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Abstract: Intrinsic functional connectivity networks derived from different neuroimaging methods and
connectivity estimators have revealed robust developmental trends linked to behavioural and cognitive
maturation. The present study employed a dynamic functional connectivity approach to determine
dominant intrinsic coupling modes in resting-state neuromagnetic data from 178 healthy participants
aged 8–60 years. Results revealed significant developmental trends in three types of dominant
intra- and inter-hemispheric neuronal population interactions (amplitude envelope, phase coupling,
and phase-amplitude synchronization) involving frontal, temporal, and parieto-occipital regions.
Multi-class support vector machines achieved 89% correct classification of participants according to
their chronological age using dynamic functional connectivity indices. Moreover, systematic temporal
variability in functional connectivity profiles, which was used to empirically derive a composite
flexibility index, displayed an inverse U-shaped curve among healthy participants. Lower flexibility
values were found among age-matched children with reading disability and adults who had suffered
mild traumatic brain injury. The importance of these results for normal and abnormal brain
development are discussed in light of the recently proposed role of cross-frequency interactions in
the fine-grained coordination of neuronal population activity.
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1. Introduction

The study of human brain development is rapidly becoming a central research area for
understanding the nature of neuropsychiatric diseases and various developmental disorders [1,2].
A major breakthrough in this line of research was the demonstration of coherent patterns of brain
activity at rest [3–5], advancing the notion that the human brain is a self-organizing system constantly
displaying coherent patterns of activity, both locally and globally, rather than a passive device solely
driven by bottom-up processes [6–8]. A key development in this line of research was the demonstration
of intrinsic connectivity networks such as the salience, prefrontal, sensorimotor, and default mode
networks, derived from functional connectivity analyses of resting-state functional magnetic resonance
imaging (fMRI) data.

Several developmental trends have since been described including changes in the strength of short-
and long-range connections [9], the expansion of cortical hubs outside sensorimotor regions [10], and
increasing variability of connections between the default mode, visual, and cerebellar networks [11].
Significant improvements in algorithms used to quantify functional connectivity have created realistic
expectations towards a better understanding of neurophysiological correlates of brain maturation as
well as identifying robust brain connectivity markers of individual developmental trajectories [9,12].
Previous resting-state fMRI studies based on static brain connectivity and multivariate pattern analysis
tools (MVPA, support vector machine, and support vector regressor) attempted to predict individual
age [9,13] and classify individual participants according to their actual age [13,14]. A dynamic
functional connectivity study based on fMRI resting-state further demonstrated that the temporal
variability in the strength of specific connections afforded more accurate modelling of spontaneous
fluctuations related to maturation age [11].

The vast majority of developmental neuroimaging studies have used fMRI to model functional
connectivity patterns relying on indirect associations between rhythmic fluctuations in resting-state
hemodynamic recordings and underlying neurophysiological activity. Few studies have employed
brain electrical or neuromagnetic recordings operating at a time scale suitable to accurately represent
the rhythmic patterns of neurophysiological activity at both low- (e.g., in the δ band ranging between 1
and 4 Hz) and higher frequencies (θ: 5–8 Hz, α: 9–12 Hz, β: 13–30 Hz, and γ: 30–100 Hz; [6,8]).

Recently, two basic dominant intrinsic coupling modes (dICMs) have been documented, one
indexed by the correlation of the amplitude envelope and the second by phase synchronization [15].
Each dICM purportedly displays a characteristic, complex spectral and spatial signature undergoing
systematic long-term (i.e., developmental) changes [15]. A recent study on 59 participants aged
6–34 years reported age-related increases in the magnitude of inter-regional correlations in α and β

frequency bands supporting the notion of developmental growth of the degree of neurophysiological
integration both locally and globally [16]. Moreover, simulated neuromagnetic recordings highlighted
the role of delayed network interactions involving amplitude envelope coupling in various frequency
bands in the emergence of spontaneous functional connectivity [17]. An important development
in the study of dICMs has been the demonstration of cross-frequency coupling as a mechanism
supporting communication of neuronal populations operating at different dominant frequencies
at rest [18]. Evidence of the clinical significance of cross-frequency coupling has been presented
by our group in patients who had suffered mild traumatic brain injury [19] and in children with
dyslexia [20]. Furthermore, there is growing evidence that the degree of short-term variability in
functional connectivity profiles at rest (i.e., during the course of the recording session) may serve as a
phenotypic characteristic of certain mental disorders such as autism, Attention Deficit Hyperactivity
Disorder, and schizophrenia [21]. During normal development, higher levels of non-stationarity in
functional connectivity, at least within a certain range, may underlie the capacity of brain networks to
adapt to changing external demands [22].

In a recent study, we demonstrated the complexity of activity and brain connectivity in functional
neuroimaging under the notion of dICM [23–29]. We defined a novel flexibility index (FI) tailored to
EEG, MEG, and fMRI timeseries that quantifies the rate of transition from one dICM to another in
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consecutive temporal segments for every pair of timeseries. This index was highly reproducible over
repeated scan sessions [29].

The present work utilizes a variety of dynamic functional connectivity indices computed on
resting-state, sensor-level neuromagnetic data from a large cross-sectional cohort (N = 178; by collapsing
data across two MEG systems) of healthy volunteers aged 8–60 years to model age-related individual
differences. The multi-step analytic method adopted here sought to identify dominant (i.e., statistically
significant and topologically salient) types of coupling between underlying neuronal populations as
they evolve in time during the recording session. We examined a comprehensive set of measures
of intra- and cross-frequency coupling of potential neurophysiological relevance to address the
following primary goals: (1) identify characteristic dICMs within and between lobar regions that
demonstrate systematic developmental trends; and (2) develop a measure of temporal variability in
dICMs, integrated across the entire network of MEG sensors, which could serve as a reliable indicator
of participant age. Secondary goals of the present work were: (i) to assess the sensitivity of the
aforementioned indicator in differentiating between typical and atypical brain function (in groups
of children with dyslexia and adults who had suffered mild traumatic brain injury); (ii) to assess the
reproducibility of this indicator across repeated scan sessions; and (iii) to evaluate the equivalence of
results related to age-prediction across MEG systems.

2. Material and Methods

2.1. Participants

The principal dataset consisted of resting-state MEG data (eyes-closed) from 178 right-handed
participants without history of neuropsychiatric disease, sensory deficit, or learning disability, who were
assigned to six age groups: 8–12 (n = 24, 24 men), 13–17 (n = 26, 26 men), 18–27 (n = 43, 13 men),
28–37 (n = 43, 11 men), 38–50 (n = 28, 20 men), and 51–60 (n = 14, three men) years. Data from
81 healthy participants were obtained with a 248-channel Magnes WH3600 system (4D Neuroimaging
Inc., San Diego, CA; Magnes-248) equipped with 248 first-order axial gradiometer coils at the University
of Texas Health Science Center. Data from the remaining 97 healthy participants were drawn from
the OMEGA, Open MEG Archive and were obtained in two identical 275-channel CTF systems (VSM
MedTech Inc., Coquitlam, BC, Canada; CTF-275) located at the McConnell Brain Imaging Centre of the
Montreal Neurological Institute, McGill University and at the Université de Montréal [30].

Additional resting-state datasets (eyes-open) were obtained from (a) 10 healthy right-handed
young adults (five women, aged 24.4 ± 1.5 years) on two occasions to assess test–retest reliability of
dynamic functional connectivity indices, (b) 25 right-handed children with reading disability (13 girls,
aged 12.2 ± 3.1 years), as indicated by scores below the 16th percentile level (standard score of 85) on
the Basic Reading composite index (average of Word Attack and Letter–Word Identification subtest
scores of the Woodcock–Johnson Tests of Achievement-III; for additional details on recruitment and
participant characteristics see [31]), and (c) 30 right-handed adults who had suffered mild traumatic
brain injury (mTBI; 12 women, averaging 29.3 ± 9.2 years of age. Inclusion criteria for mTBI patients
required the presence of a head injury occurring within the preceding 24 h, Glasgow Coma Scale score
13–15, loss of consciousness 0–30 min, post-traumatic amnesia 0–24 h, and a negative head CT scan;
for additional details on recruitment and participant characteristics see [19]). These three datasets were
acquired on a Magnes-248 system at the University of Texas Health Science Center.

Participants in the reliability study were master’s students at the School of Psychology, Cardiff
University. Test–retest resting-state recordings (eyes-open) were obtained on a CTF-275 system at
Cardiff University.

All participants signed the related consent form and this pilot study was approved by the ethical
committee within the school.
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2.2. Data Recording and Preprocessing

Magnes-248 data were collected at a sampling rate of 1017.25 Hz and online bandpass filtered
between 0.1–200 Hz for 3 min. CTF-275 data were collected at a sampling rate of 2.400 Hz for 10 min
from which the first 3 min were used here. Recordings were downsampled to 170 Hz (Magnes-248)
or 150 Hz (CTF-275), resulting in 30,600 and 27,000 sampling points, respectively. Analyses were
performed in the native sensor space for each system.

Preprocessing entailed artefact reduction using independent component analysis, conversion to
planar gradiometer field approximations, and bandpass-filtering in the following frequency ranges
using a 3rd-order Butterworth filter (in zero-phase mode): 0.5–4, 4–8, 8–10, 10–13, 13–15, 15–19, 20–29,
and 30–45 Hz corresponding to δ, θ, α1, α2, β1, β2, β3, and γ bands. Additional preprocessing details
are provided in Supplementary Materials, Section 1.

2.3. Dynamic Functional Connectivity

The goal of the first step of the analytic procedure was to capture dynamic functional connectivity
in the form of distinct within- and cross-frequency coupling modes based on amplitude and
phase. This was achieved by computing five complementary indices of signal coupling: amplitude
envelope correlation (AEC), phase-to-amplitude cross-frequency coupling (CFCPAC), intra-frequency
phase-to-phase coupling, intra and cross-frequency delay symbolic transfer entropy (dSTE), and directed
phase lag (dPLI). Furthermore, data-driven statistical thresholding was employed to identify pair-wise
(sensor-to-sensor) connectivity values that were unlikely to have occurred by chance alone.

2.3.1. Intra and Inter-Frequency Coupling Estimators and Statistical Filtering

Each set of connectivity indices (for each frequency and/or between two frequencies recorded at
the same or across different sensors, when appropriate) was computed independently within 2-s time
windows using a sliding window approach. The width of the temporal window was set equal to the
duration of two cycles of δ activity (i.e., 2 s) ensuring that modulations of activity by the lowest frequency
band (δ) would be preserved when estimating cross-frequency coupling. Unless otherwise specified
below, the statistical significance of each connectivity index value was assessed using corresponding
values derived from 10,000 surrogate time-series.

Connectivity indices were computed for each surrogate dataset and the probability that a given
observed connectivity index value could belong to the corresponding surrogate distribution was
estimated. This probability reflected the proportion of surrogate connectivity values that were higher
than the observed index value [5]. The False Discovery Rate (FDR) method [32] was employed to
control for multiple comparisons (across intra-frequency coupling and all possible pairs of frequencies)
with the expected proportion of false positives set to p = 0.01. For further computational details, see the
Supplementary Materials, Section 2.

2.3.2. Amplitude Envelope Correlation (AEC)

The time courses of bandpass-filtered magnetic activity at each sensor were Hilbert transformed
and the resulting absolute amplitude value was used to compute the envelope of oscillatory power in
each frequency band. The Hilbert envelope technique has been used extensively in previous MEG
studies (for a mathematical description see [33]). At each temporal segment, the amplitude envelope
correlation represented Pearson correlation coefficients computed on the Hilbert envelopes to assess
coupling between sensors, either in the same or different frequency bands. Surrogate data analyses
were conducted to retain non-chance correlations. The final AEC (binary) dataset identified the
frequency(-ies) of the highest, significant correlations for a given pair of sensors.
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2.3.3. Phase-to-Amplitude Cross-Frequency Coupling (Cross-Frequency iPLV)

Cross-Frequency Coupling (CFC) analyses were implemented to identify the prominent pair of
interacting frequencies, both between and within sensors [34–36]. Among the available CFC descriptors,
phase-amplitude coupling (PAC), which relies on phase coherence, is the one most commonly
encountered in research [37,38], adapted to continuous MEG multichannel recordings [23,39–41].

The PAC mode that characterized a specific pair of frequencies was determined based on the
highest, statistically significant PAC value in the surrogate analyses. The dominant PAC values for each
pair of sensors and across sliding windows were integrated across frequency bins yielding 28 possible
pairwise PAC estimates among the eight frequency bands.

2.3.4. Intra-Frequency Phase-to-Phase Coupling (Same-Frequency iPLV)

Computation of intra-frequency phase-to-phase coupling represents a special case of the procedure
described above to compute iPLV where the two signals are of the same frequency. Intra-frequency
phase coupling was estimated using the Hilbert phase transform. Based on surrogate data analyses,
we identified the dominant iPLV values for each pair of sensors and across sliding windows.

2.3.5. Cross-Frequency Interactions via Delay Symbolic Transfer Entropy (dSTE)

Symbolic transfer entropy was proposed to overcome the limitations of optimized parameters
required for estimation of transfer entropy [42]. In the present study, we adopted the neural gas
algorithm (NG; [43]) to create a common codebook for the entire set of sensor pairs [23,24,44,45].
Furthermore, significant causal interactions between two sensors, A and B, were identified by applying
an adaptation of transfer entropy for symbolic time series [46–49].

The final dSTE dataset contained the strength, direction, and delay of the significant and dominant
pair of frequencies for each sensor [23,24,45] as derived from the surrogate data analyses. If more than
two dSTE frequencies or frequency pairs were significant, the one with the maximum dSTE value
was selected.

2.3.6. Phase interactions: Directed Phase Lag Index (dPLI)

The directed phase lag index [50] was employed to assess potential causal relationships based on
the phase difference between two oscillations either in the same or different frequencies. The highest,
significant dPLI values for each pair of sensors, frequencies, and sliding windows was identified via
surrogate analyses.

2.3.7. Identifying the Dominant Intrinsic Coupling Mode (dICM) for A Given Pair of Sensors

The steps described in Sections 2.3.2–2.3.6 resulted in three arrays for each of the five connectivity
estimators. The first array contained the AEC, cross-frequency iPLV, dSTE, same-frequency iPLV,
or dPLI values, and the second array contained the corresponding p-values. In the third array
of size (2 × 900 × 248/275 × 248/275), the identity of the dominant coupling mode (based on AEC,
cross-frequency iPLV, dSTE, same-frequency iPLV, or dPLI values) was indicated by a numeric
(integer) code.

Next, we selected a single representative connectivity estimator for each sensor pair and
time window (dICM). When considering multiple estimators, the statistical threshold was reset
to p < 0.01/4 = 0.0025. If more than one connectivity estimator exceeded this threshold, they were both
maintained as representative dICM for this particular pair of MEG sensors and temporal segment.
This information was stored in an array of size (2 × 900 × 248/275 × 248/275) where the 1st dimension
codes the identity of the connectivity estimator (1–5) and the second dimension reflected the frequency
of the signals (e.g., α, α→ β) coded by integer values (1–36). As described in detail in Section 2.3.9,
dICMs were subsequently integrated across groups of sensor pairs in each hemisphere. The process of
identifying the dICM for every pair of MEG sensors is schematically illustrated in Figure 1.
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Figure 1. Determining dominant intrinsic coupling modes (dICMs) between two sensors (S1, S2) for 
two consecutive 2-s sliding time windows (t1, t2) during the resting-state MEG recording. In this 
example, the functional interdependence between band-passed signals from the two sensors was 
indexed by imaginary phase locking (iPLV). In this manner, iPLV was computed between the two 
sensors either for same-frequency oscillations (e.g., δ to δ) or between different frequencies (e.g., δ to 
θ). Statistical filtering, using surrogate data for reference, was employed to assess whether each iPLV 
value was significantly different than chance. During t1, the dICM reflected significant phase locking 
between δ and α2 oscillations (indicated by red rectangles) whereas during t2, the dominant interaction 
was found between δ and θ oscillations. Significant values were subsequently integrated over groups 
of sensors roughly corresponding to underlying lobar anatomy to obtain indices of the dominant type 
of interaction between hemispheres for a given lobe or between lobes for a given hemisphere. Finally, 
from the set of potential intrinsic coupling modes (PICM), we derived the dICM for each pair of 
sensors across all temporal segments. For further details see [29]. 
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Figure 1. Determining dominant intrinsic coupling modes (dICMs) between two sensors (S1, S2) for
two consecutive 2-s sliding time windows (t1, t2) during the resting-state MEG recording. In this
example, the functional interdependence between band-passed signals from the two sensors was
indexed by imaginary phase locking (iPLV). In this manner, iPLV was computed between the two
sensors either for same-frequency oscillations (e.g., δ to δ) or between different frequencies (e.g., δ to
θ). Statistical filtering, using surrogate data for reference, was employed to assess whether each iPLV
value was significantly different than chance. During t1, the dICM reflected significant phase locking
between δ and α2 oscillations (indicated by red rectangles) whereas during t2, the dominant interaction
was found between δ and θ oscillations. Significant values were subsequently integrated over groups
of sensors roughly corresponding to underlying lobar anatomy to obtain indices of the dominant type
of interaction between hemispheres for a given lobe or between lobes for a given hemisphere. Finally,
from the set of potential intrinsic coupling modes (PICM), we derived the dICM for each pair of sensors
across all temporal segments. For further details see [29].

2.3.8. Topological Filtering based on Orthogonal Minimal Spanning Tress (OMSTs)

After applying statistical filtering to identify characteristic dICMs per pair of MEG sensors,
topological filtering was employed in order to define meaningful network structure [51]. A data-driven
topological filtering scheme was adopted utilizing orthogonal minimal spanning trees (OMSTs [25,26]).
This iterative method relies on the weights of the connections within a network and their topology
to optimize information flow (as defined by global efficiency) and minimize the cost of the
surviving connections.

2.3.9. Identifying the Dominant Type of Inter- and Intra-Hemispheric Interactions for Groups of
Neighbouring Sensors

Significant connectivity values for each sensor pair (contained in the 2-dimensional array
described in Section 2.3.7) were subsequently integrated over groups of neighbouring sensors roughly
corresponding to underlying lobar anatomy. In this manner, we determined the dominant type of
interaction (dICM) between hemispheres for a given “lobe” (cross-hemispheric) and between lobes for
both hemispheres (within-hemisphere) as described below.

The characteristic dICM between “lobes” for a given participant was identified as the interaction
mode demonstrated by >75% of the sensors between two lobar sectors and by at least 50% of all
temporal segments. At the group level, the dominant type of interaction between hemispheres for a
given lobe, or between lobes for a given hemisphere, was determined as the dominant connectivity
mode displayed by all participants in a particular age group. Over the entire sensor array and for each
participant, the predominance of a given interaction mode was quantified using two complementary
indices: the mean subgraph strength (MSS) and fractional occupancy (FO).

MSS reflected the average strength of interactions that were found to characterize signal
interdependencies either between the sensors comprising a given lobar sector of the sensor array
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(“lobe”), or between two such sectors. The MSS index describing sensor interactions between two
“lobes” was defined as follows:

MSSLOBES =

∑temporal segments
t=1

∑sensors1
n1=1

∑sensors2
n2−1 FCG(s1,s2)

sensors1 x sensors2

temporal segments
(1)

where sensors1,2 refers to the total number of sensors defining each “lobe”, and temporal segments
refers to the number of time windows where a particular type of dICM was deemed to be the dominant
type of interaction.

The FO index is defined as the ratio of the number of temporal segments where a particular type
of dICM was deemed to be the dominant type of interaction between two “lobes” (NDom) divided by
the total number of temporal segments (NTS):

FO =
NDom

NTS
(2)

The MSS and FO values range between 0 and 1. This procedure resulted in 12 MSS indices
computed for within- and between-sensor associations, and 10 FO indices, which by definition, were
computed only for between-sensor associations. Equations (1) and (2) were adapted to provide indices
of within-hemisphere interactions between sensors in a given lobar region.

2.3.10. Flexibility Index (FI) Based on Dominant Intrinsic Coupling Modes

Finally, a flexibility index was developed in order to quantify temporal variability in dICMs
at the level of sensor pairs, integrated over the entire sensor network, as originally proposed by
Bassett et al. [52] for EEG and MEG data. FI was computed from the individual 3D matrix of size
900 (temporal segments) × 248/275 (sensors) × 248/275 (sensors) containing the identity label of
dominant interaction modes that survived the statistical filtering described in Section 2.3.7. FI reflects
the rate of dICM changes between every two consecutive temporal segments for each pair of MEG
sensors [28,29]. Integrated over the entire sensor network, FI values range between 0 and 1, according
to the formula:

FIMEG(Sensors, Sensors)

= 1
T−1

T−1∑
s=1

Sensors∑
sensor1=1

Sensors∑
sensor2=1

δ(DICM(T, sensor1, sensor2), DICM(T

+1, sensor1, sensor2))

FIMEG
GLOBAL = FIMEG

Sensors×Sensors

(3)

where T = 900.

2.4. Modelling Participant Age through Individual FI values

The type of association between individual FI values and participant age (in years) was assessed by
fitting a series of models (linear, quadratic, log, exponential, and Von Bertalanffy; [9]. Model comparison
was based on the Akaike information criterion (AIC) with smaller values indicating better fit.

For comparison purposes, two well-established measures of brain activity and sensor
interdependence were also computed, namely relative power spectrum and imaginary part of coherence.
We also estimated multi-scale entropy that has demonstrated its ability to detect age-dependent
differences of brain activity [53]. In contrast to the dICM indices, they provide static representations of
the strength of oscillatory activity and within-frequency phase coupling, respectively (for computational
details see Supplementary Materials, Section 4 and Figures S1 and S2).
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2.5. Deriving Age-Related Neuromagnetic Features

The differential sensitivity of dICM- and supplementary measure-related features (power spectrum,
coherence, multi-scale entropy) to participant age, either as a continuous or as an ordinal variable
(age-group), was assessed via support vector regressors and multi-class support vector machines,
respectively. Each method was applied to the same set of 12 dICMs represented by 12 MSS and 10 FO
values, which in turn, characterized distinct, empirically derived sensor subnetworks, each displaying
a distinct topography and dynamic functional connectivity mode (see Table 1).

Table 1. Ranking of dICM features used to classify participants to the correct chronological age group
according to mean subgraph strength (MSS) and fractional occupancy (FO).

Topography of Regional Interaction Frequency Band Connectivity Metric MSS FO

Frontal Cross-hemispheric δ Amplitude Envelop Correlation 4 20
Frontal–Temporal Within and cross-hemispheric θ Phase→ γ2 Amplitude Phase-Amplitude Coupling 3 6
Frontal–Parietal Within and cross-hemispheric Θ→ α2 Amplitude delay Symbolic Transfer Entropy 1 2
Parieto-Occipital Cross-hemispheric α1 Phase imaginary Phase Locking 15 14

Frontal Within hemispheres θ Phase imaginary Phase Locking 13 16
L Temporal–Frontal Cross-hemispheric δ Phase→ β Amplitude Phase-Amplitude Coupling 5 18
R Temporal–Frontal Within and cross-hemispheric δ Phase→ γ2 Amplitude Phase-Amplitude Coupling 7 -

L Parietal–Parieto-Occipital Within and cross-hemispheric A1 Phase imaginary Phase Locking 12 17
Parieto-Occipital Cross-hemispheric β Amplitude Envelope Correlation 8 21

R Temporal-Parieto-Occipital Within and cross-hemispheric γ1 Phase imaginary Phase Locking 10 11
Temporal Cross-hemispheric β Amplitude Envelope Correlation 9 22
Occipital Cross-hemispheric α2 Phase→ γ1 Amplitude Phase-Amplitude Coupling 19 -

L: left, R: right. Unless otherwise specified, indices were integrated over hemispheres.

Prediction accuracy was cross-validated using leave-one-out and 5-fold procedures on data
aggregated across the two MEG-systems, supplemented by across MEG-system cross-validation
schemes (i.e., employing data from one MEG system as the training set and data from the second
MEG system as the testing set, and vice versa; see Supplementary Materials, Section 5). Analyses
on the supplementary measures were conducted for each measure separately (including all salient
features that were empirically-derived for each measure) as well as on the entire set of power spectrum,
imaginary part of coherence, and multi-scale entropy features combined.

2.6. Software for Analyses

All analyses were conducted using custom in-house software in MATLAB (version R2018b, Natick,
Massachusetts, USA: The MathWorks Inc.) and Fieldtrip (Donders Institute for Brain, Cognition and
Behaviour, Radboud University, The Netherlands) basic routines for reading MEG files.

3. Results

3.1. Age-Related Differences in dominant Intrinsic Coupling Modes (dICMs)

Table 1 illustrates the 12 dICMs between and within “lobes” and the corresponding MSS and FO
values that demonstrated age-dependencies. Concerning the first goal of the study, there were clear
developmental trends in the degree of predominance of each of the 12 dICMs, as shown in the lower
panels of Figure 2 and Figures S4–S14, demonstrating significant increases in MSS and FO through
28–37 years, followed by a gradual decline thereafter. For instance, Figure 2 demonstrates the dominant
types of interaction between the left and right frontal lobes as indexed by AEC in the δ frequency band,
whereas Figure S4 shows the dICM between the frontal and temporal lobes bilaterally (indexed by PAC
between the θ phase and γ2 amplitude). The relative importance of dynamic connectivity measures as
(cross-sectional) markers of normal brain development was further assessed through machine-learning
techniques (Section 3.2).
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Figure 2. Dominant inter-hemispheric frontal coupling indexed by δ-band amplitude envelope
correlation (AEC). (A) Topographical layout of statistically significant sensor pairs for the six age
groups. (B) Mean subgraph strength (MSS) and (C) fractional occupancy (FO) derived from envelop
correlation across the six age groups. Significant differences between successive age groups are marked
by brackets (p < 0.0001).

3.2. Identifying Age-Related Neuromagnetic Features

Support vector regressors (SVR) were employed in order to estimate the degree of predominance
of each dICM (indexed by corresponding MSS and FO values) as a correlate of participant age. Results
were very similar across cross-validation schemes: As shown in Figure S3 and Supplementary Table S1,
the linear combination of the 22 dICM features accounted for a substantial portion of age variance in
the dataset (R2 = 0.893, p < 2 × 10−9; see Figure S15 for weights of individual metrics).

In a second set of analyses, multi-class support vector machines were applied to the same
dataset (MSS and FO values) to classify participants into one of six age groups (8–12, 13–17, 18–27,
28–37, 38–50, 51–60 years). The best classification performance was achieved by the 5-fold method,
averaging 89.12 ± 5.45% (see Supplementary Table S2). Table 1 ranks the dICM features used to classify
participants to the correct chronological age group, according to MSS and FO values.

In comparison, the combination of features derived from supplementary metrics (Relative Power
[RP], Imaginary Coherence [ImCOH], and Multiscale Entropy [MSE]) was associated with considerably
lower classification accuracy (69.05 ± 7.15%) and percentage of age variance accounted for (R2 = 0.812,
p < 1.8 × 10−7; Figure S26 and Supplementary Table S2). Among the latter, four features of lobe-averaged
MSE displayed the best age prediction results (R2 = 0.714, p < 2.9 × 10−6, see Figures S22–S25).
These features reflected entropy in signals recorded over the right temporal and parietal areas in the
theta and gamma bands, respectively. Static measures of brain activity were clearly inferior to both
dICM metrics and MSE in predicting participant age (RP: R2 = 0.430, p < 3.1 × 10−4, Figures S16–S18;
imCOH: R2 = 0.525, p < 1.9 × 10−4, Figures S19–S21).

3.3. Maturation Patterns

Global flexibility index (FI) values were computed for each participant quantifying the frequency
of transitions to a different dICM between consecutive time windows of neuromagnetic data. Model
comparison using the Akaike information criterion suggested that the FI = a × AGE2 + b × AGE + c
equation ensured the best fit of individual FI values to participant age (r2 = 0.88, permutation test
p < 0.001). Figure 3A demonstrates the rapid growth of FI values through approximately 40 years
followed by a gradual decline thereafter.



Brain Sci. 2019, 9, 380 10 of 16

12 
 

 

A 

 

B 
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recording. Chronological age is shown on the x axis. The best-fitting curve for FI as a function of age 
is indicated by the blue line. (B) Flexibility index as a function of age for healthy participants (n = 178; 
HP: red circles), school-aged children displaying severe reading difficulties (n = 25; RD: purple 
circles), adults who had recently suffered mild traumatic brain injury (n = 30; mTBI: blue circles), and 
healthy adults who were retested over a week-long period (n = 10; repeat scans: green circles). 
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trends. Table 1, Figures 2 and S4–14 reveal widespread inter- and intra-hemispheric interactions (e.g., 
bilateral frontal, parieto-occipital, occipital, temporal, and frontotemporal) involving amplitude 
envelope correlation, phase synchronization, and phase-amplitude modulation. Cross-sectional 
developmental curves featured notable peaks in late adolescence and early adulthood, a finding 
consistent with the notion of protracted maturation of fine-grained cortical synchrony (e.g., [54]). To 
our knowledge, this is the first demonstration of such developmental trends in resting-state 
neuromagnetic recordings, which are uniquely suited to model distinct types of population-level 
interactions involving neuronal signalling in real time. Neural oscillations depend on anatomical and 
physiological parameters that undergo significant changes during development including changes 
in GABAergic interneuron activity [55]. These interneurons play a pivotal role in establishing neural 
synchrony in local circuits, as indicated by the fact that a single GABAergic neuron may be sufficient 
to synchronize the firing of a large population of pyramidal neurons [56] and that the duration of the 
inhibitory post-synaptic potential (IPSP) can determine the dominant frequency of oscillations within 
a network [57]. 

Awaiting data directly linking dICM measures with individual age-adjusted cognitive abilities, 
the current demonstration of increasing strength of interactions between fronto-parietal neuronal 

Figure 3. Functional brain maturation curves. (A) Individual flexibility index values (FI) for 178 healthy
volunteers without history of learning disability or brain injury (aged 6 to 60 years) reflecting the degree
of short-term stability of dominant functional connections during the 3 min resting-state recording.
Chronological age is shown on the x axis. The best-fitting curve for FI as a function of age is indicated by
the blue line. (B) Flexibility index as a function of age for healthy participants (n = 178; HP: red circles),
school-aged children displaying severe reading difficulties (n = 25; RD: purple circles), adults who had
recently suffered mild traumatic brain injury (n = 30; mTBI: blue circles), and healthy adults who were
retested over a week-long period (n = 10; repeat scans: green circles).

3.4. Reliability and Clinical Validity of the Flexibility Index

The equivalence of derived dICM values, as correlates of chronological age, across the two
MEG systems was supported by two lines of evidence. First, the maturation patterns of subnetwork
topography were very similar across systems as illustrated in Figure S27. Second, the model-fit results
of the flexibility index values over chronological age were also very similar across MEG systems
(see Figure S28). Furthermore, flexibility indices were very stable over time as indicated by the one-week
test–retest data from a small dataset of 10 healthy young adults (see Figure 3B and Figure S29).

Importantly, FI values were found to be consistently lower in school-age children with reading
disability (N = 25) and adults tested in the acute phase following mild traumatic brain injury (N = 30;
see Figure 3B) than the age-matched typical participants (Wilcoxon Rank Sum Tests: p = 1.63 × 10−6

and p = 2.91 × 10−6, respectively).

4. Discussion

Our analyses permitted identification of the spatial pattern and types of the most prominent
interactions between underlying neuronal populations that displayed significant developmental trends.
Table 1, Figure 2 and Figures S4–S14 reveal widespread inter- and intra-hemispheric interactions
(e.g., bilateral frontal, parieto-occipital, occipital, temporal, and frontotemporal) involving amplitude
envelope correlation, phase synchronization, and phase-amplitude modulation. Cross-sectional
developmental curves featured notable peaks in late adolescence and early adulthood, a finding
consistent with the notion of protracted maturation of fine-grained cortical synchrony (e.g., [54]).
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To our knowledge, this is the first demonstration of such developmental trends in resting-state
neuromagnetic recordings, which are uniquely suited to model distinct types of population-level
interactions involving neuronal signalling in real time. Neural oscillations depend on anatomical and
physiological parameters that undergo significant changes during development including changes in
GABAergic interneuron activity [55]. These interneurons play a pivotal role in establishing neural
synchrony in local circuits, as indicated by the fact that a single GABAergic neuron may be sufficient to
synchronize the firing of a large population of pyramidal neurons [56] and that the duration of the
inhibitory post-synaptic potential (IPSP) can determine the dominant frequency of oscillations within
a network [57].

Awaiting data directly linking dICM measures with individual age-adjusted cognitive abilities,
the current demonstration of increasing strength of interactions between fronto-parietal neuronal
populations during late childhood is consistent with previous resting-state fMRI reports of increasing
functional connectivity between frontal and parietal brain areas through early adulthood [14].
Such developmental trends may be related to the reported strengthening of top-down frontal cognitive
control networks [58]. In a similar vein, the rising significance of distinct fronto-temporal dICMs
in the repertoire of cortico-cortical interaction modes during the same age range may parallel the
continuing functional specialization of fronto-temporal networks supporting memory and executive
functions [59].

The present findings bear particular relevance to two topics that have attracted growing attention
in neurophysiology in recent years, namely the importance of cross-frequency, phase-to-amplitude
(CFCPAC) interactions between neuronal populations, and the relevance of temporal variability in
neuronal coupling modes at rest for brain function.

Phase-to-amplitude coupling appears to serve a crucial role in the coordination of processes that
take place in remote neuronal populations, each operating at different characteristic frequencies [60].
In the present data, CFCPAC was the predominant mode of fronto-temporal neuronal interactions
undergoing significant development throughout late childhood and into early adulthood, consistent
with their proposed crucial role for information encoding, inhibition, and hierarchical organization
of cortical systems [15]. This finding represents a significant advance in the study of cortical
synchronization and communication by stressing the developmental significance of phase-amplitude
interaction modes that have only recently been introduced to supplement amplitude envelope
correlation and phase coupling (e.g., [61]).

The dynamic connectivity approach adopted in the present study permits quantification of the
degree of short-term consistency of various intrinsic coupling modes in time. Results showed that,
in addition to systematic developmental changes in the repertoire of dominant interactions that
characterize cortico-cortical communication on a global scale, the degree of temporal fluctuation of each
type of interaction during the recording session was a robust correlate of age. Moreover, developmental
reading disability associated with aberrant brain organization ([28,31] as well as acute brain insult
without visible structural damage (i.e., mild traumatic brain injury [19,62–65]), were characterized by
lower temporal variability in dynamic functional connectivity than expected based on the affected
persons’ age. According to an emerging view, functional network flexibility may reflect the adaptive
capacity of the brain both in short-term situations (i.e., during acquisition of a new skill), and in the
course of development [52]. It should be noted, however, that aberrant dynamic features of cortical
interactions were common to the two clinical groups and, therefore may not be linked to disease-specific
pathophysiological processes.

5. Conclusions

The current results highlight the (i) presence of systematic profiles of functional connectivity
between remote cortical areas at rest, and (ii) the potential significance of dynamic flexibility in coupling
models for brain maturation. Future studies are needed in order to quantify the range of temporal
variability in dynamic functional connectivity that may be optimal for cognitive development and
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expand the age range covered by the present report to older participants. In view of the considerable,
demonstrated sensitivity of neuromagnetic resting-state data to individual participant characteristics
such as age, future studies are forthcoming to explore aberrant synchronization patterns of neural
oscillations at the cortical source level that may be causally linked to developmental disorders (such as
dyslexia, e.g., [28,31]), traumatic brain injury ([19], and disorders that display a notable age-related
onset peak (such as schizophrenia [66]).

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/9/12/380/s1,
Figure S1: Schematic illustration of the coarse-grained procedure for scales 2 and 3. Adapted from Costa et
al., 2002, Figure S2: A simulated time series u[1 ], ..., u[n] is shown to illustrate the procedure for calculating
Sample Entropy for pattern length, m, of size 2, adopting a similarity criterion of r = 20 (r is a positive real
number that is typically chosen to be between 10% and 20% of the sample deviation of the time series), Figure S3:
(Upper panel) Least squares regression of predicted over actual participant age in years based on Mean Subgraph
Strength and Fractional Occupancy in 12 and 10 lobar subnetworks, respectively (listed in Table S2). (Lower
panel) The distribution of model regression residuals as a function of participant age, Figure S4: Dominant inter-
and intra-hemispheric Phase-Amplitude Coupling (PAC) between frontal and temporal sensors in the θ and
γ2 bands, respectively. (A) Topographical layout of statistically significant sensor pairs for the six age groups.
(B) Mean Subgraph Strength and (C) Fractional Occupancy (FO) derived from PAC across the six age groups.
Significant differences between successive age groups are marked by brackets (p < 0.0001), Figure S5: Dominant
inter- and intra-hemispheric coupling between frontal and parietal sensors indexed by delay Symbolic Transfer
Entropy (dSTE) in the θ and α2 bands, respectively. (A) Topographical layout of statistically significant sensor
pairs for the six age groups. (B) Mean Subgraph Strength and (C) Fractional Occupancy (FO) derived from
dSTE across the six age groups. Significant differences between successive age groups are marked by brackets
(p < 0.0001), Figure S6: Dominant inter-hemispheric coupling between parietal and occipital sensors indexed
by imaginary Phase Locking (iPLV) in the α1 band. (A) Topographical layout of statistically significant sensor
pairs for the six age groups. (B) Mean Subgraph Strength and (C) Fractional Occupancy (FO) derived from
iPLV across the six age groups. Significant differences between successive age groups are marked by brackets
(p < 0.0001), Figure S7: dICM reflecting within-hemisphere phase coupling (imPLV) involving sensors located
over the frontal lobes in the θ band. (A) Topographic layout of the statistically significant sensor pairs for the six
age groups. (B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the six age groups, Figure S8:
dICM reflecting phase-to-amplitude coupling (PAC) between left temporal sensors in the δ band and bilateral
frontal sensors in the β band. (A) Topographic layout of the statistically significant sensor pairs for the six age
groups. (B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the six age groups, Figure S9:
dICM reflecting phase-to-amplitude coupling (PAC) between right temporal sensors in the δ band and bilateral
frontal sensors in the γ2 band. (A) Topographic layout of the statistically significant sensor pairs for the six
age groups. (B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the six age groups, Figure
S10: dICM reflecting intra- and inter-hemispheric coupling between bilateral parieto-occipital (bPO) sensors as
indexed by the imaginary portion of Phase Locking Value (imPLV) in the α1 band. (A) Topographic layout of
the statistically significant sensor pairs for the six age groups. (B) Mean subgraph strength and (C) Fractional
Occupancy (FO) across the six age groups, Figure S11: dICM reflecting inter-hemispheric coupling between
parieto-occipital sensors as indexed by amplitude envelope correlation (AEC) in the β band. (A) Topographic
layout of the statistically significant sensor pairs for the six age groups. (B) Mean subgraph strength and (C)
Fractional Occupancy (FO) across the six age groups, Figure S12: dICM reflecting intra- and inter-hemispheric
coupling between right temporal and parieto-occipital sensors (PO) indexed by the imaginary portion of Phase
Locking Value (imPLV)in the γ1 band. (A) Topographic layout of the statistically significant sensor pairs for the
six age groups. (B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the six age groups, Figure
S13: dICM reflecting interhemispheric interactions between temporal sensors indexed by amplitude envelope
correlation (AEC) in the β band. (A) Topographic layout of the statistically significant sensor pairs for the six
age groups. (B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the six age groups, Figure
S14: dICM reflecting interhemispheric interactions between occipital sensors indexed by phase-to-amplitude
coupling (PAC) in the α2 and γ1 bands, respectively. (A) Topographic layout of statistically significant sensor
pairs for the six age groups. (B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the six age
groups, Figure S15: (A) Relative weights for Mean Subgraph Strength (MSS; “Strength”) and Fractional Occupancy
(FO) for 12 and 10 sub-networks, respectively, representing lobar dynamic connectivity estimates (dICMs) in
the prediction of participant age. (B) Prediction accuracy of participant age achieved by each of the 22 features,
Figure S16: Mean Relative Power (RP) across age groups (rows) and frequency bands (columns), Figure S17:
(Upper panel) Least squares regression of predicted over actual participant age (in years) based on Relative Power
(RP). (Lower panel) The distribution of model regression residuals as a function of participant age, Figure S18:
Relative weight (absolute values; upper panel) and individual prediction accuracy (lower panel) of participant
age for each of the 12 RP features derived from Frontal (F) and Parieto-Occipital sensors (PO) in the final Support
Vector Regression model, Figure S19: Mean Subgraph Strength reflecting lobar inter- and intra-hemispheric
interactions for imCOH across the 6 age groups in eight different frequency bands ranging from δ (top panel) to γ2
(bottom panel). Abbreviations; L/R: Left/Right hemispheres; F/T/P/O: Frontal/ Temporal/ Parietal/ Occipital lobes,
Figure S20: (Upper panel) Least squares regression of predicted over actual participant age in years based on
imCOH. (Lower panel) The distribution of model regression residuals as a function of participant age, Figure
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S21: Relative weights for the prediction of participant age for each of the 10 ImCoh features in the final Support
Vector Regression model reflecting coherence in various frequency bands between the lobar regions listed in the
inset, Figure S22: MSE profiles through development. Age-specific MSE profiles across frequency band and lobes
(* p < 0.001, ANOVA, Bonferroni corrected). Colored lines correspond to one of the six age groups listed in the
inset. Abbreviations; L/R: Left/Right hemispheres; F/T/P/O: Frontal/Temporal/Parietal/Occipital lobes, Figure S23:
Four features extracted that correlated with age (* p < 0.001, ANOVA, Bonferroni corrected; across frequency bands
and lobes), Figure S24: (Upper panel) Least squares regression of predicted over actual participant age in years
based on the four MSE features shown in Figure S23. (Lower panel) Distribution of model regression residuals
as a function of participant age, Figure S25: Relative contribution of each of the four MSE features to the linear
kernel SVR predictor, Figure S26: (Upper panel) Least squares regression of predicted over actual participant
age in years based on RP, MSE and ImagCoh features combined. (Lower panel) Distribution of model regression
residuals as a function of participant age, Figure S27: dICM reflecting interhemispheric interactions between
frontal sensors as indexed by amplitude envelop correlation in the δ band (AEC). (A) Topographical layout of
the statistically significant sensor pairs for 4 age groups (overlapping age range between the two MEG systems).
(B) Mean subgraph strength and (C) Fractional Occupancy (FO) across the four age groups. The upper half of the
figure presents data recorded on the Magnes-248 system and the lower half displays data recorded on the CTF-275
system, Figure S28: Functional brain maturation curves based on the Flexibility Index (FI) computed for data
obtained on the Magnes-248 (A; n = 81 aged 6–59 years) and CTF-275 MEG systems (B; n = 97 aged 18–60 years).
Chronological age is shown on the x axis. The best-fitting curves for the data for each system are shown by the
blue lines, Figure S29: Test-retest Flexibility Index (FI) values as a function of participant age (n = 10), Table S1:
Support Vector Regressor results in predicting participant chronological age, Table S2: Support Vector Regressor
results in predicting participant chronological age.
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