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Abstract

Limited statistical power due to small sample sizes is a problem in fMRI research.

Most of the work to date has examined the impact of sample size on task-related

activation, with less attention paid to the influence of sample size on brain-behavior

correlations, especially in actual experimental fMRI data. We addressed this issue

using two large data sets (a working memory task, N = 171, and a relational

processing task, N = 865) and both univariate and multivariate approaches to voxel-

wise correlations. We created subsamples of different sizes and calculated correla-

tions between task-related activity at each voxel and task performance. Across both

data sets the magnitude of the brain-behavior correlations decreased and similarity

across spatial maps increased with larger sample sizes. The multivariate technique

identified more extensive correlated areas and more similarity across spatial maps,

suggesting that a multivariate approach would provide a consistent advantage over

univariate approaches in the stability of brain-behavior correlations. In addition, the

multivariate analyses showed that a sample size of roughly 80 or more participants

would be needed for stable estimates of correlation magnitude in these data sets.

Importantly, a number of additional factors would likely influence the choice of sam-

ple size for assessing such correlations in any given experiment, including the cogni-

tive task of interest and the amount of data collected per participant. Our results

provide novel experimental evidence in two independent data sets that the sample

size commonly used in fMRI studies of 20–30 participants is very unlikely to be suffi-

cient for obtaining reproducible brain-behavior correlations, regardless of analytic

approach.
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1 | INTRODUCTION

Recently there has been discussion within the fMRI community

regarding the importance of considering sample size in one's experi-

ments. Although there is some disagreement on this topic

(Friston, 2012; Ingre, 2013; Lindquist, Caffo, & Crainiceanu, 2013), it

is generally accepted that limited statistical power due to small sample

sizes is an issue in much of the work done in this area. Although the

sample size used in fMRI studies has increased over the last two

decades, the median was still below 30 in 2015 (Poldrack et al., 2017).

Some very large publicly available data sets have been, and continue

to be collected (e.g., Miller et al., 2016; Van Essen et al., 2013), but

these are not suitable for all research questions, particularly those that

require task-based fMRI to address the neural correlates of specific

cognitive processes. Hence, the need to know what sample size might

be required for a given cognitive neuroscience experiment remains a

critical issue (e.g., Button et al., 2013; Poldrack et al., 2017).

Several recent papers have addressed the sample size question in

both resting state and task-based fMRI studies, with highly variable

results depending on the analysis method and specific brain measure

assessed (Table 1). In terms of resting state studies, one found that

global network efficiency assessed using data from the Human

Connectome Project (HCP, van Essen et al., 2013) was reliable with

40 or more participants if the scan duration was 14 min, but

100 would be needed if the scan length was only 7 min (Termenon

et al., 2016). On the other hand, when functional connectivity was

extracted from resting HCP data using a number of machine learning

algorithms and used to predict performance on a grip strength task,

average prediction accuracy and stability appeared to plateau at sam-

ple sizes of 200 or more participants, regardless of the algorithm

(Cui & Gong, 2018). The picture is even more pessimistic if group dif-

ferences in functional connectivity are the focus, or if multiple scan-

ning sites are involved. For example, a multisite study assessing

differences in connectivity between healthy individuals and people

with depression found that 300–400 participants in each group were

needed to obtain reproducible group differences, although some brain

regions would require even greater sample sizes (Xia et al., 2019).

For task-based fMRI a similar picture emerges (Table 1). Zandbelt

et al. (2008) measured test–retest replication using a stop-signal task,

and found that for a moderate effect size of 0.6 one would need

46 participants if using an ROI-based approach, and more than twice

as many participants if a voxel-wise analysis was used. Another study

showed that sample size effects depend on the task used. Across

11 tasks, correlations between derived spatial maps across samples

increased up to 121 participants (the maximum number used in this

study) without reaching asymptote; a mean R2 of 0.5 was achieved

TABLE 1 Summary of the literature examining the effect of sample size on fMRI results

Author (year) Experiment type Min # participants Outcome measure

Termenon, Jaillard, Delon-Martin, and

Achard (2016)

Resting state FC (HCP) 40 (14 min scan) Reproducibility of graph-based metrics

100 (7 min scan)

Cui and Gong (2018) Resting state FC (HCP) 200 Prediction of grip strength

Xia (2019) Resting state FC (multisite) 300–400 per group Reproducibility of group differences

Zandbelt et al. (2008) Stop-signal task 46 for ROIs Task vs. control, effect size of 0.6

100 for voxel-wise

Turner, Paul, Miller, and Barbey (2018) Multiple tasks (UI and HCP) �40 for R2 R2 or Jaccard of 0.5 (mean across tasks)

�100 for Jaccard

Cannon, Cao, Mathalon, Forsyth, and NAPLS

Consortium

(2017)

Working memory task 100 for DLPFC Effect size of 0.5 and 90% power

75 for sup parietal

Desmond and Glover (2002) Working memory

(simulation)

25 Activation of 0.75% and 80% power

Thirion et al. (2007) Button press task 27 Reproducibility (kappa) > 0.7

Cremers, Wager, and Yarkoni (2017) Correlations (simulation) 30 (localized effect) Reproducibility (dice coefficient) > 0.7

> 150 (diffuse

effect)

Reproducibility (dice coefficient) > 0.7

Yarkoni (2009) Correlations (simulation) 40 (r = 0.7) Sample size to reach true correlation

value

80 (r = 0.5)

> 100 (r = 0.3)

Abbreviations: DLPFC, dorsolateral prefrontal cortex; FC, functional connectivity; HCP, human connectome project; Min, minimum; ROI, region of interest;

Sup, superior; UI, University of Illinois.

GRADY ET AL. 205



with an N of 40 participants (Turner et al., 2018). More participants

were needed to reach a similar value of 0.5 when using a thresholded

measure of similarity, in this case the Jaccard index. Importantly, the

correlations across spatial maps were quite variable across tasks, rang-

ing from >0.9 (language) to <0.6 (gambling) with 121 participants (for

a similar reproducibility result across a different set of tasks, see

Kampa et al., 2020). Furthermore, an adequate sample size may differ

across brain regions. Cannon et al. (2017) showed that for all effect

sizes and estimates of statistical power, one would need more partici-

pants to get reliable activation in dorsolateral prefrontal cortex during

a working memory study than in the superior parietal lobe. At the

lower end of the spectrum, another study (Desmond & Glover, 2002)

recommended roughly 25 participants to achieve 80% power at the

single voxel level for typical activation sizes and when using realistic

statistical thresholds that approach those used after correcting for

multiple comparisons (also see Simmons, Nelson, & Simonsohn, 2011;

Thirion et al., 2007). On the other hand, rather poor overlap in acti-

vated voxels has been shown with sample sizes of 20–30, compared

with a larger sample size of 58, although this was driven by false nega-

tives, rather than false positives (Murphy & Garavan, 2004). Thus, it

clear that for both resting studies and those assessing activation dur-

ing cognitive tasks there is no single answer for how many partici-

pants to include in an experiment, and that brain regions of interest

and type of task will need to be considered.

Although these papers illustrate the perils of small sample sizes

when assessing resting state functional connectivity or task-related

activation, a critical aspect of task-based fMRI studies is to under-

stand individual differences in the relation between brain activity and

performance on the task. Similar issues of sample size would neces-

sarily arise when considering correlations between task-related brain

activity and behavioral measures across participants. However, to our

knowledge only one empirical study has looked at the effect of sample

size on such correlations in human fMRI data (Cremers et al., 2017).

This study also used simulated brain-behavior correlations to examine

effects that were strong and localized versus those that were weak

and diffuse. For the strong and localized condition, power and Dice

coefficient replication reached maximal levels with simulated sample

sizes of 30–40, whereas for weak and diffuse correlations even sam-

ple sizes of 150 failed to reach adequate power and replication levels.

With both sample sizes the size of the correlations was overestimated

relative to a simulated sample size of 10,000 (an effect also shown

using simulations by Yarkoni, 2009; see Table 1). The real-world

example included in this study was a correlation between activity dur-

ing the theory-of-mind task from the HCP data set and the agreeable-

ness score obtained from a personality trait inventory. The full sample

of 485 participants showed a weak and diffuse pattern of correlations,

with the maximum correlation shown by any voxel of 0.25. Subsam-

ples of N = 30 showed small localized areas of correlation with much

higher r values (0.6–0.7), with maximum values in quite different loca-

tions in the brain. These HCP results were consistent with the simula-

tions and supported the idea that small sample sizes can provide

results that may not be stable across subsamples and may not reflect

the actual underlying “true” correlations. This inflation of correlational

effect sizes has been called the “winner's curse” and has been dis-

cussed as one type of mistaken inference that can result from low

power due to small sample sizes (Button et al., 2013; Yarkoni, 2009).

In addition, small samples may underestimate the p value associated

with an effect, as p values may increase (i.e., become less significant)

with adding additional participants if the original result is a false posi-

tive (Simmons et al., 2011).

Given these issues involved with small sample sizes and the rela-

tive lack of actual experimental data available for assessing these

issues in brain-behavior correlations, we aimed to explore the influ-

ence of sample size on the stability of patterns of correlations

between task-related activation and performance during fMRI scans.

We assessed the effect of sample size on the replication of brain-

behavior correlations, as well as task-related activations, obtained

from two different cognitive tasks using two independent data sets,

which varied in scanning parameters and preprocessing methods. This

approach reflects the wide variety in methods of data collection and

preprocessing in the fMRI field. One data set was from a working

memory experiment (Kennedy, Boylan, Rieck, Foster, &

Rodrigue, 2017) run at the University of Texas at Dallas (referred to

as the Dallas data set) and the other data set consisted of the rela-

tional task from the Human Connectome Project, or HCP (Barch

et al., 2013). In both cases we correlated voxel-wise task-related brain

activity with accuracy on the task. Another goal of this study was to

compare two analytic approaches, one univariate and one multivari-

ate, which has not been done to date in the context of sample size

effects in experimental task fMRI data. This allowed us to determine

whether the greater sensitivity of multivariate techniques (e.g., Lukic,

Wernick, & Strother, 2002) would mitigate the influence of smaller

sample sizes. Our emphasis in both approaches was on replication of

spatial patterns assessed with two similarity metrics, and determining

the impact of sample size on the interpretation of these brain-

behavior correlational patterns.

2 | METHODS

2.1 | Dallas data set

The Dallas data set (Kennedy et al., 2017) consisted of fMRI scans from

171 participants aged 20–94 years (mean age = 53.03 ± 19.13 years;

100 women; 71 men). All were deemed to be healthy and cognitively

normal. All participants provided written informed consent in accord

with the University of Texas at Dallas and the University of Texas

Southwestern Medical Center institutional review board guidelines.

During scanning participants carried out a series of working memory n-

back tasks (0-back, 2-back, 3-back, or 4-back) with digits as stimuli. Dur-

ing these tasks participants saw a series of digits and were instructed to

respond if a digit was the same as the one seen two, three, or four trials

prior, or not. The 0-back condition served as the control task and

required participants to decide whether or not each digit matched a pre-

specified target digit. Each scanning run consisted of eight blocks,

including two blocks of each level of difficulty, and there were three
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runs in total. The 0-back blocks were 25 s in length and the 2-back,

3-back, and 4-back blocks were 50 s in length. Blocks were

counterbalanced for difficulty within run.

Participants were scanned on a 3T Philips Achieva scanner

equipped with a 32-channel head coil. Blood oxygenation level depen-

dent (BOLD) data were collected using a T2*-weighted echo-planar

imaging sequence with 29 interleaved axial slices per volume provid-

ing full brain coverage and acquired parallel to the AC-PC line,

(64 × 64 × 29 matrix, 3.4 × 3.4 × 5 mm3, FOV = 220 mm2, TE = 30 ms,

TR = 1.5 s, flip angle = 60�). High-resolution anatomical images were

also collected with a T1-weighted MP-RAGE sequence with 160 sagit-

tal slices (1 × 1 × 1 mm3 voxel size; 256 × 204 × 160 matrix, TR

=8.3 ms, TE = 3.8 ms, flip angle = 12�).

Data preprocessing was performed using SPM8 (Wellcome

Department of Cognitive Neurology, London, UK, RRID:SCR_007037)

along with in-house Matlab scripts (R2012b, Mathworks, RRID:

SCR_001622). Additionally, the ArtRepair toolbox in SPM (RRID:

SCR_005990) was used to determine motion parameter estimates.

Functional images were adjusted for slice acquisition time and motion

correction (using six directions of motion-estimates from ArtRepair

included as nuisance regressors), and each participant's T1-weighted

anatomical image was used to co-register the functional maps to stan-

dardized MNI space. The resulting normalized images were smoothed

with an isotropic 8 mm FWHM Gaussian kernel. The final voxel size

was 3 mm isotropic.

2.2 | HCP data set

The relational task data from the HCP 1200 release were used as the

second data set. We did not use the working memory task from the

HCP data set because accuracy was near ceiling. We accessed 865 non-

related participants, between the ages of 22 and 36 years for the ana-

lyses described here (mean age = 28.72 ± 3.74; 459 women; 406 men).

The relational task was adapted from a task developed by Christoff and

colleagues (Smith, Keramatian, & Christoff, 2007). The stimuli were six

different shapes filled with 1 of 6 different textures. In the relational

processing condition, participants were presented with two pairs of

objects, with one pair at the top of the screen and the other pair at the

bottom of the screen. They were told that they should first decide what

dimension differed across the top pair of objects (e.g., shape or texture)

and then they should decide whether the bottom pair of objects also

differed along that same dimension. In the control matching condition,

participants were shown two objects at the top of the screen and one

object at the bottom of the screen, and a word in the middle of the

screen (either “shape” or “texture”). The task was to decide whether the

bottom object matched either of the top two objects on that dimension.

In both tasks participants responded “yes” or “no” to each stimulus.

There were two runs of these tasks, with three relational blocks (each

18 s in length), three control blocks (18 s long) and three fixation blocks

(16 s long) in each run.

For the HCP data set (Barch, et al., 2013), whole-brain EPI acqui-

sitions were acquired with a 32-channel head coil on a modified 3T

Siemens Skyra (TR = 720 ms, TE = 33.1 ms, flip angle = 52�, BW

=2,290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices, with a multi-

band acceleration factor of 8). Two runs of the task were acquired,

one with a right-to-left and the other with a left-to-right phase

encoding. Runs were concatenated and analyzed as a single time

series.

Data preprocessing was completed using FSL (RRID:

SCR_002823, Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012), FreeSurfer (RRID:SCR_001847, Dale, Fischl, &

Sereno, 1999) and Connectome Workbench (RRID:SCR_008750,

Marcus et al., 2013). These steps included a gradient distortion cor-

rection, followed by FLIRT based motion correction, TOPUP-based

field map preprocessing using a spin echo field map, distortion correc-

tion and EPI to T1w registration, one step spline resampling to atlas

space, and intensity normalization and bias field removal (for further

details see Glasser et al., 2013). The resulting images were smoothed

with an isotropic 8 mm FWHM Gaussian kernel and the final voxel

size was 3 mm isotropic to match the smoothing and voxel size used

for the Dallas data.

2.3 | Sampling procedure

Multiple independent samples of specific sizes were randomly chosen

from each data set; all subsamples of a given size contained different

individuals, although participants could be re-used for a different sub-

sample size. In the Dallas data set we kept the age distribution similar

across the multiple samples, by breaking the data set into 4 age-

groups of participants (20–35, 36–55, 56–69, 70–94 years) and

selecting equal numbers from each age-group for each subsample of

the data. For this data set the sample sizes were 12 (10 subsamples of

12 participants each), 24 (7 subsamples), 36 (4 subsamples), 48 (3 sub-

samples), 60 (2 subsamples), 72 (2 subsamples) and 84 (2 subsamples).

In the HCP data set the sample sizes were 20, 40, 60, 80 (10 subsam-

ples for each), 100 (8 subsamples), 120 (7 subsamples), 140 (6 subsam-

ples), 160 (5 subsamples), 210 (4 subsamples), 280 (3 subsamples),

and 420 (2 subsamples).

2.4 | Analytic approach and task activation
analyses

All analyses were carried out with SPM8 and PLS (version 6.1311050,

www.rotman-baycrest.on.ca/index.php?section=84). SPM uses the

general linear model on voxel-wise contrasts, with FWE corrections

for multiple comparisons. PLS uses singular value decomposition to

determine latent variables present in the data and determines the

robust voxels contributing to the LVs in a single step, so there typi-

cally are no corrections for multiple comparisons (Krishnan, Williams,

McIntosh, & Abdi, 2011). PLS also uses resampling to determine the

significance of each LV and the robustness of each voxel's contribu-

tion to the spatial pattern associated with each LV. We used 1,000

permutations to determine the p value for each LV and 1,000
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bootstrap resamplings to determine each voxel's contribution via the

bootstrap ratio (BSR, voxel salience divided by the estimated SE of the

salience from the bootstrap).

The first set of analyses determined the task effect for both data

sets. For SPM the task contrast compared 0-back to the 2, 3, and

4-back conditions for the Dallas data set and the relational task to its

control matching task for the HCP data set. Within-participant first

level models were calculated for both HCP and Dallas data, using

block-style boxcars that were convolved with the hemodynamic

response function with onsets corresponding to the beginning of a

specific condition block and offset corresponding to the duration of

the block. Run-level regressors were included for these individual-

level models in both the Dallas and HCP analyses, but individual trial

level information within each block was not modeled. In addition,

because of the large age range in the Dallas data set, and the known

associations between age and head motion (Churchill, Raamana,

Spring, & Strother, 2017; Pujol et al., 2014), the six motion parameter

estimates were included as nuisance variables in the models for the

Dallas data set (also see next section for further corrections for age).

With PLS, we used the nonrotated option, which allowed us to enter

a pre-specified contrast to mimic the SPM analysis; that is, we contra-

sted the 0-back to the 2, 3, and 4-back blocks for the Dallas data set,

and the relational task blocks to the control matching task blocks for

the HCP data set (with blocks defined in the same way as for SPM).

For SPM we report activation maps corresponding to a voxelwise

FWE p < .05 (t ≥ 4.78), and for PLS we report voxels with BSR ≥ 4.0

(analogous to a Z score ≥ 4.0, p < .0001). These thresholds were cho-

sen because they are qualitatively similar and somewhat conservative

(Eklund, Nichols, & Knutsson, 2016). In addition, we focus here on the

areas where the tasks of interest had greater activity than their

respective control tasks (see Figure S1 for the areas of deactivation,

i.e., where there was more activity in the control tasks).

2.5 | Brain-behavior analyses

For brain-behavior analyses, we averaged accuracy on the 2, 3, and

4-back conditions in the Dallas data set, and for the HCP data set we

used accuracy averaged over all relational task trials. To compute the

correlations between brain activity and these behavioral variables, we

used the task-related contrast images created with SPM and assessed

correlations between these first-level contrast images and accuracy

on the task. In SPM this was done using the second-level multiple

regression module and in PLS this was done using the behavioral algo-

rithm in the PET module (which allows for analysis on a single image

per participant). Thus, these analyses were as similar as possible

between SPM and PLS, allowing both univariate and multivariate

approaches to the same question of how activation during the n-back

conditions (2, 3, and 4-back combined, Dallas data set) and the rela-

tional task (HCP), relative to their respective control tasks, correlates

with performance accuracy.

The Dallas data set had a large age range in the participants,

which could be problematic because previous studies have found that

older adults move more in the scanner than younger adults (Churchill

et al., 2017; Pujol et al., 2014), and perform more poorly on working

memory tasks (e.g., Craik, Morris, & Gick, 1990; De Luca et al., 2003;

Foos, 1995; Gazzaley, Sheridan, Cooney, & D'Esposito, 2007;

Hasher & Zacks, 1988; Kennedy et al., 2017). We examined whether

these relations held in this data set by testing the correlations among

age, accuracy and frame displacement (FD, a measure of head motion,

for example, Geerligs, Tsvetanov, Cam, & Henson, 2017; Petrican &

Grady, 2017; Van Dijk, Sabuncu, & Buckner, 2012) in the entire sam-

ple. Age and head motion were correlated (r = 0.46, p < .0001), and

both age and FD were negatively correlated with accuracy on the n-

back tasks (age r = −0.48, p ≤ .0001; FD r = −0.29, p < .001). Because

we wanted to explore the effects of sample size independent of any

effect of aging, we corrected for age and head motion in the brain-

behavior analyses for the Dallas data. This was done in the PLS ana-

lyses by regressing age and mean FD from both the accuracy measure

and the brain image (per voxel) for each participant and using the

residual values in the brain-behavior PLS analyses. For the SPM ana-

lyses, age and mean FD were entered as covariates of no interest.

Although the HCP data set had a much more restricted age range,

there nevertheless were weak, but significant correlations among age,

FD and accuracy on the relational task. The correlation between age

and accuracy was −0.09 (p < .01), between age and FD was 0.12

(p < 0.001), and between accuracy and FD was −0.19 (p < .00001).

Therefore, we used the same procedure to regress age and FD out of

the brain and behavioral data for both PLS and SPM as described

above for the Dallas data set.

We report the results of the brain-behavior analyses in several

ways. From the PLS analyses we obtained a p value for the latent vari-

able identified by each analysis, as well as a correlation between the

brain scores and accuracy. The brain scores indicate how much each

participant expressed the brain pattern on the LV and so the correla-

tion of brain scores and accuracy provides a measure of how well the

whole-brain pattern on the LV correlates with behavior. To assess the

similarity between the spatial maps within each sample size for both

SPM and PLS we calculated two metrics. The first was a Spearman

correlation (rho) across all voxels in the maps for each possible pair in

a given sample size. The second metric was the Jaccard index, which

is the number of voxels in the intersection (overlap) between two

thresholded spatial maps divided by the union of all above-threshold

voxels across both maps. We only report the Jaccard indices for

voxels with positive correlations with accuracy, as there were very

few above-threshold negative correlations with accuracy in either

data set. To calculate these Jaccard indices an uncorrected threshold

of three was used for both SPM t maps and PLS BSR maps (approxi-

mate voxel-level p = .003); this threshold was chosen to provide a rea-

sonable estimate of the above threshold voxels without being too

liberal.

Finally, to determine the voxels that contributed consistently to

the brain-behavior correlations as a function of sample size, we calcu-

lated penetration maps for each sample size using the spatial maps

obtained from the SPM and PLS accuracy analyses for the voxels with

positive correlations with behavior. These penetration maps indicate
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the voxels where some number of thresholded spatial maps overlap

within each sample size, from a minimum of 2 to a maximum equal to

the total number of samples of a given size. A threshold of 3 was used

for all images entering into the penetration maps, and no clustering

was done on the thresholded images prior to computing the penetra-

tion maps. Prior to calculating the penetration maps, images from both

the PLS and SPM analyses were masked using a gray matter mask that

also removed voxels estimated as “NA” (due to low signal in the SPM

first-level processing).

3 | RESULTS

3.1 | Dallas data set

SPM identified a set of frontoparietal regions with more activity for

the cognitively demanding n-back conditions relative to the 0-back

condition. As seen in Figure 1 for the largest subsamples of 84 partici-

pants, these included dorsolateral prefrontal, inferior parietal and

anterior insula/frontal opercular regions bilaterally (see Figure S1 for

the areas with more activity for the 0-back condition). The mean rho

values for all samples sizes were quite high (≥ 0.8) even for the sub-

samples of only 12 participants. However, when comparing

thresholded images resulting from the SPM analyses the overlap for

those regions with increased activity during the working memory

tasks, as indicated by the Jaccard index, was low for the smallest sam-

ple size, but increased to >0.6 at the largest sample size. PLS identified

a similar group of frontoparietal regions with more activity during the

n-back conditions, but also showed more extensive activation in these

regions, as well as activation in occipital cortex not found by SPM

(Figure 1). The rho values were > 0.8 for all sample sizes, except for

the smallest size of 12. The Jaccard index increased from 0.2 at the

smallest sample size to �0.6 at the larger sample sizes, and was

numerically larger for PLS than for SPM, particularly with sample sizes

of 50 or fewer participants. A paired t test comparing the Jaccard indi-

ces for PLS and SPM showed a trend for PLS to have higher Jaccard

values (t[6] = 2.08, p = .08).

Both the task-positive and the task-negative activity for this data

set show that univariate and multivariate approaches can sometimes

result in somewhat different spatial maps. For example, SPM identi-

fied occipital regions with more activity during 0-back, whereas PLS

showed more activaton in occipital areas during 2,3,4-back (compare

Figure 1 with Figure S1). Although the PLS activation peaked in infe-

rior occipital gyrus and peak deactivation found with SPM was in the

lingual gyrus, this seemingly opposite effect in occipital cortex could

have occurred because weights for each condition are allowed to vary

in PLS but not in SPM. In addition, differences can be found across

approaches because PLS attempts to find voxels that vary together

across the whole brain, whereas SPM carries out statistics for each

voxel independently.

As with the task activation patterns, the brain regions that corre-

lated with accuracy on the n-back conditions were similar for SPM

and PLS (Figure 2, which shows the mean spatial patterns for the two

largest subsamples). Positive correlations were seen mainly in

frontoparietal cortex, with some additional regions in occipital cortex

and cerebellum identified by PLS. Above threshold negative correla-

tions were found by both SPM and PLS in only in a few very small

regions in medial prefrontal cortex (not shown). The mean rho values

F IGURE 1 The impact of sample size on the task effect is shown
for the Dallas data set using SPM and PLS. The graph shows the mean
rho (black) and mean Jaccard values for the contrast of the 2, 3, and
4-back working memory tasks versus the 0-back (red), for each
sample size. “S” refers to SPM, and “P” refers to PLS. The spatial maps
show the mean of the two images from the subsamples with the
maximum size (84 participants) where there was more activity for the
2, 3, and 4-back working memory tasks identified by SPM (green) and
PLS (blue), as well as the overlap (red). The threshold used for these
maps was t > 4.7 for SPM and BSR > 4 for PLS. In this Figure and all
subsequent brain figures (except Figure 4), the brain images range
from 49 to −23 mm (top left to bottom right) relative to the anterior
commissure—posterior commissure line, in 9 mm steps. All brain

figures were made using Mango (http://ric.uthscsa.edu/mango/)
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increased with increasing sample size in both SPM and PLS analyses

(Figure 2), peaking at 0.57 for SPM and 0.61 for PLS. The Jaccard indi-

ces for the positive correlations were considerably lower, but also

increased with increasing sample size. These values were lower than

the Jaccard indices for the task analyses, achieving a maximum of

�0.2–0.3, compared with �0.6 for task. Nevertheless, the rho and

Jaccard values were numerically higher in the PLS analyses across

almost all sample sizes compared to those found with SPM. A paired

t-test confirmed that the Jaccard indices for PLS were significantly

higher than those for SPM (t[6] = 4.49, p = .004).

In the PLS correlational analyses (Figure 3a), the correlations

between accuracy and brain scores decreased with increasing sample

size, showing the typical inflation of values with smaller sample sizes.

Note, however, that all of the resulting correlations have been plotted

in Figure 3 regardless of statistical significance, indicating that effect

size inflation in this instance was not simply due to larger correlations

being needed for significance if sample sizes are small. These correla-

tions between accuracy and brain scores stabilized at �0.55 with

60 or more participants. Similarly, the p-values associated with the

LVs decreased with increasing sample size (Figure 3a), with most p-

values well above .05 at the smallest sample size of 12. All the sub-

samples had p-values below the .05 level for the two largest sample

sizes of 72 and 84 participants.

Penetration maps for the accuracy analyses from two subsample

sizes are shown in Figure 4. The sample sizes chosen for comparison

in this Figure were the smallest size where all of the PLS task LVs had

p < .05 (24 participants) and the smallest size where all of the PLS

accuracy LVs had p < .05 (72 participants). At the relatively small sam-

ple size of 24 there was overlap across PLS maps (Figure 4a) in left

precentral cortex and cerebellum (5/7 maps with overlap), bilateral

inferior parietal regions and left inferior frontal cortex (4/7), and left

occipital cortex (3/7). At this sample size the regions of overlap in the

SPM maps (Figure 4b) were limited to small regions in left precentral

cortex (3/7), bilateral parietal and frontal cortex (2/7) and left cerebel-

lum (2/7). The regions with penetration in both PLS and SPM maps

were precentral, parietal and frontal cortex in the left hemisphere. At

the larger sample size of 72 the regions where the two maps over-

lapped in PLS were similar to those seen with 24 participants, but

were more extensive in the SPM map compared to its 24-participant

counterpart. Regions common to both SPM and PLS expanded to

include the majority of the regions seen in the PLS maps at both sam-

ple sizes. The main effect of increasing the sample size on the spatial

patterns seemed to be to increase the number of overlapping voxels

in the SPM maps without changing the basic pattern of effects. In

addition, the overlapping regions identified by SPM were a subset of

those from PLS, and SPM did not identify any regions not also shown

by PLS. The mean number of overlapping above-threshold voxels for

the positive correlations increased as sample size increased for both

SPM and PLS (Figure S2). In addition, the mean number of overlapping

above-threshold voxels identified by PLS across all sample sizes was

larger than that identified by SPM (PLS mean = 1,555, SE = 559; SPM

mean = 348, SE = 140; paired t[6] = 3.5, p = .013).

In addition to the overlap identified by the penetration maps,

there also were unique regions identified by the spatial maps at the

small sample size of 24 participants. Figure S3 shows all seven

24-participant maps from the PLS analysis, which, given its greater

sensitivity, would be expected to show more regions of correlation.

This figure shows that all of the seven subgroups showed areas in

dorsomedial or dorsolateral frontal and parietal cortex where greater

F IGURE 2 The impact of sample size on the correlations between

brain activation and task accuracy is shown for the Dallas data set
using SPM and PLS. The graph shows the mean rho (black) and the
mean Jaccard values for positive correlations (red), for each sample
size. “S” refers to SPM, and “P” refers to PLS. The spatial maps show
the regions that were positively correlated with accuracy (mean maps
for the two subsamples with 84 participants for SPM and PLS).
Negative correlations were limited to only a few voxels in
dorsomedial prefrontal cortex and are not shown here. The threshold
used for these maps was t > 3 for SPM and BSR > 3 for PLS. Voxels
identified by SPM are shown in green, those identified by PLS are
shown in blue, and overlapping voxels are shown in red
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activity was related to better task performance. However, a number

of regions, notably in occipitotemporal cortex and subcortical regions,

were identified in only one or two of the seven maps, so there was

variability in these spatial patterns. In addition, there were scattered

areas where reduced activity was associated with better performance

(i.e., negative correlations) seen in some of the maps, and these gener-

ally did not overlap. Even in the two 84-participant spatial maps

(Figure S4) there were some areas identified in only one or the other

subsample, for both SPM and PLS.

3.2 | HCP data set

For the HCP data set, the activation during the relational task rev-

ealed by SPM was in widespread areas of prefrontal and parietal cor-

tex, and bilateral occipital cortex (Figure 5), with more activity during

the control task in sensorimotor and anterior temporal regions and

the cingulate gyrus (see Figure S1). This task effect identified by SPM

was fairly robust even with the smallest sample size when looking at

rho; the effect was less robust according to the Jaccard metric, which

reached 0.6 only when 160 participants were included. The PLS task

effect was similar (Figure 5) in terms of rho and Jaccard values,

although the Jaccard values were higher for PLS than for SPM (paired

t[10] = 8.74, p < .00001). Maximum Jaccard values for the relational

task with 420 participants exceeded 0.8 for both SPM and PLS. The

spatial maps also were quite similar but slightly more extensive in the

PLS result. Overall, the relational task effect in terms of rho value was

similar in strength to the working memory task effect in the Dallas

data set for subsamples of similar size when using PLS (Figure S5).

When using SPM the similarity metrics were consistently weaker for

the HCP relational task than for the Dallas working memory task. For

example, using SPM the Jaccard value at a sample size of 80, roughly

equivalent to the sample size of 84 in the Dallas data set, was 0.42 for

the HCP relational task and 0.67 for the working memory task in the

Dallas data set.

The analyses of the relation between brain activation (relational

vs. control) and accuracy on the relational task showed positive corre-

lations in frontoparietal areas, a broad expanse of occipital cortex, and

the caudate nucleus in the largest subsamples for both SPM and PLS

(Figure 6). A small number of negatively correlated voxels was

F IGURE 3 The results of the PLS analyses of brain-behavior correlations are shown for the Dallas (a) and HCP (b) data sets. The left-hand
graphs show the correlations between accuracy and brain scores for all samples at each sample size (the dashed line joins the mean values at each
sample size). The right-hand graphs show the LV p values (from the permutation test) for all samples at each sample size (the dashed line joins the
mean values at each sample size). The solid line indicates p = .05
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identified in ventromedial frontal cortex by PLS (not shown). The

mean rho values for the analyses of relational task accuracy and brain

activity increased with increasing sample size in both SPM and PLS

analyses (Figure 6), peaking near 0.9, with very similar values for SPM

and PLS. The Jaccard indices were lower, but also increased with

increasing sample sizes in both SPM and PLS analyses, with peak

values of 0.67 (SPM) and 0.76 (PLS). In addition, the Jaccard measures

were higher for PLS than for SPM (paired t[10] = 2.97, p = .01). These

rho and Jaccard values were similar to those from similarly sized sub-

samples in the Dallas data set, although the Dallas values tended to

be higher, and the PLS Jaccard values were slightly higher than those

resulting from SPM (Figure S5).

In the PLS analyses of the HCP data (Figure 3b), the correlations

between accuracy and brain scores decreased with increasing sample

size, showing inflation of values with smaller sample sizes as was seen

with the Dallas data set. These correlations stabilized at �0.4 with

100 or more participants. Similarly, the p values associated with the

LVs decreased with increasing sample size, such that with a sample

size of 80 or more the LVs from all the subsamples had p-values below

the .05 level. Therefore, the number of participants required to obtain

relatively stable correlation magnitudes and significant LVs in the PLS

accuracy analyses was roughly 80 participants in both the Dallas and

HCP data sets.

The penetration maps for the HCP accuracy analyses (Figure 7)

showed that at a sample size of 20, which was the smallest sample

size where all the task PLS LVs had p < .05, there was overlap of posi-

tively correlated voxels in the medial occipital, parietal, and frontal

regions for both SPM and PLS, although this overlap was much more

extensive for PLS. In the PLS analyses a precentral region was identi-

fied in 7 of 10 of the 20-participant subsamples, medial occipital cor-

tex showed overlapping correlations in 6 of 10 subsamples and

bilateral parietal regions had 5 of 10 subsamples with overlapping

F IGURE 4 The penetration maps
are shown for the Dallas data set for
two sample sizes (see text for an
explanation of the choice of the two
sample sizes). These maps show
voxels with at least two overlapping
maps for PLS (a) and SPM (b). The
color bars indicate the number of
overlapping maps: from 2 to a

maximum of 7 maps for the
24-participant subsamples, and both
of the 72-participant subsamples
(2 maps). The brain images range
from 57 to −23 mm (top left to
bottom right) relative to the anterior
commissure—posterior commissure
line, in 10 mm steps
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voxels. The maximum amount of overlap in the SPM maps was lower,

and was found in medial occipital cortex, which showed overlap in

4 of the 10 subsamples. Right parietal and frontal cortex showed

overlap in 3 maps. At a larger sample size of 80, where all the accuracy

PLS LVs had p < .05, the occipital area was considerably larger in

extent, as were the frontal and parietal cortical regions of overlap in

both the PLS and SPM maps. In the PLS maps the right parietal region

showed the maximum amount of overlap (10 of 10), and the frontal

and medial occipital regions showed overlap in 8–9 maps. In the SPM

penetration maps 8 of 10 maps overlapped in the medial occipital

F IGURE 5 The impact of sample size on the task effect is shown
for the HCP data set using SPM and PLS. The graph shows the mean
rho (black) and mean Jaccard values for the contrast of relational task
> control (red), for each sample size. “S” refers to SPM, and “P” refers
to PLS. The spatial maps show the regions with more activity for the
relational task in the samples with the maximum size (mean of the
two 420-participant subsamples for SPM and PLS). The threshold
used for these maps was t > 5 for SPM and BSR > 5 for PLS. There
were no voxels identified by SPM and not PLS (no green voxels) but
almost all of the regions showed slightly more extensive voxels
identified by PLS (blue); overlapping voxels are shown in red

F IGURE 6 The impact of sample size on the correlations between
brain activation and task accuracy is shown for the HCP data set
using SPM and PLS. The graph shows the mean rho (black) and the
mean Jaccard values for positive correlations (red), for each sample
size. “S” refers to SPM, and “P” refers to PLS. The spatial maps show
the regions that were positively correlated with accuracy in the
samples with the maximum size (mean of the two 420-participant
subsamples for SPM and PLS). Negative correlations were limited to
only a few voxels in ventromedial prefrontal cortex in the PLS analysis
and are not shown here. The threshold used for these maps was t > 4

for SPM and BSR > 4 for PLS. Voxels identified by SPM are shown in
green, those identified by PLS are shown in blue, and overlapping
voxels are shown in red
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region and right frontal cortex, with the maximum amount of overlap

(9/10) in a small region of left cerebellum. As with the Dallas data set,

the mean number of overlapping voxels identified in these spatial pat-

terns increased with increasing sample size (Figure S2). Also, PLS

showed a greater number of overlapping voxels than SPM (PLS

mean = 6,894, SE = 1876; SPM mean = 5,885, SE = 2024; paired t

[10] = 5.0, p = .001). Thus, as with the Dallas data set, larger sample

sizes in the HCP data were associated with a greater extent of regions

reliably found across subsamples and techniques, revealing more fron-

tal, parietal, and occipital cortex involvement. The PLS and SPM maps

were similar, but the PLS maps showed more overlapping voxels.

The 10 individual maps from the 20-participant subsamples (PLS

analysis) are shown in Figure S6 to illustrate the variability across

maps with this small sample size. As with the Dallas data set, there

F IGURE 7 The penetration maps are shown for the HCP data set for two sample sizes (see text for an explanation of the choice of the two
sample sizes). These maps show voxels with at least two overlapping maps for PLS (a) and SPM (b). The color bars indicate the number of
overlapping maps: from 2 to a maximum of 10 maps for the 20-participant subsamples, and from 2 to a maximum of 10 maps for the
80-participant subsamples
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was variability in the extent of correlation in frontoparietal cortex as

well as inconsistent correlations in subcortical and temporal regions.

In addition, there were scattered areas of negative correlations

between activation and task accuracy that generally did not overlap

across maps. Finally, there was an area in left medial parietal cortex

that showed positive correlations with accuracy in four subsamples,

but negative correlations in two of the subsamples. In addition, there

continued to be some unique positively correlated voxels in the spatial

maps from the two largest HCP subsamples (420 participants,

Figure S4)

4 | DISCUSSION

As expected, all of our analyses showed an increase in the stability of

the derived spatial maps as sample size increased, as well as a

decrease in the size of the correlation between brain activity and task

accuracy identified by PLS. These task and brain-behavior effects

appeared to be similarly robust in the Dallas and HCP data sets, with

slightly greater similarity measures in the Dallas data set when using

SPM to analyze task effects. Overall, our results are consistent with

the literature on the disadvantages of small sample sizes and extend

this work by showing in two independent data sets: (a) sample size

influences brain-behavior correlations in a similar way regardless of

whether one uses a univariate or multivariate analytic approach,

although the multivariate approach identified more consistent and

extensive correlational patterns; and (b) the effects of small sample

size on interpretation of brain-behavior patterns include type I and

type II errors, as well as inflated correlation effects.

Consistent with prior work, we found that increasing the sample

size increased the similarity of the spatial maps for the task effect

using both rho and the Jaccard index (Murphy & Garavan, 2004;

Turner et al., 2018). In addition, the rho values calculated on the

unthresholded images were consistently higher than the Jaccard

values calculated on the thresholded images. For example, in the Dal-

las data set the amount of variance shared by the unthresholded task-

analysis spatial maps from the two largest subsamples (84 participants)

was �90% whereas the overlap of the two thresholded images was

�40%. This difference in similarity metrics calculated on task activa-

tions also was noted by Turner et al. (2018), and suggests that

thresholding the images prior to assessing map similarity removes

some information that contributes to assessing stability across spatial

maps. Also, the rho and Jaccard values that we report here for both

Dallas and HCP are well within the range of values reported by Turner

et al., which were calculated on a much smaller sample from the HCP,

thus replicating their work and indicating that these values can gener-

alize across independent data sets.

We also showed that increasing the sample size increased the

similarity of the spatial maps for the accuracy analyses, indicating that

brain-behavior correlations also benefit from greater stability of

results with larger samples. In line with a prior simulation

(Yarkoni, 2009) we found that brain-behavior correlations were over-

estimated with small sample sizes but were largely stabilized with

sample sizes of roughly 80 or more participants. In addition, the brain-

behavior correlations were less stable than the task effects for both

data sets, particularly in terms of the Jaccard index, across all sample

sizes. This is perhaps not surprising as this difference in power has

been reported in prior work using simulations to estimate power

(Yarkoni, 2009), although studies assessing brain-behavior correlations

typically do not utilize larger sample sizes than those assessing task

effects (Lebreton, Bavard, Daunizeau, & Palminteri, 2019). Neverthe-

less, it is clear that more participants would be needed if the research

question required an assessment of individual differences in the rela-

tion between task activity and behavior.

Like several prior simulation studies (Cremers et al., 2017;

Yarkoni, 2009), we found using PLS that correlations between brain

activity and accuracy were inflated with small sample sizes in both

data sets. This inflation has typically been found as a result of larger r

values being needed to reach a statistical cutoff with a small sample.

However, these correlations derived from PLS are not assessed for

significance per se, because significance is assessed at the LV level

(and many of the correlations were not associated with significant LVs

in the small sample sizes, see Figure 3). Therefore, the inflation of cor-

relation values that we found with PLS is not dependent on whether

or not the correlation is significant. Instead, this inflation may occur

with PLS because PLS, as a multivariate technique, models the optimal

relation between whole brain activity and accuracy. With small sample

sizes, any such model may be over-fitted, leading to inflated correla-

tion values and LVs that are not stable or significant when assessed

using the permutation test. With larger samples the relation between

whole brain activity and accuracy can be modeled more accurately,

with less over-fitting and more stable LVs. Thus, overly large correla-

tion values with small sample sizes can result from both univariate

and multivariate analytic techniques, and are not necessarily a func-

tion of statistical thresholding.

Our results also indicate that the brain-behavior and task effects

are similarly robust across the Dallas and HCP data sets at comparable

subsample sizes, with a slight advantage for the Dallas data (see

Figure S5). It is important to note that the larger age range in the Dal-

las participants did not influence this effect because we removed the

effects of age and head motion prior to calculating the brain-behavior

correlations. The slightly greater sensitivity seen in the Dallas data set

could be due to several factors. The HCP scanning parameters and

pre-processing differ from those used with the Dallas data set, which

could influence the results. The difference between data sets also

could reflect a difference in the task demands as variability across

tasks in reproducibility has been found by others as well (Kampa

et al., 2020; Turner et al., 2018). In addition, there was more data per-

participant in the Dallas data set than for the HCP, and the amount of

data collected for each participant is a known factor in determining

statistical power in fMRI (Desmond & Glover, 2002; Mumford &

Nichols, 2008; Nee, 2019). One factor that does not appear to

account for differences in results across the two data sets is the range

of accuracy scores. The range of these scores is similar in the two data

sets (roughly between 50–100%), so the degree of behavioral variabil-

ity does not seem to be a factor.
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The main difference in the results between the SPM and PLS

approaches to analysis was that PLS identified more voxels with either

a task or correlation effect, and there were higher Jaccard values and

more overlap in the penetration maps from the correlation analyses

compared to SPM. This difference was consistent across both data

sets, although in the HCP data set it was more prominent at smaller

sample sizes (i.e., less than 200 participants). This finding is consistent

with evidence that multivariate analyses can be more sensitive than

univariate ones (Fletcher et al., 1996; Lukic et al., 2002), but also

extends this evidence to show that multivariate assessments also can

result in more consistent and stable patterns of correlational effects.

Thus, our results suggest that the basic influence of sample size on

results stability and the interpretation that one would gain from either

a task or behavioral analysis would not depend on which approach

was used. However, given the greater sensitivity of PLS one would

likely require fewer participants if using a multivariate approach than

if using a univariate approach.

In regard to the interpretation, there are several points of interest

to note. First, the task effects that we found replicate the regional

effects reported by others on these tasks. That is, the working mem-

ory task engaged regions of dorsolateral prefrontal and parietal cortex

that have been reported many times by prior studies in young and

older adults (for recent meta-analyses see Daniel, Katz, &

Robinson, 2016; Rottschy et al., 2012; Wang et al., 2019; Yaple, Ste-

vens, & Arsalidou, 2019). The relational task also engaged regions

reported for this task by other researchers (Barch, et al., 2013; Smith

et al., 2007), such as dorsomedial and lateral prefrontal cortex, and

occipital regions. In addition, both the working memory and relational

task activate similar cognitive control regions in frontal and parietal

cortex (e.g., Dosenbach et al., 2007; Power et al., 2011; Vincent, Kahn,

Snyder, Raichle, & Buckner, 2008), indicating a demand on cognitive

control despite the differences in the perceptual and memory

domains. Second, for both data sets the task-related increases in

activity were positively correlated with accuracy on the tasks. In the

Dallas data set greater activation in frontoparietal regions during the

n-back tasks, compared to 0-back, was related to higher accuracy on

the tasks. In the HCP data set more activation during the relational

task in frontoparietal and occipital cortices was related to better per-

formance on the relational task. These positive correlations between

task-related activity and performance are in line with the correlation

between working memory load-related activation and accuracy

reported in the full Dallas data set by Kennedy et al. (2017), and the

finding that activation in parietal and occipital cortex during the rela-

tional task correlated with performance on a cognitive control behav-

ioral composite in 194 of the HPC participants (Lerman-Sinkoff

et al., 2017). Thus, for both tasks, activation in frontoparietal regions

thought to be involved in cognitive control is associated with better

performance. This finding is particularly notable regarding the working

memory task, as working memory is thought to be one of the main

components of cognitive control (Miyake et al., 2000), providing fur-

ther support for the role of these specific frontal and parietal regions

in top-down control processes. Third, it is important to note that an

increase in the spatial extent of voxels where activity is correlated

consistently with accuracy is an important effect of increasing the

sample size. That is, with smaller sample sizes the spatial patterns

identified in the penetration maps were more spatially restricted than

those from larger sample sizes (a similar effect of sample size on task-

related activation was noted by Murphy & Garavan, 2004). With

larger sample sizes it became evident that activity in almost all of the

task-related regions was correlated with behavior, indicating a strong

link between the regions engaged by the task and participants' ability

to do the task accurately. This result shows that when examining the

relation between brain activity and behavior with low statistical

power, if a spatially restricted set of correlations is found, researchers

should be aware that this may not reflect the full distribution of corre-

lational effects that would be observed with higher power (a point

also made by Cremers et al., 2017). In general, small sample sizes

increase the risk of type II errors (false negatives) in identifying the full

set of regions that correlate with behavior, but would nevertheless

identify some regions that would show “true” correlations with behav-

ior if the sample size were sufficiently large. On the other hand,

unique areas where activation correlated with accuracy also were

identified in small subsamples, some being found in only 1 of 7 or

10 subsamples (See Figures S4 and S6). This indicates that Type I

errors, that is, false positives, are likely to occur as well as Type II

errors when statistical power is low. This result leads to the conclu-

sion that with sample sizes in the range of those often used in fMRI

studies (i.e., 20–30 participants), one cannot be confident that all of

the regions appearing to correlate with individual differences in

behavior are reliable, or that other regions have not been missed

altogether.

Although our results cannot be used to provide a definitive

answer to the question of how many participants one needs to obtain

a robust and stable brain-behavior correlation, it is interesting that

with both the Dallas and HCP data sets a sample size of roughly

80 participants was sufficient to achieve stable correlation magni-

tudes and significant LVs using PLS. However, it is also the case that

the sample size needed for any given experiment will depend on a

number of factors, including the type of task that participants carry

out and the analytic approach to be used, as well as the characteristics

of the sample (e.g., young vs. older adults, patients with a specific dis-

order, etc.). The analyses reported here are limited to the effects of

sample size in healthy adults, removing the effects of age, and

although the results generalize across the two experiments used here

it is not clear how well our findings would apply to studies using

patient populations, or different tasks. For example, the working

memory and relational tasks that we used here are typical examples

of an externally driven task in which stimuli are presented visually and

participants are required to make a judgment about a stimulus prop-

erty. Other types of task rely on cognitive processes that are internally

driven, such as autobiographical memory retrieval or social/emotional

decisions, and it is unknown whether the results reported here would

characterize internally driven kinds of tasks. An additional limitation of

this work is that for our aim of examining the effect of sample size on

brain-behavior correlations we were limited in the task data that could

be used from the HCP study. A number of other tasks with in-scanner
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performance measures are included as part of the HCP release, includ-

ing social cognition tasks, but are either prone to ceiling effects in per-

formance and/or have a restricted range of performance values,

making them ill-suited to the study of individual differences in brain-

behavior relations. We also note that the results reported here with

whole brain analyses might not be applicable to brain-behavior corre-

lations measured with pre-defined ROIs, whether these are defined

anatomically or functionally. Future work will be needed to determine

adequate sample sizes across a broad range of cognitive tasks and dif-

ferent ways of extracting brain activity.

Finally, Turner et al (Turner et al., 2018; Turner, Santander, Paul,

Barbey, & Miller, 2019) have discussed the difficulties in rec-

ommending any specific sample size that would be suitable across all

experimental studies, and have shown that within-subject and

between-subject variability impact replicability, in addition to sample

size and amount of per-participant data that are collected. These

authors have recommended a change in the methodological conven-

tions that fMRI researchers use in their publications, such that it

becomes standard practice to report “variables including replicability,

as well as within-participant and between-participant variability”

(Turner et al., 2019). Given these issues, as well as those surrounding

power estimates, patient samples, and the host of other variables that

might be involved in any fMRI experiment, we agree that attention

should be paid to all of these variables when designing one's experi-

ment and when reporting the results, including sample size and esti-

mated power (Durnez et al., 2016; Poldrack et al., 2017). In addition,

full reporting of such variables as power and effect size, as rec-

ommended in the framework compiled by the OHBM Committee on

Best Practices in Data Analysis and Sharing (COBIDAS, Nichols

et al., 2017), would be helpful in allowing readers to estimate how

replicable any one experimental result is likely to be. Regardless, we

emphasize that sample sizes of 20–30 participants are likely to be

inadequate for identifying reproducible voxel-wise correlations

between behavior and brain activity in many, if not most, cognitive

fMRI experiments.

In conclusion, we have presented evidence from two human fMRI

data sets supporting the idea that small sample sizes can be particu-

larly troublesome for brain-behavior correlations. These results are

consistent with previously reported simulation studies, but also pro-

vide novel experimental evidence from two independent data sets of

the importance of sample size in obtaining stable results. An important

aspect of our results is that multivariate approaches, such as the PLS

approach used here, are not only more sensitive than a univariate

approach to task-related activations but also produce more extensive

and consistent correlations between brain activity and behavior. This

greater sensitivity might provide some benefit with smaller sample

sizes, but should not be used as a substitute for giving full consider-

ation to estimating a sufficient sample size when planning one's

experiment. We hope that researchers will be able to use the results

of this study to guide them in planning experiments and choosing a

sample size appropriate to their scientific question, and to help evalu-

ate the likelihood of true brain-behavior effects reported in published

work of varying sample sizes. Multicenter studies and large

collaborative fMRI efforts, such as the HCP data set utilized here, are

becoming more common and will mitigate the problem of small sam-

ple sizes for some types of research question. Nevertheless, it likely

will still be the case for some time to come that many cognitive neuro-

science experiments probing the neural correlates of specific cognitive

processes will be carried out in single laboratories and researchers will

need to ensure that issues of sample size and power are adequately

addressed when brain-behavior correlations are employed.
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