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Abstract
MYC is a major driver of cancer cell growth and mediates a transcriptional
program spanning cell growth, the cell cycle, metabolism, and cell survival.
Many efforts have been made to deliberately target MYC for cancer therapy. A
variety of compounds have been generated to inhibit MYC function or stability,
either directly or indirectly. The most direct inhibitors target the interaction
between MYC and MAX, which is required for DNA binding. Unfortunately,
these compounds do not have the desired pharmacokinetics and
pharmacodynamics for  application. Recent studies report the indirectin vivo
inhibition of MYC through the development of two compounds, JQ1 and THZ1,
which target factors involved in unique stages of transcription. These
compounds appear to have significant therapeutic value for cancers with high
levels of MYC, although some effects are MYC-independent. These
approaches serve as a foundation for developing novel compounds to
pharmacologically target MYC-driven cancers.
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Introduction
The MYC protein plays a crucial role in a variety of cellular 
processes, including cell proliferation and differentiation, cell cycle 
progression, metabolism, and apoptosis1,2. MYC is a pleiotropic 
transcription factor that regulates a variety of functions by pro-
moting activation or repression of genes on a global scale3–5. As a 
transcription factor, MYC heterodimerizes with MAX and directly 
binds to a consensus sequence on DNA, CACGTG6. MYC-mediated 
transcriptional activation involves an interaction between MYC and 
a nuclear cofactor, transformation/transcription domain-associated 
protein (TRRAP), through a conserved domain on MYC, MYC 
Box II (MBII)7. TRRAP is in complex with histone acetyltrans-
ferases that acetylate histones around gene promoters, inducing an 
open chromatin conformation, making it possible for RNA polymer-
ase II (RNA Pol II) recruitment and productive transcription8,9.

MYC expression is tightly regulated under normal circumstances 
and is increased in response to extracellular stimuli, such as growth 
factors10,11. Chromosomal translocation, gene amplification, and 
mutations in signaling pathways promote MYC overexpression 
independently of growth factor stimulation, which leads to unre-
strained cell proliferation and tumorigenesis12. MYC is deregu-
lated in approximately 70% of human cancers3, and many studies 
have observed that MYC inhibition can result in tumor regression 
and cell differentiation in a host- and cell-dependent manner13. 
Widespread activation of MYC in a range of tumors and the 
reversibility of MYC-induced tumorigenesis have made MYC an 
appealing target for cancer therapy. However, MYC lacks innate 
enzymatic function and small-molecule interactions that facilitate 
most pharmacological strategies. Furthermore, as a transcription 
factor, MYC is localized in the nucleus and hence is inaccessible 
to any antibody-based therapies. For these reasons, MYC is widely 
considered ‘undruggable’, a frustrating limitation for such a well-
established driver of cancer. Nevertheless, numerous strategies 
have been employed to target MYC at various stages of biologi-
cal and pathological development, and there have been significant 
advances in understanding the MYC dependence of cancer and 
developing novel approaches to targeting MYC activity in the past 
five years (Figure 1). To date, directly targeting MYC’s interaction 
with MAX by using compounds like 10058-F4 has proven unsuc-
cessful in vivo, although a biological agent, Omomyc, has proven 
informative. However, a new library screen resulted in the identifi-
cation of a potent in vivo MYC-MAX inhibitor, KJ-Pyr-9, that has 
some efficacy14. More recent studies have demonstrated that indi-
rect approaches using compounds designed to inhibit key factors 
involved in transcriptional initiation and elongation seem selective 
for the MYC oncogenic pathway15–18. These new developments in 
therapeutic targeting of MYC in cancer have broad implications in 
a challenging field where inhibition of MYC has been shown to 
result in tumor regression but has proven problematic to execute 
because of difficulties in delivery or specificity.

Targeting the MYC and MAX interface
Since dimerization with MAX is essential for MYC DNA-binding 
activity19, disruption of the MYC/MAX interaction by using small 
molecules is an obvious strategy of targeting MYC functionality. A 
number of selective low molecular weight inhibitors that disrupt the 
interaction between MYC and MAX have been developed20. One of 

these is 10058-F4, a molecule that prevents heterodimerization and 
is capable of penetrating cells with low non-specific toxicity21,22. 
The compound has demonstrated the ability to inhibit mamma-
lian cell growth, cell cycle progression, and expression of MYC 
target genes in vitro. A number of studies have reported that short-
term pharmacological inhibition of MYC using 10058-F4 or more 
potent analogs leads to tumor regression in vivo. More recently, 
KJ-Pyr-9, a compound identified in a pyridine library screen, was 
identified as a potent inhibitor of the MYC/MAX interaction and 
it displays the correct pharmacokinetic properties necessary for 
in vivo administration14. Although these compounds have shown 
specificity for the MYC/MAX interaction, targeting a bHLH-LZ 
domain is inherently inefficient and potentially non-specific since 
many other proteins contain these motifs. Nevertheless, 10058-F4 
and KJ-Pyr-9 appear to have differential efficacy in vivo, depend-
ing on tumor type, differential metabolism of the compounds, and 
tumor model14,23–25. Taken together, these data suggest that direct 
inhibition of MYC through disruption of the MYC/MAX interac-
tion is promising but requires further experimentation to establish 
specificity and efficiency in humans.

A second strategy to inhibit MYC/MAX dimerization is Omomyc, 
a mutant basic helix-loop-helix domain that acts as a potent domi-
nant negative molecule by sequestering MYC and preventing its 
binding to MAX and DNA26,27. Under normal circumstances, MYC 
is unable to homodimerize, but Omomyc is a MYC homolog that 
contains four amino acid substitutions augmenting homodimeriza-
tion and non-functional heterodimerization with MYC. Although 
Omomyc cannot penetrate human tumors and hence is ineffective 
as a cancer therapeutic, it has proven useful to explore the conse-
quences of MYC inhibition in vivo. Omomyc can stimulate MYC-
induced apoptosis of NIH3T3 cells in a MYC-dependent manner 
in vitro and of MYC-overexpressing tumor cells in a mouse model 
of K-Ras-driven lung adenocarcinoma28,29. Recent studies have 
demonstrated that the bHLH-LZ domain of MAX (MAX*) can be 
transduced across cell membranes through endocytosis and is able 
to translocate to the nucleus, suggesting that compounds mimicking 
the bHLH-LZ domain may be efficacious in vivo30. Another recent 
study extended the efficacy of MYC inhibition as a therapeutic strat-
egy (using Omomyc) in the treatment of human glioma in a mouse 
model of astrocytoma, human glioblastoma cell lines, and patient-
derived tumors in vitro and in vivo31. Interestingly, general inhibi-
tion of MYC activity is tolerated in the mouse, albeit with severely 
reduced proliferation in the skin, testes, gastrointestinal tract, and 
hematopoietic lineages29. Remarkably, the proliferation defects 
were fully reversible, suggesting that anti-MYC therapy could be 
used to treat human disease since tumor cells often apoptose upon 
MYC inhibition whereas normal cells simply fail to proliferate.

Indirectly targeting MYC through BRD4 bromodomain 
inhibition
Recent findings suggest that MYC promotes gene expression by 
global transcriptional amplification, although there have been other 
interpretations of the data4,5,32,33. The transcriptional amplification 
model proposes that MYC binds to virtually all active promoters 
in any cells and enhances transcriptional elongation. These stud-
ies have established a positive correlation between MYC levels 
and phosphorylation of serine-2 (S2) on the carboxy-terminal 
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domain (CTD) of RNA Pol II, which is linked to transcriptional 
elongation. Phosphorylation of S2 on the CTD is catalyzed by 
P-TEFb (positive transcription elongation factor b), which can be 
activated by binding to the bromodomain protein BRD434. Bromo-
domains bind to acetylated lysines (Ac-K) on histones and other 
proteins, and the binding of BRD4 to P-TEFb results in recruitment 
to promoters and productive transcriptional elongation34–37. BRD4 is 
a member of the BET family of proteins and by itself is a key medi-
ator of an aggressive squamous cancer, NUT midline carcinoma38. 
Small-molecule screens have identified compounds that inhibit the 
binding of the BRD4 bromodomain to Ac-K39,40. The most exten-
sively characterized compound developed for this purpose is JQ1, 
a powerful inhibitor of BRD439. JQ1 binds to the Ac-K-binding site 
of BET bromodomains and effectively displaces BRD4 from chro-
matin, preventing transcriptional elongation. Treatment with JQ1 
results in cell differentiation of NUT cells and attenuates growth of 
BRD4-dependent carcinomas in vivo. Efficacy of JQ1 in a number 
of myeloid-derived tumors, such as acute myeloid leukemia (AML) 

and multiple myeloma, has been demonstrated. Notably, these 
studies have revealed that the effect of JQ1 on tumor regression 
appears to be specifically mediated by downregulation of MYC 
itself, its downstream targets, and inflammatory signals12,16,41,42. 
The link between JQ1 and MYC expression is not totally clear but 
may involve the dependence of MYC on multiple enhancers and 
‘super-enhancers’ that are highly dependent on BRD443. These 
findings have led to a number of potential combination therapies 
in conjunction with JQ1 that synergistically result in tumor regres-
sion. These therapies include indirectly targeting MYC in combi-
nation with the PI3K pathway, mechanistic target of rapamycin 
(mTOR), or histone deacetylases (HDACs) for the treatment of 
T-cell acute lymphoblastic leukemia, pancreatic ductal adenocarci-
noma, and osteosarcoma, respectively44–46. BET inhibitors have also 
been shown to induce apoptosis of osteosarcoma cells independ-
ently of MYC downregulation and display synergistic effects when 
combined with CDK inhibitors, indicating that this strategy could 
be employed in the treatment of osteosarcoma47.

Figure 1. Direct and indirect inhibition of MYC. (A) Targeting the MYC/MAX interface by using 10058-F4, KJ-Pyr-9, or Omomyc inhibits 
binding to DNA and the MYC transcriptional pathway. (B) Indirect targeting of MYC expression through inhibition of CDK7 or BRD4, key 
factors involved in transcriptional initiation and elongation, using JQ1/dBET1 or THZ1/THZ2, respectively. Targeting CDK7 or BRD4 results in 
specific downregulation of MYC protein expression.
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The use of bromodomain-binding compounds has very recently 
been developed into a new strategy to target BRD4 and subse-
quently MYC. dBET1 is a novel compound developed to target 
BRD4 for protein degradation, in contrast to JQ1, which inhibits 
the bromodomain of BRD417,18. dBET1 is a bivalent compound 
composed of JQ1 and thalidomide that creates a link between 
BRD4 and cereblon (CRBN), a component of a cullin-RING ubiq-
uitin ligase that catalyzes proteasomal degradation48. dBET1 is 
potent and highly specific, targeting BRD2, BRD3, and BRD4 for 
degradation. As with JQ1, the MYC protein and its transcriptional 
pathway appear to be the most strongly affected. Treatment with 
dBET1 produces an improved apoptotic response at lower con-
centrations in AML and lymphoma cell lines, accompanied by a 
decrease in MYC levels compared with JQ1. This strategy can be 
exercised to target a wide variety of proteins that may have no innate 
enzymatic function as long as high-affinity ligands are available.

Targeting CDK7 as an indirect inhibitor of MYC
Another very recent study suggests a second indirect approach to 
target MYC. TFIIH, a complex involved as a basal factor in tran-
scriptional initiation, is composed of a number of proteins, includ-
ing the catalytic subunit cyclin-dependent kinase 7 (CDK7)49,50. 
CDK7 phosphorylates serine-5 (S5) on the CTD of RNA Pol II, 
which induces transcriptional initiation, production of nascent 
mRNA, mRNA capping and methylation, and promoter proximal 
pausing51,52. THZ1 was developed as a novel covalent inhibitor of 
CDK7, and its high selectivity for CDK7 results from chemical 
linkage to a cysteine residue that resides outside of the canonical 
kinase domain53. Interestingly, THZ1 specifically downregulates 
MYC in MYCN-driven neuroblastomas compared with normal 
cells, and this effect is attributed to the presence of super-enhancers 
upstream of the MYCN gene15. Although the mechanism accounting 
for MYC specificity requires further investigation, targeting CDK7 
in tumors addicted to super-enhancer-associated transcription fac-
tors provides a novel platform for targeting multiple aberrant genes 
with a single agent. Therapeutically, THZ1 was shown to be highly 
effective in killing MYC-driven tumors, including neuroblastoma, 
small cell lung cancer, and triple-negative breast cancer15,54,55. 
Treatment with THZ1 leads to a substantial reduction in tumor 
volume by suppressing cell proliferation and inducing apoptosis. 
THZ2, an analog of THZ1, was developed to overcome the instabil-
ity of THZ1 in vivo and demonstrated improved pharmacokinetics 
with an amended half-life and high potency for CDK755. Together, 
these data provide a rationale for targeting CDK7 in tumors that are 
dependent on high levels of MYC for transcription.

Synthetic lethal interactions with MYC
Although MYC itself is difficult to drug, tumor cells often exhibit 
‘oncogene addiction’ or changes in gene expression and physiol-
ogy that make them extremely dependent on a specific oncogenic 
pathway for growth or survival or both. This dependence theoreti-
cally can be exploited to search for a tumor cell’s Achilles heel 
(that is, pathways that become rate-limiting for the growth/survival 
of tumor cells but not their normal counterparts). An early study 
identified AMPK (AMP-dependent kinase) as critical for the sur-
vival of cells with high levels of MYC56. Synthetic lethality has also 
been observed in MYC-overexpressing cells when spliceosome 
core factors or metabolic pathways are targeted for inhibition57,58. 
A more general approach has been taken to uncover new therapeu-
tics for cancer by interrogating the connection between genomic 
aberrations and response to a wide panel of anti-cancer drugs59. 
Bioinformatic tools were used to identify a synthetic lethal 
relationship between MYC overexpression and sensitivity to dasat-
inib, a multikinase inhibitor. This platform sets a framework for 
the discovery of novel combination therapies to target MYC-driven 
tumors.

Conclusions and Future directions
A large number of direct and indirect MYC inhibitors have been 
developed in the last decade, and some are more efficacious 
and specific than others. Although direct inhibitors of MYC, 
precisely those targeting the interaction between MYC and MAX, 
are more specific for MYC itself, they target a bHLH-LZ domain 
conserved between many transcription factors. Chemical inhibition 
of a domain present in MYC alone would provide a more targeted 
approach for MYC inhibition. The mechanisms by which indirect 
inhibitors of MYC, such as JQ1 and THZ1, act remain to be well 
characterized. Furthermore, additional experimentation is required 
to determine the efficacy of these compounds in human cancer. 
Ultimately, it may be necessary to strategically target MYC from a 
multitude of angles, taking advantage of its well-established role as 
a master regulator of transcription in cancer cells.
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