is maximal when the Bragg synchronism
condition is met for the interacting modes with an effective refractive index Ni:

Abs(k0 − k1) = K p (1)

where ki = 2πNi/λ0 is the wave number of the i-th mode, i = 1 or 2, Ni is the effective
refractive index of modes (mode index), λ0 is the optical wavelength, K = 2 π/Λ is the
diffraction grating wave number, Λ is the diffraction grating period, and p is the diffraction
order. Here, we consider the interaction in the first order of diffraction (p = 1), which
has the maximum efficiency of collinear intermodal interaction, as well as providing the
operation in the telecommunications wavelength range.

The current state of research on this issue has been analyzed in detail in many re-
views [7–13]. In particular, the optical properties of the waveguide mode depend on the
refractive index of the surrounding medium nc, for example, a liquid, and its effective
refractive index changes with a change in the wavelength, λ0, and the refractive index of the
latter, Ni = Ni(nc, λ0). According to Equation (1), when an optical wave propagates along a
waveguide with a periodic grating, the optical wavelength λ0, at which the propagation
is blocked (filtered), will also depend on the mode index Ni, and, consequently, on the
refractive index of the environment nc.

(N0 ± N1)·λ0= Λ (2)

This property is used to create optical sensors [31–37]. The homogeneous sensitivity
Sn is described by the value of the change in the filtration wavelength with a change in the
refractive index of the environment:

Sn = ∂λ/∂nc (3)

Another important sensor parameter is the intrinsic limit of detection, which can be
written as:

iLOD = δλ/Sn (4)

where δλ is the 3 dB wavelength bandwidth that determines the quality factor Q = λ/δλ of
the sensor filter element, for example, a Bragg grating or a ring resonator.

To increase the sensitivity of a sensor based on a channel waveguide, an optical mode
close to the cut-off is usually used, i.e., the waveguide dimensions are chosen such that
the guided mode is still supported by the waveguide, but its effective refractive index is
close to the refractive index of the environment. In this case, the decaying electromagnetic
field components of the optical mode penetrate far into the surrounding space, which
ensures the high sensitivity of such sensors. For a sensor in water, it is of the order of
70–100 nm/RIU and 200 nm/RIU for TE and TM polarizations, respectively [32]. This
corresponds to the wavelength shift of 200 nm when the environment refractive index
changes by 1 unit (RIU).

To further increase the sensitivity of a sensor, slot optical waveguides can be used,
in which there is a narrow gap (about 100 nm) filled with the environment. Since the
slot is filled with a medium with a low refractive index, a high wave field concentra-
tion is observed in this case, which increases the sensitivity of such a sensor element to
Sn = 300 nm/RIU.

The diffraction grating can be constructed as a segmented periodic structure ob-
tained by vertical etching. Subwavelength waveguide gratings (SWG) with a small period
(Λ << Ni/λ0) are effectively used for engineering the optical properties of waveguides, as
well as for creating optical sensors. Their properties are correctly described by the continu-
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ous medium theory, which implies that a subwavelength segmented periodic structure is
equivalent to a homogeneous medium with a refractive index equal to the average refrac-
tive index of the structure (for the case of TE polarization). If the segmented waveguide
is surrounded by a medium whose properties are of interest, then the effective refractive
index of the waveguide mode is very sensitive to the changes in the refractive index of
the environment, which increases the sensor sensitivity (Sn = 400–500 nm/RIU). The use
of inhomogeneous segment structures further increases the homogeneous sensitivity of a
sensor (up to 617 nm/RIU) [33]. A further increase in sensitivity (Sn =1500 nm/RIU) has
been observed in a photonic crystal-based resonator [34]. This was achieved by engineering
the optical properties of a photonic crystal with the optimal parameters for its structure.

Although subwavelength waveguide arrays and slot waveguides significantly increase
the sensitivity of sensors based on the use of a uniform waveguide, they have a significant
disadvantage that is especially manifested when controlling the refractive index of liquid
media. The fact is that high sensitivity of slot waveguides and subwavelength segment
waveguides, as well as structures based on photonic crystals, is observed if the characteristic
size of the etching groove is in the order of 100 nm. Consequently, there is the problem
of incomplete filling with a liquid (due to viscosity and wetting) where narrow grooves
form slot and segment waveguides, and that leads to a decrease in sensitivity [35] and
an increase in the response time of optical sensors. In addition, for manufacturing, it is
necessary to use sufficiently advanced and expensive technologies that provide precision
for the vertical etching of small-sized elements (about 100 nm), and this fact does not
contribute to the widespread use of such sensors.

In recent studies [36,37], to increase the sensitivity of optical sensors, it has been
proposed to use the anomalous blocking effect, which is observed in a silicon waveguide
that is tunneled with a segment periodic structure of a relatively large period (about 1.4 µm).
This segment diffraction grating exhibits the properties of a leaky waveguide, the effective
refractive index of which strongly depends on the refractive index of the surrounding
medium. In such a structure, the diffraction grating carries a double load, where it forms
the leaky waveguide and couples the fundamental mode of the silicon waveguide with
the leaky mode of the segment structure. Sensors based on the anomalous blocking effect
have a high sensitivity (Sn =420 nm/RIU) that is comparable to the sensitivity of sensors
manufactured using alternative technologies based on slot and segment waveguides;
however, due to the significantly larger characteristic size of the etching slots, they are
more technologically advanced. What is especially important is that they do not have the
problem of the incomplete filling of the slots with the surrounding liquid, which reduces the
sensory properties of competitive technologies. A significant disadvantage of sensors based
on the anomalous blocking effect is the relatively low intrinsic limit of detection, which
is associated with big losses of the leaky wave of segment waveguide, and, consequently,
with a wide filtration bandwidth.

Readouts of the information obtained from optical sensors are usually realized by
narrow-band structures based on ring resonators [31–33], photonic crystals [34], and Mach–
Zehnder interferometers [38], as well as Bragg grating-based structures [39–41].

2. Sensor Design

Recent publications, as well as the results of the author’s own numerical simula-
tions, suggest a promising research direction which consists of studying the intermodal
interaction in a two-mode optical waveguide with a periodically asymmetric diffraction
coupling element, which can be the basis for optical sensors with a unique sensitivity
(several µm/RIO range).

The starting point is the result of the study of a notch optical filter [42] constructed by a
two-mode optical waveguide with an asymmetric grating-assisted coupling element. This
consists of the silicon strip waveguide and two segmented diffraction gratings shifted by
half a period and placed in the waveguide vicinity. Such an asymmetric diffraction grating
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provides an efficient transformation between the symmetric fundamental TE0 mode and
the asymmetric TE1 mode at a wavelength that meets the condition of Bragg synchronism.

A similar type of collinear diffraction which implements the intermodal interaction
between the fundamental and first asymmetric leaky outgoing modes in a waveguide with
a grating manufactured on one side has recently been used to create optical sensors with an
experimentally reached sensitivity of 5.08 µm/RIU [28]. The results of numerical modeling
by the FDTD method for an optical sensor operating on the basis of interference of the
fundamental and first modes in a subwavelength periodic waveguide may also be noted
in this regard [26]. This has provided a significant sensitivity increase (up to 2.5 times)
compared to the known types of sensors based on single-mode waveguides in similar struc-
tures; however, it should be noted that the maximum sensitivity of 1.3 µm/RIU is observed
only in the long wavelength part of the optical spectrum (1665 nm). Furthermore, even in
the telecommunication range (1550 nm), this sensor shows a relatively high sensitivity of
400 nm/RIU.

The diffraction grating formation by the precision deep etching at a submicron and
strictly specified distance from the waveguide used in [42] is a complex technological
problem, and this technology is not easily applied in the mass production of optical
sensors.

In this paper, an asymmetric diffraction grating is proposed for use, where the grating
is made directly above the silicon waveguide location region (see Figure 1b) as a thin oxide
or polymer (for example, SU-8) layer with a precisely controlled thickness that determines
the intermodal interaction efficiency. Monitoring the oxide or the polymer film thickness is
a more reproducible technology than observing the specified width of a narrow etching
groove (about 200 nm), and the structure proper has unique dispersion properties that are
suitable for increasing the sensitivity of optical sensors.
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Figure 1. Grating coupling element based on a silicon optical waveguide in the SOI structure. (a) Waveguide structure with
a symmetric grating for the TE0 - TE0 diffraction. (b) Waveguide structure with an asymmetric grating for the TE0-TE1

diffraction where nf is refractive index of segmented grating (in our case polymer SU-8). The meaning of the structure
parameters is evident from the figure and are the subject of the optimization for particular sensor design.

To study the intermodal interaction, the behaviors and interactions of guided modes
(TE0 and TE1) propagating along a two-mode optical silicon wire waveguide in the presence
of a segment diffraction grating (see Figure 1a,b) have been numerically modeled. For the
analysis, the Rsoft numerical packages were used, which implement the beam propagating
method (BPM), the finite element method (FEM), and the finite difference time domain
method (FDTD) as provided by Synopsis [43]. All these algorithms have proven their
accuracy and efficiency in solving similar problems [26,28,36,37,41].

The numerical three-dimensional analysis by the 3D FDTD method shows that the
symmetric diffraction grating (see Figure 1a) with a period of 0.38 µm at a wavelength of
about 1.53 µm provides an effective Bragg reflection of the fundamental TE0 mode that is
observed in a silicon waveguide with thickness h = 0.25 µm and width w = 0.35 µm. Since
this waveguide is close to the fundamental mode cutoff, it has a relatively high sensitivity
(Sn = 190 nm/RIU) for changing the position of the Bragg synchronism wavelength to a
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perturbation of the refractive index of the surrounding medium, i.e., water in this case
(nc = 1.33).

As the silicon wire width increases (w > 0.49 µm), the waveguide starts to support the
second mode; however, due to the different symmetry of the fundamental and first modes of
the optical waveguide, the diffraction with a change in the mode number on the symmetric
grating is impossible. Consequently, an asymmetric diffraction grating (see Figure 1b)
is used, which is located on the top of the waveguide. In case of the diffraction grating
with the period of 0.38 µm at the wavelength of 1.54 µm, one may observe the effective
back diffraction from the TE0 mode to the TE1 mode. As the waveguide width w = 0.5 µm
is close to the first mode cut-off point, this design provided a moderate sensitivity of
Sn = 220 nm/RIU.

The sensitivity of a sensor based on the intermodal interaction on a diffraction grating
can be quantified from Equation (2) [28] for the condition of phase Bragg synchronism. To
do this, one may differentiate expression Equation (2) by taking into account the mode
dispersion:

∂λ/∂nc = Λ·(∂N0/∂nc ± ∂N1/∂nc) + Λ·(∂N0/∂λ ± ∂N1/∂λ)·∂λ/∂nc (5)

From this relationship, we obtain the following expression:

∂λ/∂nc = Λ·(∂N0/∂nc ± ∂N1/∂nc)/[1 − Λ (∂N0/∂λ ± ∂N1/∂λ)] (6)

One may substitute the determination for the group velocity Nig = c·∂k/∂ω = Ni −
λ0·∂Ni/∂λ and Equation (2) and get the desired expression for the homogeneous sensitivity:

Sn = ∂λ/∂nc = Λ (N0 ± N1)×(∂N0/∂nc ± ∂N1/∂nc)/(N0g ± N1g) (7)

Alternatively, this can be written in the following form:

Sn = ∂λ/∂nc = λ0·(∂N0/∂nc ± ∂N1/∂nc)/(N0g ± N1g) (8)

where the sign is responsible for the propagation direction of the diffracted wave relative
to the incident one, i.e., “+” denotes backward diffraction and “−” denotes forward
diffraction. Furthermore, ω and c denote the circular frequency and speed of light in a
vacuum, respectively.

Note that Equation (8) [28] was obtained by taking into account the optical waveguide
dispersion properties. For example, if the dispersion is ignored, a wrong expression is
obtained for the homogeneous sensitivity based only on the first term of Equation (6):

Sn = ∂λ/∂nc = Λ·(∂N0/∂nc ± ∂N1/∂nc) (9)

Based on this expression, we cannot expect a strong increase in the sensor sensitivity
based on the intermodal interaction. Consequently, the phenomenon being discussed is
precisely related to the presence of waveguide dispersion. To emphasize this fact, it is
suggested that the studied phenomena be referred to as the “effect of dispersion-enhanced
sensitivity”. This is because the dispersion properties of the fundamental and the first
modes of the silicon waveguide are strongly different, and the dependence of their group
index (velocity) on the wavelength provides the possibility that the values N0g and N1g can
be matched to each other in the telecom wavelength range (see Figure 2). This condition of
matching the group indices of the interacting waves is usually called the phase matching
turning point (PMTP) [28]. It is characterized by the fact that, in the vicinity of this point,
according to Equation (8), the sensitivity of the optical sensor undergoes hyperbolic growth.
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Figure 2. Group index dependence of the fundamental TE0 and first modes TE1 of a silicon waveguide
on the optical wavelength. The curves intersection (PMTP) is observed in the telecommunication
range (1550 nm). Calculation by the effective index method.

Calculations show that the first waveguide mode is more sensitive to the changes
in the refractive index of the environment than the fundamental one. In particular, for a
waveguide with the width of 0.55 µm, the following values are typical: ∂N0/∂nc = 0.12
and ∂N1/∂nc= 0.70. For the forward diffraction (TE0–TE1), the numerator of Equation (8)
decreases slightly. At the same time, the denominator of Equation (8) gives it a resonant
character and radically increases the sensitivity of the optical sensor for the forward diffrac-
tion (see Figure 3). As such, for the backward diffraction process, the sensitivity changes
monotonically versus the wavelength and is significantly (by an order of magnitude) lower
in magnitude for forward diffraction.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. Group index dependence of the fundamental TE0 and first modes TE1 of a silicon wave-
guide on the optical wavelength. The curves intersection (PMTP) is observed in the telecommuni-
cation range (1550 nm). Calculation by the effective index method. 

Calculations show that the first waveguide mode is more sensitive to the changes in 
the refractive index of the environment than the fundamental one. In particular, for a 
waveguide with the width of 0.55 μm, the following values are typical: ∂N0/∂nс = 0.12 and 
∂N1/∂nс= 0.70. For the forward diffraction (TE0–TE1), the numerator of Equation (8) de-
creases slightly. At the same time, the denominator of Equation (8) gives it a resonant 
character and radically increases the sensitivity of the optical sensor for the forward dif-
fraction (see Figure 3). As such, for the backward diffraction process, the sensitivity 
changes monotonically versus the wavelength and is significantly (by an order of magni-
tude) lower in magnitude for forward diffraction. 

1.40 1.45 1.50 1.55 1.60 1.65 1.70
10

8
6
4
2
0
2
4
6
8

10

-
-
-
-

-

Forward
 TE0-TE1

Backward 
 TE0-TE1

S n
 ( μ

m
/R

IO
)

λ0 (μm)
 

Figure 3. Homogeneous sensitivity dependence on the wavelength. It is seen the resonant behavior 
of the sensitivity for the forward diffraction, and the monotonic behavior for the backward diffrac-
tion. Calculation by the effective index method. 

1.40 1.45 1.50 1.55 1.60 1.65 1.70

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

 Ng0
 Ng1

N
g

λ0 (μm)

Figure 3. Homogeneous sensitivity dependence on the wavelength. It is seen the resonant behavior
of the sensitivity for the forward diffraction, and the monotonic behavior for the backward diffraction.
Calculation by the effective index method.

Physically, the phenomenon of dispersion-enhanced sensor sensitivity can be ex-
plained by graphically displaying Equation (1). For this purpose, Figure 4 depicts the
dependence on the wavelength for the difference between the wave vectors of the funda-
mental and the first modes of the silicon waveguide. The condition of phase synchronism
corresponds to the crossing of this dependence by the horizontal line corresponding to
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the diffraction grating wavenumber value (K = 2 π/Λ). Due to the specific dispersion
behavior of the mode indices in the silicon waveguide, it can be seen that, for each grating
period greater than the minimum value, the phase synchronization condition is observed
simultaneously for a pair of optical wavelengths. As the grating period decreases, these
wavelengths approach each other in the direction of the extremum where ∆k = k0 − k1
dependence versus the wavelength λ0, which corresponds to the PMTP observation con-
dition. The data shown in Figures 2 and 3 were obtained by the effective index method
(EIM) [44], which describes the optical properties of three-dimensional strip waveguides in
the analytical form with a sufficient accuracy for a qualitative analysis.
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Another important optical sensor parameter is the intrinsic limit of detection or iLOD,
which is determined by the value of Sn, as well as the bandwidth δλ. The latter value can
be found from the analysis of efficiency η for the collinear Bragg diffraction obtained by
the coupled mode method [45].

η = sin2[(σL)2 + (δβL/2)2)1/2]/[1 + (k/δ)2] (10)

where σ is the coupling coefficient of the diffraction grating and δβ is the mismatch of the
wave vectors of interacting waves and the diffraction grating. The bandwidth δλ is usually
determined as a change in the wavelength where the efficiency η decreases by a factor of
two from the maximum value observed under the condition kL = π/2.

For narrow-band filters, this can be found from the following relationship:

L ∂(k0 − k1 − K)/∂ω·∂ω/∂λ·δλ/2 ≈ 1.254 (11)

Based on the determination of the group index and the internal relationω and λ0, we
can obtain the desired expression for the bandwidth:

δλ ≈ 0.8 λ0
2/[L·(N0g − N1g)] (12)

where 0.8 ≈ 2 × 1.254/π. At the same time, the intrinsic limit of detection is found by
taking into Equation (8) into account:

iLOD = δλ/Sn ≈ 0.8 λ0/[L·(∂N0/∂nc ± ∂N1/∂nc)] (13)

Note that, despite the resonant behavior of the sensitivity, the expected intrinsic limit
of detection still remains finite due to the similar resonant properties of the filter element of
an optical sensor, although both of these parameters undergo hyperbolic growth; however,
when determining the sensor sensitivity, they completely compensate each other.
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3. Numerical Modeling

The effect of dispersion-enhanced sensor sensitivity is illustrated by direct calculations
using 3D FDTD, where the diffraction with a change in the mode number for a silicon
waveguide with an asymmetric diffraction grating (see Figure 1b) is presented in Figure 5.
It can be seen that when approaching the PMTP condition, not only does the sensitivity of
the sensor (wavelength shift with the change in the refractive index of the environment)
increase, but also the filter bandwidth (see Figure 5). Physically, this is related to the
uncertainty relation for the wave vector (due to the finite length of the diffraction grating),
and with the change in the slope of the dispersion dependence of ∆k(λ) shown in Figure 4
or the equivalent dependence of Λ = 2 π/∆k(λ) shown in Figure 6. In the PMTP condition,
we see a maximum diffraction bandwidth and the limit of endless sensitivity growth, which
is formally seen in the Equation (8) for the case when the values of group indexes for both
interacting modes are the same.
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Let us follow the diffraction peak positions with a change in the grating period
and/or refractive index of the water environment (see Figure 6). Near the extremum of
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dependence Λ(λ), minimal changes in the optical wavelength or refractive index provide a
maximum change in the Bragg wavelength, which is a graphical justification for the effect
of dispersion-enhanced sensor sensitivity. In addition, from the data shown in Figure 6,
it is possible to calculate the homogeneous sensitivity Sn (see Figure 7a), which increases
in a hyperbolic way as a function of ∆λ = λ − λc, where λc is the wavelength at which the
group indices of the fundamental and first modes coincide (PMTP condition). The data
of Figure 7a were obtained by the EIM approximation, which helps to quickly analyze
sensor structures with a wide variety of parameters. In particular, calculations of structures
with different silicon waveguide widths show that the sensitivity of the sensor is mainly
determined by the wavelength deviation ∆λ from the PMTP point. At the same time, the
maximum sensitivity in a real situation will always be limited to the finite bandwidth
observed in the diffraction with a change in the mode number (TE0–TE1).

The properties of real three-dimensional waveguide structures were analyzed using
numerical three-dimensional algorithms, including the finite difference method (to analyze
waveguide mode indices) and the finite difference time domain method (to analyze spectral
dependences). The data of these calculations are shown in Figures 7 and 8. The results of
the FEM simulations (see Figure 7) describe the general properties of an arbitrary bimodal
sensor with an asymmetric grating (see also Equation (8)). The sensitivity is strongly
dependent on the shift of ∆λ regarding the sensor optical wavelength related to the phase
matching turning point λc as presented in Figure 7a. This determines the difference in
the group indexes of TE0 and TE1 modes, which are mainly dependent on ∆λ and have
a slow dependence on the waveguide dimensions as shown in Figure 7b. The refractive
index of silicon has a high dependence on temperature. Thus, one has to consider the
influence of the temperature on the measurement of results. The bimodal sensor provides
a self-compensation effect when the temperature dependences of the TE0 and TE1 modes
are summarized with the different signs. The resultant temperature contribution to the
sensitivity of bimodal sensor is about 1/8 of the alternative Bragg grating sensor that
utilize back diffraction of TE0 mode. Nevertheless, in sensor design, one must take into
account the systematic error, which can be as much as about 2 × 10−4/K◦ due to the mode
index dependence on the temperature. At the same time, it is possible to construct the
temperature independent sensor by using the low wavelength shoulder (∆λ = −75 nm)
shown in Figure 7c.

The main sensor features were examined by direct 3D FDTD numerical modeling. In
particular, the calculation by the 3D FDTD for the short structure with 128 grating grooves
and the period of 1.3395 µm shows that the sensitivity reaches 3 µm/RIU (see Figure 8)
with a strong tendency to a further increase in the sensitivity for longer diffraction gratings,
giving a narrow band filtering and provides the possibility to work at wavelengths close to
the PMTP point. For example, we can expect the sensitivity of 6 µm/RIU for ∆λ = 12 nm,
26 µm/RIU for ∆λ = 3 nm. It is important to understand that a hyperbolic increase in
sensitivity will not lead to an increase in the intrinsic limit of detection, which will still
be determined by the diffraction grating length and the change in the effective refractive
index of interacting modes to the variations in the refractive index of the environment (see
Equation (13)).

The values of Sn = 3 µm/RIU obtained during the 3D FDTD numerical modeling
significantly exceed the capabilities of the best alternative optical sensors based on single-
mode slot or SWG waveguides, which also have significantly more stringent requirements
for the manufacturing technology due to the need for a high-precision etching of narrow
grooves (about 100 nm) in silicon.
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Figure 7. Critical parameters of the bimodal sensor. (a) Dependence of λс on the waveguide width 
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Figure 7. Critical parameters of the bimodal sensor. (a) Dependence of λc on the waveguide width
w. (b) Dependence of the difference for TE0 and TE1 group modes index on the cover index. (c)
Dependence of the effective mode index temperature sensitivity on the optical wavelength increment
∆λ = λ – λc. Simulation by 3D FEM.
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4. Conclusions

This paper has considered the modern conception that proposes a move away from
the usual paradigm of only using single-mode waveguides and has considered a way to
dramatically increase the sensitivity of optical sensors based on studying the intermodal
interaction of guided optical waves in a two-mode optical waveguide in the presence of
an asymmetric periodic perturbation of the refractive index. The design here implements
an asymmetric segmented grating that is placed on a two-mode silicon waveguide. Such
a system has unique dispersion properties that leads to the implementation of collinear
Bragg diffraction with mode number transformation in which there is an extremely high
Bragg wavelength dependence on the refractive index change of the environment. This
is caused by the presence of a dispersion maximum for the difference between the funda-
mental and first mode wave vectors of the silicon waveguide as a function of the optical
wavelength. If the diffraction grating wave vector is close to the condition of observing
this maximum (PMTP), then minimal changes in the properties of the waveguide and/or
its environment will give an unusually high change in the Bragg wavelength. This effect of
dispersion-enhanced sensitivity is suitable for creating promising types of novel optical
sensors. The features of this type of intermodal interaction in silicon waveguides have been
studied by numerical methods using the commercial optical package RSoft-SYNOPSYS [43].
Conditions under which high diffraction efficiency are reached with a change in the mode
number have been found, and the effect of dispersion-enhanced sensitivity is observed in
the telecommunication wavelength range.
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It is shown that the effect considered here can be used to create optical sensors with
high homogeneous sensitivity (about 3 µm/RIU for a sensor with the sensor element
length of 172 µm) with the potential of further sensitivity increases (up to 50 µm/RIU) for
longer structures. The proposed sensors present a sensitivity many times higher than that
offered by single-mode waveguides and the required hardware can be manufactured by the
standard CMOS-compatible technology used in silicon photonics today [1–6,45–48]. At the
same time, this technology does not increase the intrinsic limit of detection (iLOD) when
compared to alternative types of optical sensors. This sensor design provides a relatively
low contribution regarding temperature effects on the measured index (<2 × 10−4/K◦).
Besides, the principal possibility exists to construct a temperature-insensitive bimodal
sensor by using the low wavelength peak of the sensor response.

The advantage of such intermodal interaction-based sensors is that, due to their
high sensitivity, a high resolution of sensing may be reached with a significantly low
spectral resolution of the measuring system, which opens up the possibility for their wide
distribution due to the simplification and cheaper interrogation equipment.
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