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A B S T R A C T   

This paper rigorously addresses the intricate control demands of high-speed, high-pressure, wide 
adjustable speed range, and high energy utilization efficiency required in hydrogen fuel cell 
centrifugal compressor, with a focus on the speed control of 40,000 RPM permanent magnet 
synchronous motors (PMSMs). An improved second-order super twisting sliding mode control 
(STSMC) strategy is proposed to enhance system stability and robustness by integrating the beetle 
antennae search (BAS) algorithm and grey wolf optimization (GWO) algorithm. The global search 
capability of BAS is used to improve the local optima issues of GWO, and then the improved GWO 
algorithm is utilized to address the issues related to parameter selection and convergence speed 
inherent in the STSMC. Theoretical validity of the proposed strategy is asserted through Quadratic 
Lyapunov Function, and its practicality is affirmed by thorough simulation. Comparative analyses 
are conducted with PI controller, traditional Sliding Mode Controller (SMC), and standard Super- 
Twisting Sliding Mode Controller (ST) under several case studies to show the superiority of the 
propose STSMC.   

1. Introduction 

In response to escalating global energy crises and environmental degradation, there is an increasing shift toward Electric Vehicles 
(EVs). Prominent automotive producers from countries such as Germany, the UK, and France have announced intentions to halt the 
production of internal combustion engine vehicles. Notably, China’s ’Electric Vehicle Industry Development Plan (2021–2035)’ aims 
for EVs to constitute a 40 % share of total vehicle sales by 2030 [1,2]. EVs that do not rely on fossil fuels and have zero emissions can 
ease the pressure of fossil fuel scarcity and environmental pollution. However, battery technology in EVs faces formidable challenges in 
extending vehicle range and safety concerns due to battery combustion [3], underscore the pressing need for research in hydrogen fuel 
cell technology. Such technology not only offers the prospect of extended driving ranges and a marked reduction in battery fire risks 
but also holds considerable future market potential. This highlights the strategic and practical significance of investigating hydrogen 
fuel cells for the further advancement and popularization of EV technology. 

The hydrogen fuel cell power system is comprised of four subsystems: the fuel cell stack, the cathode air supply system, the anode 
hydrogen supply system, and the water-heat management system [4,5]. The core of the cathode air supply subsystem is a centrifugal 
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compressor driven by a high-speed motor. This compressor is designed to pressurize the air and regulate the appropriate air mass flow 
rate, subsequently enhancing the fuel cell’s power density and operating efficiency. Such operations directly influence the overall 
system efficiency and cost. Critical requirements for centrifugal compressor encompass high speed and high pressure to satisfy the 
oxygen supply and system power demands, and a broad speed range to address varying operational demands and swiftly adapt to load 
changes. Furthermore, high energy utilization efficiency is sought to minimize energy wastage during air compression, enhance the 
system’s overall energy efficiency, and subsequently reduce both operational expenses and environmental ramifications. To fulfill 
these outlined requirements for the centrifugal compressor, its drive motor must maintain a substantial speed and power. 

Permanent Magnet Synchronous Motors (PMSM) are characterized by superior power density, unit volume and mass output torque, 
starting torque, peak rotational speed, braking performance, and reduced torque ripple [6,7]. These advantages are consistent with the 
requirements of the drive motor in fuel cell centrifugal compressors, which encompass rapid response, compact size, substantial 
torque, and a broad range of speed control. The rotational speed of the drive motor for a hydrogen fuel cell centrifugal compressor is 
contingent on the specific compressor design and application needs, typically oscillating between 15,000 and 50,000 rpm. However, 
these speeds can induce noise, vibration, and mechanical wear issues, making discerning design and control. Given the complex 
operating conditions of fuel cells and their vulnerability to various adverse factors, emphasis must be placed on deploying robust and 
stable speed controller algorithms to ensure system reliability and stability. 

Advanced control theories and algorithms, including intelligent control, sliding mode control, model predictive control, adaptive 
control, and robust control, have been progressively integrated to PMSM, addressing the limitations of PID controllers in multivariable, 
nonlinear, and strongly coupled systems [8–10]. Sliding mode control, recognized for its robustness, rapid response, and straight-
forward implementation without online identification, has been widely adopted. However, it also possesses inherent limitations, such 
as slow convergence, uncertain upper boundary of disturbance, and noticeable chattering. Various advanced methods have been 
employed to mitigate these challenges, incorporating exponential approach law [11], power reaching law [12], and variable-rate 
reaching law [13], as well as the introduction of quasi-sliding modes and boundary layer concepts to suppress chattering [14,15]. 
Traditional sliding mode control, adopting a linear sliding surface, achieves system error convergence gradually. However, it is 
challenged by the inability of differential and integral sliding mode controls to converge system error within a finite time [16,17]. To 
address the slow convergence and chattering, second-order sliding mode control method was innovated to enable accurate robust 
differentiation and sustaining system states at zero [18]. Despite the improvements, practical application remains stymied by dis-
continuities in the control function and complex responses. Intelligent control approaches such as fuzzy control, neural networks, and 
genetic algorithms, have been incorporated to further reduce system chattering. Among these, super-twisting algorithm, a 
second-order sliding mode control algorithm, offers the distinct advantage of obviating the need to calculate the derivatives or dif-
ferences of the sliding variables [19]. But it also exhibits several drawbacks: a reliance on disturbance boundary information for 
parameter selection, slower convergence rates near equilibrium points, an inability to converge with smaller neighborhoods due to 
fixed power in nonlinear terms, and increased complexity in stability analysis upon incorporating linear terms [20]. To overcome these 
limitations, an improved global second-order super twisting sliding mode control (STSMC) strategy is proposed in this paper, which 
effectively amalgamates the strengths of beetle antennae search (BAS) and grey wolf optimization (GWO) algorithms. 

Comparing with the existing sliding mode control approaches, the key contributions of this work include:  

1) An improved second-order super-twisting sliding mode control strategy is proposed to improve the disturbance rejection ability and 
dynamic performance of PMSM to meet practical application requirements for fuel cell centrifugal compressors.  

2) The proposed strategy integrates BAS into GWO, enhancing global search capabilities and addressing shortcomings in parameter 
selection of the traditional super-twisting algorithm.  

3) Detailed stability analyses of the proposed STSMC strategy are provided to certify its finite-time convergence. 

In the following, Section 2 introduces the mathematical model of PMSM and its vector control system. In Section 3, the advantages 
of BAS and GWO are combined to optimize the control parameters in STSMC, and the finite-time convergence of the proposed strategy 
are analytically evaluated. Section 4 validates the viability and effectiveness of STSMC through comparative simulations with con-
ventional sliding mode controller, super twisting sliding mode controller, and PI controller. Section 5 provides the conclusion. 

2. PMSM and sliding mode control 

2.1. Mathematical model of PMSM in rotating coordinate system 

The proposed control strategy for PMSM is constructed in synchronous rotating coordinate system. Assuming the PMSM has 
negligible cross-coupling magnetic saturation, structural asymmetry, and iron losses, and disregarding magnet eddy current loss and 
harmonics in the characterization functions of windings, rotor anisotropy, and the coercive force of magnets, the stator voltages are 
shown in Equation (1). 

[
ud
uq

]

=

[
Rs 0
0 Rs

][
id
iq

]

+
d
dt

[
ψd
ψq

]

+

[
− ωeψq
ωeψd

]

(1)  

where ud and uq are the equivalent voltage vectors in the rotating coordinate system, id and iq are the current vectors, ψd and ψq are the 
rotor flux, Rs is the stator resistance. ωe is the rotor angular velocity. 
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The stator flux is shown in Equation (2). 
[

ψd
ψq

]

=

[
Ld 0
0 Lq

][
id
iq

]

+ ψf

[
1
0

]

(2)  

where Ld and Lq are the rotor inductance. ψ f is the permanent magnet flux linkage. 
The electromagnetic torque is given by Equation (3). 

Te =
3
2
pniq

[
id
(
Ld − Lq

)
+ψf

]
(3)  

where Te is the electromagnetic torque, and pn is the number of rotor pole pairs. 
The motion is shown in Equation (4). 

Te − Tl − Bωm = J
dωm

dt
(4)  

where Tl is the load torque, J is the rotor inertia, B is the viscous friction coefficient, and ωm is the mechanical angular velocity, ωe =

pnωm. 

2.2. PMSM sliding mode control 

This paper proposes an advanced sliding mode controller as an improvement to the conventional vector control approach widely 
applied in PMSM. Traditionally, such vector control systems comprise a speed controller that regulates speed signals to obtain the 
current iq∗, a current controller to sustain steady current vectors, and a Pulse Width Modulation (PWM) module responsible for 
calculating the duty cycle to govern the output voltage and current. In order to achieve optimal torque output, the id = 0 strategy is 
employed here. Under this strategy, by setting id to zero, the contribution of the motor’s d-axis to the torque is negated. Consequently, 
all of the current in PMSM is utilized solely for the generation of electromagnetic torque. This approach simplifies the control process, 
as only iq needs to be regulated to control the motor’s torque. The output current and voltage from the three-phase inverter are 
collected, allowing the reconstruction of the dq-axis current essential for current feedback. Concurrently, the rotor speed is collected 
for the speed control loop. 

The PMSM speed control block diagram based on the proposed STSMC is shown in Fig. 1. Differing from conventional vector 
control, this paper replaces the speed PID controller with a second-order super-twisting sliding mode controller to generate the 
reference value of the q-axis current. 

Equation (4) demonstrates the equation of motion for PMSM, which can be rewritten as Equation (5). 

Jθ⋅⋅ = Te − Bθ
⋅
− Tl = ktu − Bθ

⋅
− Tl (5)  

where θ is the rotor angle, θ
⋅
= ω. u is the reference value of the q-axis current, kt = 3

2pnψ f . 
The traditional sliding mode function is given by Equation (6). 

Fig. 1. Control block diagram of PMSM based on STSMC.  
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s(t)= ce(t) + e⋅ (t) (6)  

where e(t) is the error, and c > 0. 
Let e = θref − θ, and e

⋅
= ωref − ω, using Equation (5) and Equation (6), we can get Equation (7). 

s⋅ = ce⋅ + e= ce⋅ + θ −
1
J

(
ktu − Bθ

⋅
− Tl

)
(7)  

where θref is the reference rotor angle, and ωref is the reference rotor speed. 
To ensure the system stability, the Lyapunov function is defined as Equation (8). 

V(t)=
1
2
s2 (8) 

Using Equation (7), the derivative of Equation (8) yields: 

V
⋅
= ss⋅ = s

(

ce⋅ + θ −
1
J

(
ktu − Bθ

⋅
− Tl

))

(9) 

To make the derivative of the Lyapunov function negative definite, it is required that ss
⋅
≤ 0. Let: 

s⋅ = ce⋅ + θ −
1
J

(
ktu − Bθ

⋅
− Tl

)
= − εsgn(s) (10)  

where sgn( ⋅) is the sign function and ε is the upper boundary of the disturbance, from Equation (10), we have: 

u=
J
kt

(

ce⋅ + εsgn(s)+ θ+
B
J

θ
⋅
+

1
J
Tl

)

(11)  

In practical engineering applications, the load torque Tl is an uncontrollable and uncertain factor which should not be treated as a 
manipulable input. Consequently, using Equations (9) and (11), the derivative of the Lyapunov function will be transformed as: 

V
⋅
= s

(

ce⋅ + θ −
1
J

(

Jce⋅ + Jεsgn(s)+ Jθ+Bθ
⋅
− Bθ

⋅
− Tl

))

= s
(

− εsgn(s)+
1
J
Tl

)

= − ε|s| + 1
J

sTl

(12) 

Equation (12) suggests that when ε ≥ Tl/J, V
⋅
≤ 0. To ensure system robustness, it is necessary to increase the upper limit of the 

disturbance ε to prevent excessive disturbances from destabilizing the system. However, an excessively large ε could exacerbate 
chattering, thereby causing adverse effects. Therefore, current research primarily aims to reduce the occurrence of chattering while 
ensuring system robustness. 

3. Improved STSMC incorporating BAS and GWO 

3.1. Improved STSMC 

The improved STSMC is proposed by analyzing the characteristics of the PMSM speed control system and integrating GWO and BAS 
to optimize the parameters of the super-twisting algorithm. This strategy can adjust speed based on the distance from the sliding mode 
surface and enhance the system response speed. 

The traditional super-twisting algorithm is formulated as Equation (13). 
⎧
⎪⎨

⎪⎩
x⋅ 1 = − l1|x1|

1
2sign(x1) + x2x⋅ 2 = − l2sign(x1) (13)  

where x1 and x2 are state variables, l1 > 0, l2 > 0. 
Using the rapid terminal sliding mode surface: 

s= x• + αx + βx
q
p (14)  

where x = e, α > 0, β > 0, p and q are positive odd, p > q. 
The differential of Equation (14) can be expressed by: 

s• = e+ αe+ β
q
p

e
q
p− 1e• =ω• ref −

1
J
(ktu − Bω − Ti)+αe + β

q
p

e
q
p− 1e• (15) 

Employing Equation (13) as the approach law, so the convergence of the sliding mode surface and its derivative can be ensured to 
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zero: 

s⋅ = − l1|s|
1
2sign(s) +

∫

( − l2sign(s)) (16) 

Combining Equation (15) with Equation (16), the following control law is derived as Equation (17). 

u∗ =
J
kt

(

ω• ref +
B
J

ω+αe• +
βq
p

e
q
p− 1e• + l1|s|

1
2sign(s)+ l2

∫

sign(s)
)

(17)  

where Tl is an uncertain factor which should not be included in the control law. 

3.2. Integration of BAS into GWO for enhanced global search 

In the proposed STSMC strategy, there are numerous parameters in the sliding mode portion. A considerable amount of time is 
required to tune these parameters to achieve satisfactory control performance. To enhance efficiency and also improve parameter 
accuracy, optimization algorithms are subsequently employed for parameter tuning. 

This study introduces a novel global search algorithm that assimilates the strengths of GWO and BAS to overcome specific limi-
tations, particularly the susceptibility of the former to getting trapped in local optima. The conventional GWO can see a substantial 
increase in time and spatial complexity when employed in larger operational scenarios. By incorporating BAS, the proposed algorithm 
enables the performance of both local and global searches while circumventing local optima. 

Since BAS is a single-unit search algorithm, its incorporation into GWO empowers the initial wolf individuals to maximize the 
utilization of solution space information, consequently improve the global search capability. In addition to this, this novel algorithm is 
further integrated with the Super-Twisting algorithm, providing optimized parameter selections to suppress its inherent chattering 
issue. 

The proposed algorithm primarily maintains the integrity of the GWO while dividing each two-wolf pair into a group and 
initializing them according to the two antennae of a beetle. Initially, the wolves are ranked according to the fitness level. The top three 
groups of wolves, with superior fitness, are denoted as α, β, and δ, while the remaining wolves are denoted as ω. Lower-ranking wolf 
groups must follow the commands of the higher-ranking groups. The optimization process is conducted under the direction of the 
dominant wolf groups, leading the wolves to track, encircle, and attack the target. The mathematical model for encircling the target is 
described as Equation 18–21. 

D=C ∘ Xp(t) − X(t) (18)  

X(t+ 1)=Xp(t) − A ∘ D (19)  

A= 2a ∘ r1 − a (20)  

C= 2r2 (21)  

where t is the current iteration, ∘ is the basic product operation, D is the distance between wolf and target, Xp(t) is the position vector of 
target, X(t) is the current position of wolves, A and C are collaborative coefficient vectors, a will gradually decrease throughout the 
iteration process, declining linearly from 2 to 0, r1 and r2 are random vectors within the interval [0,1]. 

The position of wolf group α in each iteration is shown in Equation (22). 
{

Xα1 = Xt + l ∗ d
→

Xα2 = Xt − l ∗ d
→ (22)  

where l represents the distance between the centroid of beetle and its antennae, d
→

is a random unit vector. 
After the same normalization process as BAS, combing Equation (19) and Equation (22), the position of wolf group α is determined 

based on the difference in the scent intensity perceived by the two antennae: 

Xα =Xt + δt ∗ d
→

∗ sign[f (Xα1) − f (Xα2)] (23)  

where δt is the exploration step size, f( ⋅) is the fitness function, which can be defined as Equation (24). 

f =
1
N

∑N

n=1

[⃒
⃒ωref (n) − ω(n)

⃒
⃒nTs

]
(24)  

where Ts is the sampling time, N is the number of sampling points. 
Similar to Equation (23), the position of wolf group β, δ, and ω are shown in Equation 25–27. 

Xβ =Xt + δt ∗ d
→

∗ sign
[
f
(
Xβ1

)
− f

(
Xβ2

)]
(25) 
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Xδ =Xt + δt ∗ d
→

∗ sign[f (Xδ1) − f (Xδ2)] (26)  

Xω =Xt + δt ∗ d
→

∗ sign[f (Xω1) − f (Xω2)] (27) 

After each iteration, the better α, β, and δ are determined based on the position of each wolf, until the optimal solution is finally 
found. The formula for the positions of α, β, and δ after each iteration can be derived as Equation28–30. 

X→1 = X→a − A1 · D→α (28)  

X→2 = X→β − A2 · D→β (29)  

X→3 = X→δ − A3 · D→δ (30)  

where X→a, X→β, and X→δ are the positions of the optimal three groups of grey wolves in current population, from Equation (18), D→α, D→β, 

and D→δ are the distance between the optimal three wolf groups and the subsequent wolf position vectors, which can be derived as 
Equation 31–33. 

D→α =

⃒
⃒
⃒
⃒C→1 · X→α − X→t

⃒
⃒
⃒
⃒ (31)  

D→β =

⃒
⃒
⃒
⃒C→2 · X→β − X→t

⃒
⃒
⃒
⃒ (32)  

D→δ =

⃒
⃒
⃒
⃒C→1 · X→δ − X→t

⃒
⃒
⃒
⃒ (33) 

The position of current candidate wolf is shown in Equation (34). 

X→(t+ 1)=
X→1 + X→2 + X→3

3
(34) 

When the absolute value of A is greater than 1, the wolves disperse in different regions to search for target. Otherwise, the wolves 
will congregate in certain areas for focused hunting. The hunt continues until the optimal location is found, after which an attack is 
initiated. 

As the number of iterations increases, the search step size needs to be modified adaptively decreasing, which can be defined as 
Equation (35). 

δt = kδt− 1 (35)  

Fig. 2. Block diagram of PMSM speed controller based on improved STSMC.  
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where k is the step decay coefficient. 
Combining the PMSM control based on the improved STSMC, the speed control block for PMSM is illustrated in Fig. 2. BAS and 

GWO selects the optimal parameter combination in each iteration and continues iterating until the maximum number of iterations is 
reached. The steps of applying these algorithms are as follows: 

Step 1. Generate parameters α, β, l1, l2 randomly. 

Step 2. Substitute the parameters into Simulink model, run simulation and collect data necessary for calculating the fitness function. 

Step 3. Select the best parameters with smallest f( ⋅), and move to the next iteration. 

3.3. Stability analysis of improved STSMC 

To prove that the improved STSMC is robust and globally stable, the first step is to prove the finite-time convergence. Define the 
quadratic Lyapunov function as Equation (36). 

V = ζTPζ (36)  

where P is the positive definite symmetric matrix satisfying the Lyapunov equation ATP+ PA = − Q, and A =

[
− l1 1
− l2 0

]

, Q is an 

arbitrary positive definite symmetric matrix. Since l1、l2 > 0, then A is Hurwitz matrix. ζT =
[
|s|

1
2sign(s)， −

∫
l2sign(s)

]
. 

The derivative of ζ is shown in Equation (37). 

ζ̇=
[

φ(s)s⋅

− l2sign(s)

]

=φ(s)

⎡

⎣
− l1|s|

1
2sign(s) −

∫

(l2sign(s))

− l2|s|
1
2sign(s)

⎤

⎦=φ(s)
[
− l1 1
− l2 0

]
⎡

⎢
⎣

|s|
1
2sign(s)

∫

( − l2sign(s))

⎤

⎥
⎦ (37) 

Define φ(s) = k1 + k2|s|−
1
2,k1,2 > 0. From Equations (36) and (37), we can get: 

V
•

= ζT
•

Pζ+ ζTPζ
•

=φ(s)ζT( AT P+PA
)
ζ= − φ(s)ζTQζ (38) 

It can be concluded that V
•

is negative definite, indicating the system exhibits asymptotic stability over a wide range. Considering 
that V = ζTPζ is a quadratic positive-definite function, we can obtain Equation (39). 

λmin{P} ‖ ζ‖2
2⩽V⩽λmax{P} ‖ ζ‖2

2 (39)  

where ‖ ζ‖2 is the second order paradigm on Euclidean space, λmax{P} and λmin{P} are the maximum and minimum eigenroot of P, 
respectively. 

‖ ζ‖2
2 = |s| +

(∫

( − l2sign(s))
)2

,|s|
1
2⩽ ‖ζ‖2⩽

V1
2

λ
1
2
min{P}

(40) 

Combining Equation 38–40, we can get: 

V
•

= − φ(s)ζTQζ⩽ − φ(s)λmin{Q} ‖ ζ‖2
2 = − k1λmin{Q} ‖ ζ‖2

2 − k2|s|−
1
2λmin{Q} ‖ ζ‖2

2

⩽ − k1
λmin{Q}

λmax{P}
V − k2|s|−

1
2
λmin{Q}

λmax{P}
V = − k1

λmin{Q}

λmax{P}
V − k2

λmin{Q}λ
1
2
min{P}

λmax{P}
V 1

2

(41) 

Let γ1(Q,P,k1) = k1
λmin{Q}

λmax{P}, γ2(Q,P,k2) = k2
λmin{Q}λ

1
2
min{P}

λmax{P} , and: 

V
•

= − γ1V − γ2V
1
2 (42) 

Change Equation (42) as: 

y• +
γ1

2
y = −

γ2

2
(43)  

where y = V1
2,y

•
= 1

2V
− 1

2V
•

, solve Equation (43), we can get: 

y= −
γ2

γ1
+

γ2

γ1
e−

γ1
2 t + y(0)e−

γ1
2 t (44) 

Let y = 0, so the convergence time is as shown in Equation (45). 
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ts =
2
γ1

ln
(

1+
γ1

γ2
V1

2(0)
)

(45)  

when γ1 = 0 or γ2 = 0, the Lyapunov function exhibits a simple exponential convergence. Then, we can derive: 

Theorem 1. Considering the sliding mode surface (14) and speed control law (17), the proposed STSMC secures global stability, guaranteeing 
system convergence to zero within a finite time. 

4. Experimental verification 

Based on the speed controller designed in Fig. 2 and the theoretical foundation of PMSM, simulations were conducted in Matlab/ 
Simulink considering disturbances on the load side. In the constructed simulation system, a control structure incorporating an external 
speed loop and an internal current loop was employed, utilizing id = 0 control strategy. Subsequently, modules including coordinate 
transformations (Clark and Park, along with their respective inverse transformations), SVPWM, PMSM motor models, and power 
supply were established. The final schematic of the PMSM simulation system is presented in Fig. 3, and the parameters of PMSM are 
shown in Table 1. 

To validate the effectiveness of the proposed STSMC, four cases are conducted under various operating conditions of the PMSM. 
Comparative analyses were undertaken using three different control methods: PI controller, traditional Sliding Mode Controller (SMC), 
and standard Super-Twisting Sliding Mode Controller (ST) to substantiate the robustness of the proposed strategy. All the simulations 
are performed in MATLAB R2020a environment on a PC with i7-12700H CPU with 16 GB RAM. 

4.1. Case 1: variable load condition 

To address the load disturbances that occur during the operation of the PMSM, the first case was designed in which the motor starts 
at a no-load constant speed of 1000 r/min. The load is suddenly increased to 10 N • m at 0.2s and decreased to 10 N • m at 0.3s, and the 
simulation results are shown in Fig. 3. This procedure is conducted to validate the enhanced robustness exhibited by the proposed 
STSMC strategy. 

From Fig. 4, it can be observed that the overshoot of the proposed STSMC is 5.553 r/min when the speed increases to 1000 r/min. At 
t = 0.01s, the motor speed stabilizes at the set value of 1000 r/min. After applying a fixed load torque of 10 N m, the speed of the 
proposed STSMC decreases to 982.823 r/min and returns to the set value at t = 0.208s. The detailed value of performance indexes are 
given in Table 2. 

From Table 2, the overshoot of the proposed STSMC is 0.55 %, which is a 98.4 % reduction compared to PI controller and a 93.7 % 
reduction compared to ST. In terms of response speed, the settling time of STSMC is 0.01s, a 90 % improvement over PI controller, and 
28.6 % faster than the ST. Regarding steady-state performance, STSMC has a steady-state error of 0.019r/min, a 91.2 % improvement 
over PI controller, and a 57.8 % improvement over ST. These results indicate that OSA-SMC can reach steady-state faster and with 
minimal oscillation during no-load startup, demonstrating its superior no-load startup performance compared to other comparative 
methods. 

From Tables 3 and 4, it can be observed that, when the load torque suddenly increases, the overshoot of STSMC is 1.718 %, which is 
76.4 % smaller than PI control and 0.8 % smaller than ST. When the load torque suddenly decreases, the overshoot of STSMC is 1.693 

Fig. 3. PMSM model build in Matlab/Simulink.  
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%, which is 76.7 % smaller than PI control and 5.1 % smaller than ST. Regarding the response speed, the settling time of STSMC is 
0.008s, which is 74.2 % faster than PI control and 33.3 % faster than ST. This indicates that when faced with sudden increases or 
decreases in load torque, STSMC has better robustness than PI control. When the load torque suddenly increases, there’s only a 0.8 % 
difference between STSMC and ST. When the load torque suddenly decreases, there’s only a 5.1 % difference between them. However, 
in terms of speed, STSMC is 33 % faster than ST, indicating that STSMC can return to a stable state more quickly. 

4.2. Case 2: startup with load 

To deal with the challenges associated with loaded start-up in PMSM, the second case was designed where the motor starts under a 
load of 5 N⋅m at 1000 r/min, and the simulation results are shown in Fig. 5. 

As illustrated in Fig. 5, the improved STSMC exhibits an overshoot of 8.221 r/min in rotational speed, stabilizing at the set value 
only after 0.0115s. The detailed value of performance indexes are given in Table 5. In Table 5, the overshoot of STSMC is 0.82 %, a 
decrease of 97.7 % compared to PI control and a reduction of 79.6 % compared to ST. In terms of response speed, the settling time of 
STSMC is 0.01s, which is 75.9 % faster than PI control and 17.3 % faster than ST. In terms of steady-state performance, the steady-state 
error of STSMC is 0.029 r/min, which is 69.8 % smaller than PI control and 47.3 % smaller than ST. These results demonstrate that 

Table 1 
Parameters of PMSM.  

Parameters Value 

Stator resistance Rs 2.356 Ω 
d-axis inductance Ld 0.83 mH 
q-axis inductance Lq 0.83 mH 
Stator magnetic flux ψ f 0.1225 Wb 
Pole pairs 4 
Rotational inertia J 0.003 kg • m2 

DC bus voltage 311 V 
Friction coefficient B 0.008 N • m • s  

Fig. 4. Simulation results for case 1.  

Table 2 
Performance index during the start of case 1.  

Control method Peak RPM/（r/min） RPM overshoot/(%) Settling time/(s) Steady-state error/(r/min) Torque overshoot/(N • m) 

PI 1351.444 35.144 0.046 0.217 7.537 
SMC 1088.391 8.839 0.017 0.05 6.042 
ST 1061.236 6.124 0.014 0.045 5.547 
STSMC 1005.553 0.555 0.01 0.019 0.574  

Table 3 
Performance index during sudden load increase.  

Control method Peak RPM/（r/min） RPM overshoot/(%) Settling time/(s) Steady-state error/(r/min) Torque overshoot/(N • m) 

PI 927.292 7.271 0.031 0.317 0.034 
SMC 976.256 2.374 0.016 0.05 0.004 
ST 982.666 1.733 0.012 0.043 0.002 
STSMC 982.823 1.718 0.008 0.027 0.001  
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during a loaded start-up, STSMC can reach steady state more quickly and with less oscillation. 

4.3. Case 3: variable speed with no-load condition 

To address the frequent speed changes of PMSM during operation, the third case was designed such that the motor starts at no load 
at 500 r/min, and at 0.2s, the reference speed abruptly changes to 1000 r/min. This case is used to verify that the proposed STSMC has 
better dynamic performance. The simulation results are shown in Fig. 6. 

As shown in Fig. 6, the proposed STSMC exhibits an overshoot of 22.636 r/min as the speed increases to 1000 r/min. By t =
0.2078s, the motor speed has settled at the designated value of 1000 r/min. The detailed value of performance indexes are given in 
Table 6. In Table 6, the STSMC outperforms both traditional PI control and ST, with an overshoot of 2.264 %, which is an 85.1 % and 
19.2 % reduction respectively. Furthermore, in terms of responsiveness, STSMC achieves a settling time of 0.0078s, which is 72.6 % 
faster than PI control and 11.4 % faster than SMC. During the variable speed experiment, ST exhibited a smaller overshoot compared to 
SMC, and SMC showed a shorter settling time than ST. However, STSMC was optimal in both overshoot and settling time, combining 
the advantages of both. Therefore, STSMC demonstrates superior variable speed performance compared to other methods. 

4.4. Case 4: load with time-varying disturbance 

In this case, PMSM was operated at a high rotational speed of 40000r/min. To simulate the time-varying disturbances that are 
typically encountered in such high-speed domains, a triangular wave disturbance of 2.5 N • m amplitude and 10 Hz frequency was 
introduced into the load. This was done to validate the robustness of STSMC to time-varying disturbances. The simulation results are 
shown in Fig. 7. 

As indicated in Fig. 7, fluctuations in rotational speed are observed in the other three control methods. Specifically, PI control 
exhibits speed oscillations between 38275.8 r/min and 41624 r/min, with a maximum deviation of approximately 4.31 % from the 
target speed of 40000 r/min. SMC control experiences variations ranging from 39564.2 r/min to 40374.8 r/min, showing a maximum 
deviation of about 1.09 %. Meanwhile, ST control undergoes fluctuations within the 39311.3 r/min to 40550 r/min interval, resulting 
in a maximum deviation of approximately 1.72 % from the target speed. Conversely, the rotational speed of the improved STSMC 
remains stable, with no discernible fluctuations. The simulation results demonstrate that, even under the influence of a time-varying 

Table 4 
Performance index during sudden load decrease.  

Control method Peak RPM/（r/min） RPM overshoot/(%) Settling time/(s) Steady-state error/(r/min) Torque overshoot/(N • m) 

PI 1072.604 7.26 0.032 0.315 0.038 
SMC 1024.281 2.428 0.015 0.052 0.004 
ST 1017.837 1.784 0.012 0.043 0.002 
STSMC 1016.93 1.693 0.008 0.018 0.001  

Fig. 5. Simulation results for case 2.  

Table 5 
Performance index during the start-up of case 2.  

Control method Peak RPM/（r/min） RPM overshoot/(%) Settling time/(s) Steady-state error/(r/min) Torque overshoot/(N • m) 

PI 1360.102 36.01 0.0477 0.096 8.168 
SMC 1068.14 6.814 0.0164 0.064 6.345 
ST 1040.229 4.03 0.0139 0.055 4.698 
STSMC 1008.221 0.822 0.0115 0.029 1.441  
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load torque, the improved STSMC exhibits better disturbance rejection capabilities compared to other three methods. 
In conventional SMC, the reach time of the equivalent phase is affected by both the initial error and the switching coefficient, 

whereas the sliding surface coefficient influences the sliding phase’s convergence speed. Although the SMC exhibits an exponential 
convergence process during the sliding phase, it requires infinite time to achieve full convergence - a conclusion derived from the 
sliding surface differential equation. Unlike the conventional SMC, the proposed STSMC incorporates a non-linear approach law, 
which modifies the way error phase trajectories converge towards the sliding surface. 

Both the classical ST and improved STSMC centrally rely on the concept of relativity level, employing the sliding surface as a 
control variable to accelerate convergence speed. However, the absence of linear term in the ST causes a slowdown in the convergence 
speed when approaching the reference point. 

According to the above analysis of the simulation results, it can be found that the proposed STSMC exhibits superior robustness and 
expedited convergence, contributing to improved system performance. It proves particularly effective in addressing operational 
challenges, including sudden load changes, heavy-load startup, and frequent speed variations, thereby ensuring superior adaptability 
under diverse external conditions. 

5. Conclusion 

This paper proposed an improved STSMC strategy tailored to the complex operating conditions and pronounced internal envi-
ronmental disturbances of hydrogen fuel cell centrifugal compressors, particularly for the associated PMSM. It specifically utilizes a 
combined GWO and BAS algorithm to optimize the parameter selection of the proposed STSMC. As verified in case studies, the 
proposed strategy demonstrates superior performance in handling disturbances, achieving rapid stabilization, and maintaining precise 
control compared to the existing algorithms. In variable load and high-speed domain scenarios, STSMC exhibited improved robustness 

Fig. 6. Simulation results for case 3.  

Table 6 
Performance index during sudden speed increase.  

Control method Peak RPM/（r/min） RPM overshoot/(%) Settling time/(s) Steady-state error/(r/min) Torque overshoot/(N • m) 

PI 1152.016 15.202 0.0285 0.203 4.038 
SMC 1035.692 3.569 0.0088 0.063 2.561 
ST 1028.016 2.802 0.0095 0.078 4.986 
STSMC 1022.636 2.264 0.0078 0.045 2.365  

Fig. 7. Simulation results for case 4.  
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and adaptability, particularly in reducing overshoot, accelerating settling times, and minimizing steady-state errors under variable 
loads and during loaded start-ups. Moreover, STSMC effectively mitigated time-varying disturbances in high-speed operations, 
showcasing its superior disturbance rejection capabilities, crucial for complex operational environments and fluctuating operational 
demands for hydrogen fuel cell centrifugal compressor. Future work includes improvements to the controller of the current loop to 
further enhance the performance of the motor, effectively limit the armature current under sudden conditions and enhance the safety 
of the system. 
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