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Abstract: Most previous work on dynamic functional connectivity (dFC) has focused on analyzing
temporal traits of functional connectivity (similar coupling patterns at different timepoints),
dividing them into functional connectivity states and detecting their between-group differences.
However, the coherent functional connectivity of brain activity among the temporal dynamics of
functional connectivity remains unknown. In the study, we applied manifold learning of local linear
embedding to explore the consistent coupling patterns (CCPs) that reflect functionally homogeneous
regions underlying dFC throughout the entire scanning period. By embedding the whole-brain
functional connectivity in a low-dimensional manifold space based on the Human Connectome
Project (HCP) resting-state data, we identified ten stable patterns of functional coupling across
regions that underpin the temporal evolution of dFC. Moreover, some of these CCPs exhibited
significant neurophysiological meaning. Furthermore, we apply this method to HCP rsfMR and
tfMRI data as well as sleep-deprivation data and found that the topological organization of these
low-dimensional structures has high potential for predicting sleep-deprivation states (classification
accuracy of 92.3%) and task types (100% identification for all seven tasks).In summary, this work
provides a methodology for distilling coherent low-dimensional functional connectivity structures in
complex brain dynamics that play an important role in performing tasks or characterizing specific
states of the brain.

Keywords: manifold learning; consist coupling patterns; resting state; dynamic functional connectivity;
sleep deprivation

1. Introduction

The human brain is a hierarchically organized complex system that can be empirically parsed
into functionally specialized units commonly referred to as functional brain networks. A large body
of neuroimaging studies have made substantial progress in delineating this functional architecture
mainly based on resting-state static functional connectivity (sFC). These stable spatiotemporal patterns
of resting-state functional activity in a population closely resemble patterns of evoked task-based
brain activity [1] and have a significant biological and genetic basis [2,3]. These distributed functional
networks cooperate with one another to respond to internal and external stimuli, which underpin
various cognitive tasks in the brain. Therefore, identification of the brain’s functional architecture
has important significance to understanding information processing procedures in the brain and the
relationship between brain functions and individual behavior.
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Recently, the use of the functional brain network has been extended from sFC measured based on
the entire scan to its dynamic aspect (i.e., dynamic functional connectivity, dFC) that assumes evident
time-varying fluctuation of network connectivity during a period of unconstrained rest [4–6] and
across task states [7,8]. Some generative and computational models were proposed to understand
how the functional brain network evolves over time [9]. These studies usually identified consistent
and replicable whole-brain connectivity patterns (i.e., transient functional connectivity states) that
recur over time under the hypothesis of separate or mixture models of dFC. In the separate model,
dFC was expressed by a single spatial connectivity pattern at a given point in time [4,10]. Some studies,
however, suggested that a linear mixture model of a smaller number of latent connectivity patterns
that recur at varying times may be a better model for dFC [11]. For instance, principal component
analysis (PCA) [12] and independent component analysis (ICA) [13] have been used to identify
“eigenconnectivities” that reflect meaningful patterns in FC fluctuations assuming the orthogonality or
independence of building blocks of network configurations. It is noticeable that many of these previous
studies have focused on temporal decomposition of dFC. Few of them, however, concerned the spatial
structures underlying dFC evolution.

In this paper, we ask whether there are intrinsic coupling patterns stably existing during
the dynamics of functional connectivity, i.e., some functional connections can be grouped into
different clusters based on the similarity of their correlation time courses. These clusters, if they
exist, would reflect the functionally homogeneous regions that constitute the spatial components
supporting dFC evolution. For example, a top-down parcellation strategy using time courses of
instantaneous connectivity (a special form of dynamic connectivity) has been confirmed to produce
biologically valid functional subdivisions of the cortical cortex and subcortex [14]. It has also been
suggested that compared with sFC analysis, functional parcellation based on dFC could exhibit
smaller subdivision clusters and significantly improve the reproducibility of segmented subregions
across subjects [15]. In contrast to previous time decomposition models of dFC, these studies model
time-varying functional connectivity from the perspective of cortical coupling, which was expected
to deepen our understanding of the dynamic functional organization of the brain and the temporal
evolution of functional brain networks.

In particular, we used manifold learning of local linear embedding (LLE) to extract the consistent
connectivity patterns (CCPs) underlying dFC. As a fully data-driven approach, manifold learning has
been gradually applied to neuroimaging analysis with many advantages of its shared manifold nature,
geometric intuition, and high-dimensional data visualization, including detecting activated voxels [16],
reducing dimensionality of fMRI classification [17], generating brain fingerprints [18] and decoding
visual stimuli from brain activity [19]. Unlike linear models such as PCA and ICA, the manifold
learning of LLE can uncover temporal or spatial structures in observation data as an effective nonlinear
dimensionality reduction approach, when optimally preserving the local similarity of data points.
In the present study, we assumed that a limited number of whole-brain connectivity patterns stably
exist during the evolution of dFC. Furthermore, manifold learning was used to learn the organization
of these coupling patterns in high dimensions and to extract the low-dimensionality representation
underlying dFC. The Euclidean distance between data points was quantified via the similarity of
correlation time courses between connections. An unsupervised classifier based on K-means clustering
was then used to separate the spatial components of dFC into CCPs.

We further demonstrated that these CCPs (the embedded dataset structures) have significant
neurophysiological relevance by applying the proposed model to discriminate cognitive tasks from
the resting state and to detect changes in brain activity induced by sleep deprivation. We assumed that
different cognitive tasks or varying brain states could “activate” discrepant CCPs in dFC that have
differentiated topological structures. The topological organization of these CCPs was quantitatively
evaluated based on one core-quality score with each node (connection). We further demonstrated
the potential of the CCPs’ topological organization for classifying the sleep-deprivation condition
and different cognitive tasks with high accuracy, suggesting that these coherent low-dimensional
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functional coupling structures in complex brain dynamics play an important role in performing tasks
or characterizing specific states of the brain.

2. Materials and Methods

2.1. Participants

The primary dataset used in this work was selected from the Q3 release of the Human Connectome
Project dataset (HCP). A second dataset (the sleep-deprivation dataset) was used to verify the effects
of the proposed framework. These details are described below.

(1) HCP dataset: The first dataset consisted of 40 healthy subjects (age: 22–25 years, 5; 26–30 years,
15; 31–35 years, 20; gender: male, 19; female, 21) were selected from the Q3 release of the HCP dataset
with low mean head motion (<0.23 mm) during both resting-state sessions [20], including resting-state
fMRI (rsfMRI) and seven-task fMRI (tfMRI) data. The resting-state fMRI data for all subjects were
scanned in separate sessions on two different days. For the two sessions for each subject, only data
from the left-right (LR) phase-encoding run for session 1 were used. rsfMRI data acquisition was
performed on a 3.0 T Siemens scanner with the participants’ eyes open, relaxed, and fixed on a
bright crosshair projected on a dark background. The data acquisition parameters were as follows:
repetition time/echo time (TR/TE) = 720 ms/33.1 ms, f lip angle = 52◦, f ield o f view (FOV) =

208 mm× 180 mm (RO× PE) , matrix size = 104× 90 (RO× PE), resolution = 2.0 mm, slices = 72,
and volumes = 1200. Please refer to the previous literature for a detailed description of the HCP data
and scanning protocol [21]. tfMRI data were acquired with the same EPI pulse sequence parameters as
rsfMRI [22]. The time lengths of each task and resting state are as follows: resting state (1200 frames),
working memory (405 frames), gambling (253 frames), motor (284 frames), language (316 frames), social
cognition (274 frames), relational processing (232 frames), emotional processing (176 frames). The fMRI
paradigm structures were controlled for the 7 tasks in the HCP dataset e.g., the working memory task
contains 8 task blocks (10 trials of 2.5 s each, for 25 s) and 4 fixation blocks (15 s), and in the motor task,
each block of a movement type lasted 12 s. The block duration and block cycle are different in the 7 tasks
(all details shown in HCP S1200 Release Reference Manual: https://www.humanconnectome.org).

(2) Sleep-deprivation (SD) dataset: The second dataset comes from the 36 h Acute Sleep
Deprivation (ASD) study of 37 healthy, right-handed adult men (age: Mean± STD, 23.1± 1.9 years)
that was reported in our previous studies [23,24]. All participants had good sleep habits (got to bed no
later than 12:00 p.m. and got up at no later than 8:00 a.m.) and slept at least 6.5 h (average: 7.5± 0.7 h)
every night for the past month. Exclusion criteria were central and peripheral nervous system disease,
head trauma, cardiovascular disease and/or hypertension, cataract and/or glaucoma, pulmonary
problems, alcohol or drug abuse. All subjects were required to maintain a regular sleep schedule and to
avoid alcohol, caffeine, chocolate and napping one week before and during the study. This study was
approved by the Research Ethics Committee of Beijing Military General Hospital. Written informed
consent according to the Declaration of Helsinki was obtained from all participants. The experimental
paradigm is shown in Figure A1 (refer to the previous report [24] for detail). rsfMRI data were
acquired using a GE 3.0T Discovery 750 scanner with an 8-channel head coil, and functional images
were collected using a gradient echo-planar imaging sequence. The imaging parameters were as
follows: repetition time(TR) = 2000 ms; echo time(TE) = 30 ms; f ield o f view(FOV) = 240× 240 mm;
slice thickness = 3 mm; slice gap = 1 mm; f lip angle(FA) = 90◦; matrix size = 64× 64; and 35 oblique
slices. Each resting-state scan lasted 8 min and 240 volumes were collected for each participant.

2.2. Data Preprocessing

For the HCP dataset, we adopted the publicly released ICA-FIX denoised fMRI data and used
an automated component classifier, referred to as FIX (FMRIB’s ICA-based X-noisifier), to remove
non-neural spatiotemporal components from the data after the minimal preprocessing pipelines for
HCP functional data which mainly includes spatial artifact and distortion removal, motion correction,
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within-subject cross-modal registration, and cross-subject registration to a standard space [25].
In addition to the denoised fMRI data, several additional preprocessing steps were performed,
including skipping the first 15 volumes, resampling data into 3 mm× 3 mm× 3 mm, spatial smoothing
using a Gaussian filter kernel with 6 mm full-width at half-maximum (FWHM), temporal band-pass
filtering [0.01, 0.08] Hz, and nuisance regression. Finally, regression of head motion, the white matter
(WM) signal, cerebrospinal fluid (CSF) signal and their first-order deviations were performed to reduce
spurious variance that was unlikely to reflect neural activity [20]. For tfMRI data, the preprocessing
pipelines included motion correction, spatial smoothing, temporal pre-whitening, slice time correction,
and global drift removal [21].

SPM12 software (http://www.fil.ion.ucl.ac.uk/spm) was used for preprocessing rsfMRI ASD
data. For each participant, the first 5 volumes of scan data were removed for magnetic saturation.
The remaining 235 volumes were recalibrated by registering and re-slicing for head movements. Next,
normalization to the EPI template in the Montreal Neurological Institute (MNI) space was conducted,
and the resulting volumes were resampled to 3 mm× 3 mm× 3 mm. Then, the normalized images
were spatially smoothed with a 6 mm FWHM Gaussian kernel filter and temporally filtered using
a Chebyshev band-pass filter (0.01–0.08 Hz). Finally, after the linear trend was eliminated, multiple
regression analysis was performed on the data. Additionally, the average signals of head motion, white
matter (WM), and cerebrospinal fluid (CSF) and their first-order derivatives were eliminated. Due to
several confounding factors such as excessive head motion, potential resilience to ASD and vigilance
loss during scanning in the ASD condition, 11 subjects were removed during data acquisition [24].
The remaining 26 qualified subjects’ data were selected to explore the time-invariant FCPs changed by
ASD underlying dFC.

2.3. Regions of Interest (ROIs)

We used the 160 ROIs atlas previously reported [26] to parameterize whole-brain activity
(radius = 4 mm). These ROIs were further divided into six principal functional networks,
including the cerebellum network (CB), cingulo-opercular network (CON), default mode network
(DMN), fronto-parietal network (FPN), occipital network (OCN) and sensorimotor network (SMN).
Specifically, 27 voxels were included in one ROI, which are the centroid of the ROI and those gray
matter voxels located outside ROIs were excluded. The representative signal of each ROI was calculated
based on the mean of the internal voxels within this ROI [27].

2.4. Estimation of Dynamic Functional Connectivity

A sliding-window correlation approach was applied to characterize dynamic functional
connectivity (dFC) [4], which had been proven to be a high efficacy framewise dFC method in the
numerous dFC estimation methodologies [28]. The temporal window, parameterized by its window
size, was shifted by a slide step along a set of timecourses which were extracted from the fMRI images
using the 160 ROIs. The timecourse correlations within each window between paired ROIs were
obtained with Pearson’s correlation analysis (Figure 1A). A 160× 160 real symmetric correlation matrix
was obtained for one window and the upper triangle of the matrix was taken and expanded to a
12,720 × 1 vector as the functional connectivity vector of this window. A Fisher-z-transformation
was then applied to the vector to ensure the normal distribution of the functional connectivity.
Consequently, the dFC matrix was S = {s1, · · · , sn} ∈ Rn×D, and si ∈ RD was the sliding-window
signal for ith connectivity pair, where n (12,720) is the number of the whole-brain functional
connectivity pairs and D is the number of sliding windows. In this study, the slide step was selected as
5 TRs and the window size was 40 s, which were thought to achieve a balance between the ability to
resolve the dynamics and quality of the covariance matrix estimation [4,27].

http://www.fil.ion.ucl.ac.uk/spm
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Figure 1. The framework of the manifold learning model. (A) Using the sliding-window correlation
approach to estimate the dynamic functional connectivity for the participants. The obtained dFC
dataset was rearranged into the matrix. The rows of the matrix are the sliding-window signals of the
connectivity pairs. The columns of the matrix are all connectivity pairs ordered by the correlation
sequence of the ROI atlas. (B) Embedding the dataset in a low-dimensional manifold space with
the LLE algorithm. The columns of the embedded dFC dataset are mapped into d dimensions.
(C) Definition of the CCPs for the structure of dynamic functional connectivity. The application of
the k-means algorithm separates the manifold structure into d CCPs. We labeled every CCP in one
color. (D) Measurement of typological organization of the CCPs (dataset). The NSM algorithm for the
CCPs assigned every connectivity pair with a nonnegative value such that a larger value indicated
a higher level of importance. Then, the value vector was realigned into the ROI-ROI index matrix.
(E) Classification or statistical analysis for the manifold structure of the dataset. We used the coreness
value as the feature to make LOOCV or a 10-fold cross-validation strategy at an individual level,
to perform a two-sample t-test on a group level and to conduct permutation testing under the null
hypothesis for the ASD/AR group.

2.5. Manifold Learning of dFC

A manifold learning approach of local linear embedding (LLE) [29] was used to extract the
functionally homogeneous connectivity patterns (i.e., CCPs) underlying dFC (Figure 1B). We seek this
parametrization of the dataset to obtain a low-dimensional representation of dFC when optimally
preserving the local similarity between a windowed time series of connections. The embedding
dimensionality of the feature space is a crucial parameter to the manifold learning. The maximum
likelihood estimation [30] (MLE) was applied to calculate the intrinsic dimensionality of S. For an
observation si, the equation executed the MLE dimensionality estimator as

d̂k(si) =

[
1

k− 1

k−1

∑
j=1

log
Tk(si)

Tj(si)

]−1

. (1)

where Tj(si) was the Euclidean distance from si to its jth nearest neighbors, and Tk(si) was the sum of
Tj(si). To reduce the influence of manifold fluctuation and noise, the intrinsic dimensionality of the
dataset s was calculated as the average of d̂k(si).
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d̂k(s) =
1
n

N

∑
i=1

d̂s (si) . (2)

We submitted the dFC matrix S to the LLE algorithm as the input which includes three steps
of transforming the matrix S in D-dimensional Euclidean space into the embedding matrix V in
d-dimensional manifold space. Step 1: for the sample point si (connectivity pair), we used Euclidean
distance to find its k nearest neighbors sj(j = 1, 2, · · · , k) with the K-nearest neighborhood (KNN)
algorithm and enforced that wij = 0 if sj did not belong to the set of neighbors of si and that the rows of
the weights matrix W summed to one. Step 2: we obtained the optimal reconstruction linear coefficients
W by resolving the minimum value of the cost function Equation (3). The constrained weights
that minimize these reconstruction errors ε (W) obey an important symmetry: for any particular
data point, they are invariant to rotations, rescalings, and translations of that data point and its
neighbors. By symmetry, it follows that the reconstruction weights wij characterize the intrinsic
geometric properties of each neighborhood, as opposed to properties that depend on a particular frame
of reference. Please note that the invariance to translations is specifically enforced by the sum-to-one
constraint on the rows of the weight matrix.

ε (W) =
n

∑
i=1
‖si −

k

∑
j=1

wijsj‖2, with
k

∑
j=1

wij = 1 . (3)

Step 3: the optimal d-dimensional coordinates vi for point si were selected to obtain the minimum
value of the cost function Ψ (V) in embedding space, where

Ψ (V) =
n

∑
i=1
‖vi −

k

∑
j=1

wijvj‖2, with
n

∑
i=1

vi = 0,
n

∑
i=1

vivT
i = nId×d . (4)

This cost function, as with the previous one, is based on locally linear reconstruction errors,
but here we fix the weights wij while optimizing the coordinates vi. The embedding cost in Equation (2)
defines a quadratic form in the vectors vi. Subject to the constraints that make the problem well-posed,
it can be minimized by solving a sparse N × N eigenvalue problem, whose bottom d non-zero
eigenvectors provide an ordered set of orthogonal coordinates centered on the origin. Thus, we
obtained the low-dimensional parameterization V of the dFC matrix S in manifold space.

2.6. Identifying CCPs from HCP rsfMRI Data

The low-dimensional parameterization of the dataset had a specific shape with extended branches,
which was expected in the embedding structure with the LLE algorithm. The coordinates of the
embedding spaces with the LLE algorithm are related to meaningful attributes: representative faces
are shown next to the out-stretching points in the face image experiments and the intersection of two
regions locates words with similar contexts in this continuous semantic space in the trial of the semantic
associations of words [29]. Therefore, we should pay attention to the out-stretching “arms” and note
the correlation of these discrete points and aggregation groups. These distributions might represent
the relation of the specialization and cooperation of the connectivity pairs underlying the captured
brain fluctuations. Thus, we used the K-means algorithm to differentiate the functionally special and
coherent structures. Here, we used a K-means algorithm with similarity mensuration. The distance
between two points was calculated by the cosine of their angle to the center of dataset (the origin)
to separate these “arms” into the CCPs (Figure 1C). The number of clusters equaled the dimension
d of the embedding, according to the previous study for the low-dimensional embedding of fMRI
dataset, where it was proposed that each dimensional eigenvector would contribute to an independent
CCP (cluster) [16]. Then, we conducted the K-means cluster procedure. The d clusters were obtained.
We displayed these clusters in the functional connectivity map and found the functionally consistent
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coupling patterns (CCPs). Thus, we defined these clusters with a new name “CCPs”. The d CCPs were
therefore obtained.

The identified CCPs were reranked based on their spatial overlap rate (SOR), which reflects the
spatial correspondence between the CCPs identified from the K-means results of LLE embedding
models, i.e., the two CCPs respectively obtained from the HCP dataset and AR group of the sleep
models with the highest SOR were more likely to spatially correspond. Specifically, the SOR between
the i-th CCP for one subject manifold structure model and j-th CCP for another subject manifold
structure model are calculated using the following equation:

SOR(ij) =
SPwithin(ij)

SPtotal(ij)
. (5)

where SPwithin(ij) is the number of connectivity pairs simultaneously belonging to the i-th CCP from
one subject model and the j-th CCP from another subject model during the scanning, and SPtotal(ij) is
the number of connectivity pairs belonging to the i-th CCP from the one subject model or the j-th CCP
from another subject model.

2.7. Measuring Topological Organization of CCPs Based on Core-periphery Detection

Spontaneous fluctuation in functional connectivity has been linked to changes in cognitive or
vigilance states [31,32], and we hence hypothesize that different cognitive tasks or vigilance levels
change the embedding structure in dFC into a discrepant topology. In the embedding of the dFC dataset,
the structure between a data point and its neighbors might change the rotation. Thus, the coordinates
could be regarded as a hub sign for a manifold structure. We need a method to measure manifold
structure in different coordinate systems.

Here, we quantified the manifold structure of CCPs (embedding dataset) by computing a
core-quality value [33] for each node (connection) of the embedding dataset V. Core-periphery
detection was performed by using a nonlinear spectral (NSM) algorithm [33] derived from work on
the nonlinear Perron-Frobenius theory [34–36]. This approach assigns a nonnegative value to each
node such that a smaller value indicates a lower level of importance of that node in the manifold
structure. The key point was to determine a core-periphery ranking vector x > 0 that assigned to
each connection a distinct positive number between 1 and n, with a higher rank denoting a more core
connection. The core-periphery profile function γ (x) is defined as

γ (x) =
∑k

i,j=1 Aπi ,πj

∑k
i=1 ∑n

j=1 Aπi ,πj

(6)

where adjacency matrix A, which could be obtained via calculating the embedded representation V of
the dFC dataset with the KNN algorithm and π is a permutation such that xπ1 ≤ · · · ≤ xπn . In other
words, if for each k, we regard π1, π2 · · · , πk as peripheral nodes and πk+1, πk+2, · · · , πn as core nodes,
then γ (x) measures the ratio of periphery-periphery links to periphery-all links. Hence, x reveals a
strong core-periphery structure if γ (x)k remains small for large k. The value x varies per iteration
of the NSM algorithm until ‖xk − xk+1‖/|xk+1| < tolerance [33]. Thus, the obtained core-periphery
value vector c = xk+1/max (xk+1) was used to depict the topological organization of the CCPs for
each participant (Figure 1D). This core-periphery approach has been proven to outperform previous
core-quality function optimization methods: Degree, Perron, and Sim-Ann algorithm proposed in [37].

Herein, the spatial similarity between the core-quality value FC maps was calculated using
eta2 [38] as the following equation:

eta2 = 1− CCWithin
CCTotal

= 1−
∑v

i=1

[
(ai −mi)

2 + (bi −mi)
2
]

∑v
i=1

[(
ai −M

)2
+
(
bi −M

)2
] . (7)
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where ai and bi are the values at position i of matrix Ca and matrix Cb, respectively, is the mean of ai
and bi, and M is the total mean value across all positions in the two matrices.

2.8. Classifying the HCP Tasks Based on Topology of CCPs

To exemplify the high potential of CCPs’ topological properties from providing specialized
whole-brain configuration information at the single-participant level, we implemented the HCP task
classification experiment (Figure 1E). First, manifold learning of the dFC matrix was performed for
each subject to obtain low-dimensional embedding of dynamic connectivity structures on an individual
level. Secondly, we estimated the resting-state and seven-task core-periphery values c for each subject
as input features. To achieve good prediction, constructing the feature space for the classification model
was important. The discriminative power of a feature can be quantized by the value of the two-sample
t-test for the training dataset. A smaller value means a more discriminative power. For every training
and testing loop, feature selection was conducted with the statistical results from the training dataset.
Then, the prediction would be performed in the feature selection on the training dataset. Then,
we used a linear support vector machine (SVM) classifier to validate the discriminative capacity of
the CCPs topology for classifying cognitive task scans from the resting-state scans. For each of the
seven classifiers, a leave-one-out cross-validation procedure was performed 100 times to estimate
the generalization ability. Finally, the unbiased classification accuracy (ACC), sensitivity (SS) and
specificity (SC) were computed based on the results of cross-validation [17]. To justify the model’s
usage, the multiple tasks classifier was designed, which tried to identify a single task for the other 6
tasks and rest with a one-versus-the-rest strategy.

2.9. Detecting CCP Changes Induced by Sleep Deprivation

We further detected the changes in CCPs induced by sleep deprivation to link the CCP topological
properties (core-periphery values) into potential neurophysiological sources. We provided results of
two experiments, including an individual prediction for sleep deprivation and a statistical comparison
between sleep deprivation (SD) and resting-wake (AR) conditions (Figure 1E). In the first experiment,
an individual core-periphery value vector was computed as a classification feature for each of the
26 participants with sleep deprivation. A linear SVM classifier with a 10-fold cross-validation or a
leave-one-out cross-validation strategy were used to predict the ASD/AR states of each participant
according to their CCPs’ topological organization. In the second experiment, a paired two-sample
t-test (p < 0.05 and FWER q < 0.05) was performed on the core-periphery value for statistical analysis
of sleep deprivation on a group level. The identified statistical significance in CCP topology was
suggested to reflect the underlying patterns of brain connectivity that are putatively responsible for
neurophysiological changes in the ASD brains. To further validate the results of statistical contrast, we
assessed the statistical significance of the changed core-periphery values in the sleep-deprivation
condition using permutation testing (Figure 1E) designed to estimate the empirical cumulative
distribution of the between-group differences under the null hypothesis of exchangeability. For all
core-periphery value vectors, the class labels (e.g., ASD vs. AR) were randomly permuted 1000 times,
and the p-values reported in the permutation tests represent the probability of observing the reported
differences of core-periphery values by chance.

3. Results

3.1. The Resting-State CCPs

We found that local linear embedding of dFC based on the HCP resting-state dataset leads to a
prominent manifold structure of a “specific shape with extended branches” (Figure 2), in which each
branch represents the CCP of the resting-state dFC. Therefore, the manifold structure extracted by
the LLE algorithm forms the 10 CCPs, which reveal the intrinsic brain organization underlying dFC.
To give a better sense of the 10 CCPs’ locations, we displayed the manifold structure from different
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angles in Figure A2 and from different 3 dimensions in Figure A5. The criterion used for choosing
the dimensions in the plot is for a better visualization. The different CCPs are distributed on different
“arms”, and the connectivity nodes in the manifold space are plotted with its 2nd, 5th and 8th dimension
in Figure 2A. Furthermore, all the CCPs were mapped into the correlation matrix of six intrinsic
brain networks (Figure 2B). Interestingly, the majority of these resting-state CCPs exhibited significant
network-specific coupling patterns. For instance, CCP1 covers almost all connectivity pairs between
the OCN and the SMN and within the OCN. The connectivity within the SMN was fully represented
by CCP7. In addition to the above network-level CCPs, some CCPs revealed subcortex-cortical
connectivity patterns, such as the basal ganglia, thalamus in CCP9 and several functional couplings
between a few specific regions of the CON and the whole-brain in CCP10, including the post-insula
and temporal, superior temporal, and angular gyri. We estimated the overlap relationship of the CCPs
for the embedding representation between the resting-state of the HCP dataset and the AR group in
the sleep-deprivation dataset (Table A4). We calculated the core-periphery features for the 10 CCPs
(Table A5).

We also directly explored relations between the connectivity pairs of the dFC dataset and the
linearly (PCA) embedded dataset. Using the Euclidean distance among the connectivity pairs
with a K-means approach, the CCPs in a high-dimensional space were obtained (Figure A4).
The high-dimensional CCPs are significantly different from those in the manifold space (Figure 2B) in
terms of the aggregation and the basic neural circuit patterns of the same CCPs. Furthermore, the CCPs
in a linearly (PCA) embedded space were identified by the Euclidean distance among the samples
with the K-means algorithm in Figure A6. The CCPs in Figure 2B obtained from the LLE method
have the highest modularity in the functional connectivity map among the naive connectivity CCPs in
Figure A4 and the linearly (PCA) embedded CCPs in Figure A6. The PCA embedded CCPs are almost
same as the naive connectivity CCPs. In addition, we estimated the matching relationship of the CCPs
for the embedding representation among the single subject. The SORs of the CCPs in the manifold
space showed little similarity, e.g., subject 1 and subject 2 (Table A2). Then, the core-quality score of
the core-periphery structure also showed 50∼65% eta2 similarity on an individual level (Due to the
paper size limitations, we only show the first 10 people in Table A3).
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Figure 2. The resting-state CCPs distilled by our method framework. (A) Each CCP marked in the
same color is distributed in one specific direction. (B) The CCPs are rearranged into the ROI-ROI
index matrix.

3.2. Different Tasks “Activate" Differentiated Core-Periphery Structure of the CCPs

More important connectivity in the core-quality value matrix was assigned a larger value within
all the connectivity. The NSM algorithm assigned the node (connectivity) core-quality values with the
core-quality value vector c and we rearranged the core-quality vector c into the core-quality matrix C
using the ROI-based connectivity index in the brain template. Then, the rows and columns of the matrix
C represent the ROI index in the brain template. After rearrangement using this rule, the elements in
the matrix C quantify the importance of the functional connectivity in the whole scanning procession
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between ROIs. Consequently, the functional connectivity NSM value matrices for the resting state
and 7 tasks were obtained and shown in Figure 3. The important functional connectivity nodes can
be directly perceived in the matrices. In the resting state, nearly all the connectivity nodes show
an even distribution level. However, the connectivity between the cingulo-opercular network and
sensorimotor network expresses the obvious peripheral influence on the connectivity. With clear
distinctions from the resting state, the cingulo-opercular network in all the 7 tasks’ core-quality
matrices presents similar peripheralization and displays the lowest interaction with other networks.
Meanwhile, the ROI-based connectivity among the default network, fronto-parietal network and
occipital network has a larger core impact. If we look at the 7 tasks’ core-quality matrix in detail,
the core-periphery quality configuration is unique in one particular task. For example, the network
interaction with the default network and sensorimotor network represents a more key impact in the
motor task.

Figure 3. The resting-state and task core-quality value matrix. The coreness vectors of all the
connectivity pairs are rearranged into the ROI-ROI index matrix.

In addition to estimating the topological organization of CCPs (the core-quality values in manifold
structure) with the NSM algorithm, we also assigned the core-periphery values to the connectivity
pairs of the dFC dataset (the core-quality values in dFC structure) and the topological organization of
the linear structure (PCA dimension reduction) for the resting state and seven tasks. The SVM classifier
results showed unbiased classification accuracy (ACC), sensitivity (SS) and specificity (SC) in Tables 1
and 2. It was noteworthy that the performance of the SVM classifier based on the PCA framework
was the lowest (shown in Table A6). The numbers of distinguished connections were 2491, 2156, 2584,
1752, 2141, 2086 and 2102. The detailed t values of the distinguished connections for each pair of brain
states (shown in Table 1) could be found in Figure A3. The discriminative features are mostly grouped
in the network interactions for the prediction between rest and tasks.
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Table 1. The eight linear SVM classifiers’ accuracy with a leave-one-out cross-validation strategy for
the seven tasks and the resting state, the ASD’s and AR’s resting states with the manifold structure.
Sensitivity accuracy is the accuracy of emotion, gambling, language, motor, relational, social, and WM
tasks and the ASD resting state. The specificity accuracy is the accuracy of the resting state and AR
resting state.

Features Task Accuracy (%) Sensitivity (%) Specificity (%)

The core-quality values in manifold structure

Emotion-Rest 100 100 100
Gambling-Rest 100 100 100
Language-Rest 100 100 100

Motor-Rest 100 100 100
Relational-Rest 100 100 100

Social-Rest 100 100 100
WM-Rest 100 100 100
ASD-AR 92.3 100 84.6

Table 2. The eight linear SVM classifiers’ accuracy with a leave-one-out cross-validation strategy for
the seven tasks and the resting state, the ASD and AR resting states with the naive dFC structure.
Sensitivity accuracy is the accuracy of emotion, gambling, language, motor, relational, social, and WM
tasks and the ASD resting state. The specificity accuracy is the accuracy of the resting state and AR
resting state.

Features Task Accuracy (%) Sensitivity (%) Specificity (%)

The core-quality values in Dynamic FC structure

Emotion-Rest 100 100 100
Gambling-Rest 97.5 95 100
Language-Rest 97.5 95 100

Motor-Rest 92.5 85 100
Relational-Rest 97.5 95 100

Social-Rest 100 100 100
WM-Rest 92.5 85 100
ASD-AR 69.2 65.3 73.1

3.3. The Impact of Acute Sleep Deprivation (ASD) on the CCPs

Apparent changes in the CCPs under ASD and AR conditions are shown in Figure 4.
One noticeable change is that in the AR condition, most ROI-based connectivity displays interleaving
modularity between networks and each CCP tends to be separated into several network interactions
(in Figure 4A AR subgraph). For example, CCP 5 distributes its functional connectivity between
CON and SMN, FPN and SMN and the within-network interaction of these 3 networks. In the ASD
condition, more CCPs turn to be ROI-leading interactions (in Figure 4B ASD subgraph). In detail,
a large part of the ROIs in the cerebellum appear to connect with other ROIs that are clustered into
CCP 9. Additionally, the ROIs in other networks behave with a similar trend. Another significant
change is the structure of CCP organization in the manifold space. The ASD CCPs’ manifold structure
becomes less dense than that of the AR state when the scatters are close to the origin. This perceptual
phenomenon will be qualified in the following discussion. We estimated the matching relationship of
the CCPs for the embedding representation between the resting-state of the HCP dataset and the AR
group in the sleep-deprivation dataset (details shown in Table A4).
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Figure 4. The CCPs for AR and ASD state. (A) The manifold structures of the CCPs for AR and ASD
states are displayed in 2nd, 5th and 8th dimensions. (B) The CCPs in the ROI-ROI index matrix reveal
the functional couplings in the networks.

Variations in the core-periphery structure of ASD and AR conditions at the group level were
identified by using the two-sample t-test (p < 0.05 and FWER q < 0.05) (shown in Figure 5). Using the
core-quality values of each subject, we conducted the two-sample t-test using the ASD and AD labels.
The experimental results can be divided into two parts (shown in Figure 5A): Most of the impact of
the connectivity between thalamocortical regions with other brain regions has been more core in the
ASD state; a small amount of the connectivity’s impact between the default network and occipital
network, between the default network and fronto-parietal network, and between the default network
and cingulo-opercular network becomes more peripheral in the ASD state. Moreover, we compare the
difference in core-periphery values of ASD and AR (in Figure 5B) and the 1000 times permutation test
results have given a confidence p < 0.01 under the null hypothesis of exchangeability. Several ROIs
(basal ganglia, thalamus, middle insula, post-insula and post-cingulate) in the cingulo-opercular
network are connected with nearly all the ROIs, playing a more important role in the ASD state.
Most ROIs in the sensorimotor network display a strong core influence. However, the ROIs in the
default network and the fronto-parietal network tend to have more peripheral interactions with
other ROIs. Then, we plotted the connectivity adjacency matrix in the ASD state, which has less
of an adjacency relation than in the AR state (in Figure 5C). Furthermore, the adjacency relation’s
distribution was sparser in the ASD state.
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Figure 5. The two-sample t-test and permutation test for the ASD and AR states. (A) The two-sample
t-test (p < 0.05 and FWER q < 0.05) discrimination maps for ASD and AR states. (B) The permutation
test discriminative coreness value map under p < 0.05. (C) The adjacency matrix for ASD and AR
groups. The non-zero values of the matrix are tagged on the top of the matrix.

In the classification of ASD and AR, the linear SVM classifiers with a leave-one-out cross-validation
strategy achieved an accuracy of 92.3% (a 10-fold cross-validation strategy achieved an accuracy of
91.6%± 2.3%) when using the core-quality values as features, while a leave-one-out cross-validation
strategy achieved an accuracy of 88.5% (a 10-fold cross-validation strategy achieved an accuracy of
88.0%± 2.6%). If we use the original sliding-window correlation representing dynamic functional
connectivity as an input feature, the linear SVM classifiers with a leave-one-out cross-validation
strategy achieved an accuracy of 69.2% (a 10-fold cross-validation strategy of 65.1% ± 3.6%).
These results indicated that using linear SVM classifiers with the core-quality values of ASD and
AR structure as features could effectively distinguish the ASD and AR scans. The mean prediction
accuracy 85.67% ± 3.73% of the multiple task classifier for all 6 other tasks, and the rest with a
one-versus-the-rest strategy was much lower than the 7 task-rest classifiers.

4. Discussion

In this paper, we used local linear embedding to explore a low-dimensional manifold structure
in the dynamic correlation matrix, and have successfully identified functionally homogeneous
components underlying time-varying functional connectivity that was represented by a set of
CCPs. These CCPs exhibited significant network-specific or subcortex-cortical coupling patterns.
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Importantly, we observed that the topology of the whole-brain CCPs is highly predictive for tasks
or sleep-deprivation conditions relative to resting wakefulness states. These results suggested the
importance of the low-dimensional representation of functional network dynamics in describing and
analyzing the spatiotemporal variance of brain activities.

In the resting state, the CCP decomposition of connectivity pairs reveals significantly consistent
connectivity patterns with the intrinsic connectivity networks (Figure 2B). First, the primary cortex,
such as the SMN and OCN that were covered by the different single CCPs, revealed strongly functional
homogeneity. The regions in the SMN were studied as a functionally separated and homogenous
cortex. Researchers studied the developmental trajectory of sensorimotor cortical oscillations in the
SMN-covered cortex. They would study the primary cortex as a relatively independent system to
participate in some specific tasks. In contrast, the association cortex was divided into several CCPs,
which was consistent with its diverse functions. These regions participate in almost all brain activities
and display increased functional flexibility, potentially serving to integrate information across more
specialized aspects of the cortex. In particular, the CCP 9 identified several subtle subcortex-cortical
connectivities, such as the basal ganglia and the thalamus. Previous studies [39,40] have demonstrated
that the cortico-basal ganglia-thalamo-cortical loop plays an important role in neural substrates of
parallel processing. Our methods could extract the CCPs of the primary cortex and the association
cortex, the two types of brain regions, in the connectivity pairs of the whole brain. The differentiation
in the CCPs for the nonlinear manifold space (LLE), the linear low-dimensional space (PCA) and the
high-dimensional Euclidean space might give evidence that the dynamic fluctuations of functional
connectivity are closer to nonlinear coupling in brain activity. Because LLE recovers global nonlinear
structure from locally linear fits [29]. It implies the distinction of the nonlinear functional couplings
between the primary cortex and the association cortex. Although there are major differences in the
scan parameters and the number, age and gender ratio of subjects, etc., the similarity of the derived
components between the HCP dataset and the AR group in the sleep-deprivation condition is higher
than that among single subjects in the HCP dataset. This finding might provide some information
about the reproducibility and robustness of our methods. The average and standard deviation
(STD) core-quality values for the core-periphery structures in the 10 CCPs show even distribution.
Additionally, spatial similarity was low in the CCPs and the core-periphery structure. On the one hand,
the results might partly be influenced by the fact that single-subject fMRI scans are known to be noisy
to embed. On the other hand, the analyses of the obtained dFC estimation should be conducted on a
group level according to previous studies [6,41]: researchers opposed the idea that similar fluctuations
can arise, yielding features that can complement those of state analyses [6]. Although there are major
differences in the scan parameters and the number, age and gender ratio of subjects, etc., the similarity
of the derived components between the HCP dataset and the AR group in the sleep-deprivation
condition is higher than that among single subjects in the HCP dataset. This finding might provide
some information about the reproducibility and robustness of our methods.

Furthermore, we qualified the CCPs to detect the core-periphery structure and assigned every
connectivity pair with a coreness value, where a larger value indicates a higher level of importance of
a node in a graph, to explore the specific CCP configurations. Taking all matrix-mapped connectivity
pairs’ coreness values into account together, we found that the core-quality value matrices showed
naturally task-specific states: the resting-state connectivity pairs’ importance where the default node
network inherently showed a more important impact to adapt to a task-free environment, which might
occur during passive rest and mind-wandering [42]; additionally, the CCPs between the CON and
whole brain show lower coreness values reflecting the weakness of the CON activity, which may be
associated with the decrease in self-psychological activity during tasks. Additionally, the task-specific
states are consistent with behavior in the task paradigm. In the motor task, for example, participants
are required with visual cues either to tap their left or right fingers, squeeze their left or right toes,
or move their tongue to map motor areas. Consequently, the motor “activation” maps present the
large-scale connectivity between the sensorimotor and other brain regions to adapt to the various
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requirements in the specific tasks. Hence, CCPs provide a new core-quality language to describe the
spatiotemporal patterns of neural activity and give a perspective to explore brain dynamics across
different tasks. As validation of our approach, classification of the resting state and the tasks was
designed. The accuracy of seven classifiers showing 100% exemplifies that the low manifold structures
can provide behaviorally relevant information at the single-participant level. This means that the
CCPs can be predicted to belong to their respective tasks. The 100% accuracy of the seven classifiers
exemplifies that the potential power of the low manifold structures can provide behaviorally relevant
information at the single-participant level. The core-periphery structure of the CCPs can be used to
predict the respective belonging task. However, the use of the same sliding-window approach and a
different block cycle in the controlled fMRI paradigm structures could influence the distinguishability
between rest and tasks. Critically, the distributions of the discriminative connections are consistent
with the behaviors of the tasks.

Lastly, apart from the task-dominant CCP analysis, to explore the potential capacity of our
framework, we accessed the sleep-deprivation dataset of CCP changes with statistical analysis.
The results reveal that the CCPs can be obviously changed. The CCPs in the AR state show consistent
resting-state-like coupling patterns. Apparently different from the CCPs in the AR state where
the CCPs are highly above network configurations, the ASD-induced CCPs reveal more specific
region-whole-brain functional coupling peculiarity. Additionally, the increased thalamus-cortical
connectivity in the two-sample t-test map and the discriminative regions of the cerebellum, thalamus,
sensorimotor network, and default mode network in the permutation test map are in line with the
previous findings [24,43,44]. Our qualification of CCP structure via statistical analysis, interestingly,
reveals the discriminative regions for ASD and AR with a two-sample t-test (p < 0.05 and FWER q <

0.05) at an individual level and a permutation test (p < 0.05) at the group level (Figure 5). Furthermore,
the nonlinear information distilled by our approach can be used to predict the participants’ internal
physiological states in the ASD and AR classification task at a high-accuracy 92.3%, higher than our
previous report of 88.6% accuracy [24]. This observation suggested better discriminative ability of the
CCP-based classification model for the biological identity inner physiological states. Consequently,
the CCPs can provide a novel description of the inner physiological state-changing population.

Besides these findings, our approach provides a new nonlinear functional coupling perspective
to fMRI analysis. We introduce manifold learning of local linear embedding to explore the CCPs
which reveal a functionally homogeneous region underlying dFC throughout the entire scanning.
How does our brain dynamically adapt to perform different external tasks or to internal physiological
status? In previous work, the brain’s discriminative functional couplings in the resting state or in the
different tasks have been associated with gender [13] where the researchers used temporal-independent
component analysis(tICA) methods to find a small set of connectivity patterns, and task types [11]
where the investigators proposed to represent dFC as a linear combination of multiple FC patterns
using principal component analysis(PCA). The gender-associated connectivity pattern work [13] is
based on a hypothesis that the connectivity patterns are temporally independent in the Euclidean
space. However, ICA does not have a natural ability to infer a set of subjects because different
individuals will have different time courses that will be sorted differently [23]. The subject-driven task
research applying PCA to estimate the FC patterns of three different tasks is based on the orthogonal
decomposition of dFC, and then transfers the dFC into a linear combination of matrix eigenvectors
in the Euclidean space. In contrast to these the previous works, our study focuses on the nonlinear
component in the low-dimensional space that was used when analyzing fMRI data [17,18]. Moreover,
by using nonlinear information and the core-quality values of CCPs, we efficiently predicted the
sleep-deprivation states and task types (Table 1). We emphasize the underlying low-dimensional
manifold structure in the high spatiotemporal fMRI data and uncover the CCPs of dFC in the resting
state and tasks.

By using the core-quality values of CCPs and the nonlinear information extracted from our
framework, we efficiently predicted the sleep-deprivation states and task types (Table 1). To exemplify
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the efficiency of the manifold embedding, or to determine the forecasting validity of the nonlinear
information, we also used the naive connectivity matrix, e.g., from a Pearson correlation, to calculate
the adjacency matrix in core-periphery structure detection. The values of the ACC, SS and SC are
higher when using the embedded representation. Using the resting-state, task-based and SD fMRI data,
our method could reveal CCPs in the whole-brain activity patterns and be more useful in predicting the
sleep-deprivation states and task types. The input feature of the core-quality values of our approach
accelerates the improvement of prediction accuracy. It can be argued that the nonlinear information of
the manifold structure could be useful to improve complementary dFC methods (e.g., tICA and PCA)
for examination of brain dynamics using nonlinear and linear methods. In particular, the differentiated
classification accuracy rate between linear (PCA) and nonlinear (LLE) dimensionality reduction
methods in method framework might imply that nonlinear structures were more able to capture
the difference between the tasks and rest in the fMRI data. The prediction for the multiple tasks’
classification is more complex and changeable. The performance of the multiple task’s classifier is
not better than the 7 task-rest classifiers. Furthermore, in the previous studies, in manifold decoding
for neural representations of face viewpoint and gaze direction [19] and nonlinear manifold learning
for connectopic mapping [45], the researchers find the manifold embedding structures were more
consistent with meaningful attributes in face viewpoint, gaze direction and brain activity, rather than
the extracted linear structures.

Our approach could provide two novel insights, the functionally consistent couplings in the
nonlinear embedding representation and the task-specific or state-specific core-periphery structure
in the manifold space, which were validated using additional fMRI analysis. Unsupervised learning
(K-means algorithm) prompted the finding of functionally consistent coupling patterns (CCPs) in
the manifold space. This inspired the perspective in nonlinear couplings of the connectivity pairs.
The high performance of supervised classification (SVM) certified the application potential of the
nonlinear structure and our framework in fMRI data. There is no doubt that the use of supervised
classification increases the practical applicability of our method and the embedding representation.
Furthermore, the highly distinguishable connectivity pairs for the classifiers proved that the nonlinear
structure we extracted has physiological significance.

5. Limitation

It is vital to understand the relationship between the neural basis of cognition and our study.
Our results indicate that both the CCPs and their core-periphery structure exhibit significant task
effects and ASD effects (Figures 3 and 4). This finding suggests that the manifold structure of the
dFC can increase the sensitivity of the analysis to group effects. However, the deeper physiological
significance underlying the CCPs may need more specific experiments. The methodology in our
approach has some optimizable details such as parameter impact and multifrequency brain dynamics.
Whether the same sliding-window approach is applicable to the task of the controlled fMRI paradigm.
These analyses need further study.

6. Conclusions

This article presents a manifold learning of local linear embedding to distill the CCPs that reflect
functionally homogeneous regions underlying the temporal evolution of dFC throughout the entire
scanning period. Our results demonstrate these stable patterns of functional couplings across regions
by uncovering the significant neurophysiological meaning underpinning the CCPs. The specific
subcortex-cortical circuit is captured by the CCPs. Moreover, the topological organization of these
low-dimensional structures exhibits high potential in predicting sleep-deprivation states (classification
accuracy of 92.3%) and task types (100% identification for all seven tasks). Thus, these results suggest
that our methodology for distilling coherent low-dimensional functional connectivity structures in
complex brain dynamics is capable and competent.
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Figure A1. Experimental design and implementation. The participants were scanned twice by the
nuclear magnetic resonance spectrometer, and the scans were separated by an interval of more than
2 weeks. During the AR session, participants kept their regular sleep habits and underwent the AR
scan from 7:00 P.M. to 8:00 P.M. During the ASD session, participants were required to remain awake
and were monitored in the lab from 7:00 A.M. to 7:00 P.M. the next day to make sure that approximately
36 h of total sleep deprivation was accumulated. The two experimental sessions were counterbalanced
for all participants who were required to be awake during data acquisition.
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Appendix B

Figure A2. The 3d plot of the manifold from different angles for the 10 CCPs in Figure 2A.

Appendix C

Figure A3. The detailed t values of the distinguished connections for each pair of brain states.

Appendix D

Figure A4. The CCPs in the original Euclidean space obtained with a K-means clustering approach.
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Appendix E

Figure A5. The 3D plot of the manifold viewed from different angles for the 10 CCPs in the
2nd, 6th, 9th dimension.

Appendix F

Figure A6. The CCPs in the linearly embedded Euclidean space obtained with a K-means
clustering approach.
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Appendix G

Table A1. Labels and coordinates of the 160 ROIs.

Network Index ROI Label ROI Centroid (MNI)
x y z

cerebellum

1 lat_cerebellum −28 −44 −25
2 lat_cerebellum −24 −54 −21
3 inf_cerebellum −37 −54 −37
4 lat_cerebellum −34 −57 −24
5 med_cerebellum −6 −60 −15
6 inf_cerebellum −25 −60 −34
7 inf_cerebellum 32 −61 −31
8 med_cerebellum −16 −64 −21
9 lat_cerebellum 21 −64 −22

10 med_cerebellum 1 −66 −24
11 inf_cerebellum −34 −67 −29
12 med_cerebellum −11 −72 −14
13 inf_cerebellum 33 −73 −30
14 med_cerebellum 5 −75 −11
15 med_cerebellum 14 −75 −21
16 inf_cerebellum −21 −79 −33
17 inf_cerebellum −6 −79 −33
18 inf_cerebellum 18 −81 −33

cingulo-opercular

19 aPFC 27 49 26
20 vPFC 34 32 7
21 ACC −2 30 27
22 vFC 51 23 8
23 ant_insula 38 21 −1
24 dACC 9 20 34
25 ant_insula −36 18 2
26 basal_ganglia −6 17 34
27 mFC 0 15 45
28 vFC −46 10 14
29 basal_ganglia −20 6 7
30 basal_ganglia 14 6 7
31 vFC −48 6 1
32 mid_insula 37 −2 −3
33 thalamus −12 −3 13
34 thalamus −12 −12 6
35 thalamus 11 −12 6
36 mid_insula 32 −12 2
37 mid_insula −30 −14 1
38 basal_ganglia 11 −24 2
39 post_insula −30 −28 −9
40 temporal 51 −30 5
41 post_cingulate −4 −31 −4
42 fusiform 54 −31 −18
43 precuneus 8 −40 50
44 parietal 58 −41 20
45 temporal 43 −43 8
46 parietal −55 −44 30
47 sup_temporal 42 −46 21
48 angular_gyrus −41 −47 29
49 temporal −59 −47 11
50 TPJ −52 −63 15
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Table A1. Cont.

default

51 vmPFC 6 64 3
52 mPFC 0 51 32
53 aPFC −25 51 27
54 vmPFC 9 51 16
55 vmPFC −6 50 −1
56 vmPFC −11 45 17
57 vmPFC 8 42 −5
58 ACC 9 39 20
59 vlPFC 46 39 −15
60 sup_frontal 23 33 47
61 sup_frontal −16 29 54
62 inf_temporal 52 −15 −13
63 inf_temporal −59 −25 −15
64 post_cingulate 1 −26 31
65 fusiform 28 −37 −15
66 precuneus −3 −38 45
67 post_cingulate −8 −41 3
68 inf_temporal −61 −41 −2
69 occipital −28 −42 −11
70 post_cingulate −5 −43 25
71 precuneus 9 −43 25
72 precuneus 5 −50 33
73 post_cingulate −5 −52 17
74 post_cingulate 10 −55 17
75 precuneus −6 −56 29
76 post_cingulate −11 −58 17
77 angular_gyrus 51 −59 34
78 angular_gyrus −48 −63 35
79 precuneus 11 −68 42
80 IPS −36 −69 40
81 occipital −9 −72 41
82 occipital 45 −72 29
83 occipital −2 −75 32
84 occipital −42 −76 26

fronto-parietal

85 aPFC 29 57 18
86 aPFC −29 57 10
87 vent_aPFC 42 48 −3
88 vent_aPFC −43 47 2
89 vlPFC 39 42 16
90 dlPFC 40 36 29
91 ACC −1 28 40
92 dlPFC 46 28 31
93 vPFC −52 28 17
94 dlPFC −44 27 33
95 dFC 40 17 40
96 dFC 44 8 34
97 dFC −42 7 36
98 IPL −41 −40 42
99 IPL 54 −44 43
100 post_parietal −35 −46 48
101 IPL −48 −47 49
102 IPL −53 −50 39
103 IPL 44 −52 47
104 IPS −32 −58 46
105 IPS 32 −59 41
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Table A1. Cont.

occipital

106 occipital −18 −50 1
107 occipital −34 −60 −5
108 occipital 36 −60 −8
109 temporal 46 −62 5
110 occipital −44 −63 −7
111 occipital 19 −66 −1
112 occipital 17 −68 20
113 occipital 39 −71 13
114 occipital 29 −73 29
115 occipital −29 −75 28
116 occipital −16 −76 33
117 occipital 9 −76 14
118 occipital 15 −77 32
119 occipital 20 −78 −2
120 post_occipital −5 −80 9
121 post_occipital 29 −81 14
122 post_occipital 33 −81 −2
123 post_occipital −37 −83 −2
124 post_occipital −29 −88 8
125 post_occipital 13 −91 2
126 post_occipital 27 −91 2
127 post_occipital −4 −94 12

sensorimotor

128 frontal 58 11 14
129 dFC 60 8 34
130 vFC −55 7 23
131 pre_SMA 10 5 51
132 vFC 43 1 12
133 SMA 0 −1 52
134 frontal 53 −3 32
135 precentral_gyrus 58 −3 17
136 mid_insula −42 −3 11
137 precentral_gyrus −44 −6 49
138 parietal −26 −8 54
139 precentral_gyrus 46 −8 24
140 precentral_gyrus −54 −9 23
141 precentral_gyrus 44 −11 38
142 parietal −47 −12 36
143 mid_insula 33 −12 16
144 mid_insula −36 −12 15
145 temporal 59 −13 8
146 parietal −38 −15 59
147 parietal −47 −18 50
148 parietal 46 −20 45
149 parietal −55 −22 38
150 precentral_gyrus −54 −22 22
151 temporal −54 −22 9
152 parietal 41 −23 55
153 post_insula 42 −24 17
154 parietal 18 −27 62
155 parietal −38 −27 60
156 parietal −24 −30 64
157 post_parietal −41 −31 48
158 temporal −41 −37 16
159 temporal −53 −37 13
160 sup_parietal 34 −39 65
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Appendix H

Table A2. The SOR value between the CCPs of the subject 1 and subject 2 in the manifold space.

CCP (%) 1 2 3 4 5 6 7 8 9 10

1 3.38 4.84 5.84 6.16 7.53 2.11 8.65 3.28 5.54 7.19
2 3.33 6.66 5.17 3.60 4.82 3.82 7.52 5.13 3.44 7.25
3 4.13 4.14 4.75 5.97 5.42 5.95 5.12 4.74 6.31 5.90
4 5.36 6.02 5.19 3.94 5.07 6.99 5.17 5.95 7.15 4.55
5 3.38 3.83 4.14 1.79 3.54 1.37 7.78 5.74 6.77 8.08
6 13.39 3.56 5.40 0.58 2.66 9.91 4.12 6.18 1.98 4.01
7 6.24 5.56 5.71 2.23 7.76 5.71 3.75 4.69 5.30 5.49
8 9.28 4.93 5.94 1.48 3.01 7.64 2.67 6.47 5.42 4.92
9 6.86 5.97 4.51 4.47 5.92 5.55 5.09 5.32 5.09 6.32

10 4.22 3.25 7.17 4.59 5.71 5.19 5.47 4.59 6.02 5.64

Appendix I

Table A3. The eta2 similarity for the core-periphery structure among the first 10 subjects of the HCP
resting-state dataset.

eta2 (%) sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 sub10

sub1 51.13 54.13 56.65 58.20 54.72 53.55 52.57 57.94 53.17
sub2 48.34 52.29 50.60 50.97 52.14 54.95 54.59 50.15
sub3 58.53 59.93 55.68 56.38 51.98 55.12 61.19
sub4 61.35 55.68 59.29 53.58 59.11 58.70
sub5 56.72 55.54 53.83 61.31 60.09
sub6 53.89 52.91 55.94 56.15
sub7 53.93 54.69 57.72
sub8 51.31 53.50
sub9 55.59

Appendix J

Table A4. The SOR value for the embedding representation between the resting state of the HCP
dataset and the AR group in the sleep-deprivation condition.

CCP (%) 1 2 3 4 5 6 7 8 9 10

1 6.90 1.01 0.07 1.63 46.18 0.00 0.15 1.88 3.17 0.00
2 3.92 7.22 14.12 3.72 1.26 4.42 0.00 5.93 0.00 0.00
3 2.21 5.81 5.31 0.80 2.33 0.94 0.00 0.49 43.48 0.94
4 0.22 7.13 30.45 1.28 6.02 0.00 0.42 17.91 0.11 1.54
5 0.48 6.11 1.58 38.52 4.18 0.00 24.21 0.17 4.39 2.17
6 14.21 7.83 2.27 0.53 0.09 7.74 1.02 3.10 0.00 0.00
7 25.39 9.83 0.59 5.66 0.55 4.75 0.00 2.22 3.44 0.00
8 0.77 0.04 0.00 0.54 0.10 0.37 0.08 0.05 0.22 69.12
9 3.14 0.70 5.65 0.00 4.80 3.60 0.06 28.43 0.00 0.00

10 12.13 15.45 4.40 7.30 0.94 3.01 0.00 4.44 0.00 2.08

Appendix K

Table A5. The average and standard deviation (STD) core-quality values for the core-periphery
structures in the 10 CCPs.

The Core-Quality Value 1 2 3 4 5 6 7 8 9 10

mean 0.63 0.61 0.61 0.62 0.62 0.64 0.63 0.61 0.61 0.59
STD 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.10
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Appendix L

Table A6. The prediction accuracy of the classifier based on the linear-dimensional (PCA) framework.

Accuracy (%) Emotion Gambling Language Motor Relational Social WM

Resting-state 86.25 91.00 92.75 83.25 95.75 96.75 83.50
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