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Introduction

Palliative care is defined by the World Health Organization as

an approach that improves the quality of life of patients and their 
families facing the problems associated with life-threatening 
illness, through the prevention and relief of suffering by means 
of early identification and comprehensive assessment and 
treatment of pain and other problems, physical, psychosocial 
and spiritual.1

Palliative care is provided through the combined expertise, 
knowledge and skills of various healthcare professionals and 
plays an important role in improving quality of life (QOL) 
by alleviating pain in patients and their family members.2
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Abstract
Objectives: Studies of palliative care are often performed using single-arm pre–post study designs that lack causal inference. 
Thus, in this study, we propose a novel data analysis approach that incorporates risk factors from single-arm studies instead 
of using paired t-tests to assess intervention effects.
Methods: Physical, psychological and social evaluations of eligible cancer inpatients were conducted by a hospital-based 
palliative care team. Quality of life was assessed at baseline and after 7 days of symptomatic treatment using the European 
Organization for Research and Treatment of Cancer QLQ-C15-PAL. Among 35 patients, 9 were discharged within 1 week 
and 26 were included in analyses. Structural equation models with observed measurements were applied to estimate direct 
and indirect intervention effects and simultaneously consider risk factors.
Results: Parameters were estimated using full models that included associations among covariates and reduced models 
that excluded covariates with small effects. The total effect was calculated as the sum of intervention and covariate effects 
and was equal to the mean of the difference (0.513) between pre- and post-intervention quality of life (reduced model 
intervention effect, 14.749; 95% confidence intervals, −4.407 and 33.905; p = 0.131; covariate effect, −14.236; 95% confidence 
interval, −33.708 and 5.236; p = 0.152).
Conclusion: Using the present analytical method for single-arm pre–post study designs, factors that modulate effects of 
interventions were modelled, and intervention and covariate effects were distinguished based on structural equation model.
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The demand for evidence-based palliative care has been 
growing in recent years, and randomized controlled trials 
(RCTs) are indispensable for scientific evaluations of the 
effectiveness of palliative care.3 However, because patients 
requiring palliative care are physically or mentally vulnera-
ble and have diverse cultural and religious backgrounds, 
ethical considerations often preclude rigorous study designs. 
Accordingly, randomization of palliative care patients to 
treatment and reference arms is often difficult,4–8 and most 
studies in this field still rely on patient and epidemiological 
surveys.9–11

Although attempts to evaluate the effects of interventions 
using only a single treatment arm fail to reveal causal rela-
tionships due to the absence of rigorous controls, observa-
tions from single-arm studies are often critical and may be 
used to inform planning for subsequent study phases. Paired 
t-tests are predominantly used to examine intervention 
effects. However, we propose a novel data analysis approach 
that can be utilized with all available data from single-arm 
intervention studies. Specifically, we employ structural 
equation models (SEMs) with only observed measurements 
to evaluate intervention effects and simultaneously investi-
gate modelling associations between intervention outcomes 
and risk factors and among risk factors. Subsequently, we 
applied the proposed method to a single-arm hospital-based 
palliative care team (HPCT) intervention study.

Methods

Patients and interventions

Eligible hospitalized patients with malignant tumours were 
enrolled between 1 November 2009 and 30 March 2010. 
Inclusion criteria were as follows: (1) age 18 years and over, 
(2) pathological diagnosis with a malignant tumour, (3) abil-
ity to respond to the questionnaire and (4) written consent. 
Exclusion criteria were as follows: (1) inability to respond to 
the questions because of disturbed consciousness or cogni-
tive disorder and (2) inappropriateness for the study as 
judged by the physician in charge.

Decisions for interventions were reached by the HPCT 
using the screening sheets and criteria described by Morita 
et  al.12 and Akizuki et  al.,13 with minor modifications. 
Patients requiring intervention were asked to confirm their 
intention to receive HPCT physical, psychological and social 
interventions in accordance with pain levels and individual 
needs. Before and 1 week after interventions, QOL was 
assessed using the European Organization for Research and 
Treatment of Cancer QLQ-C15-PAL Questionnaire.14 
Because 9 of 35 patients who satisfied the eligibility criteria 
for HPCT intervention were discharged from the hospital 
within 1 week of intervention, the present analysis included 
only 26 patients for whom QOL assessments were completed 
at 1 week after intervention. Background variables of the 
patients are presented in Table 1, and written informed con-
sent was obtained from all participants. The study was 

approved by the Ethics Committee of Kobe University 
Hospital and was performed in accordance with the 
Declaration of Helsinki and the Ethical Guidelines for 
Clinical Research in Japan.

Statistical models for one-group pre–post design

In pre–post RCTs, endpoints are measured before and after the 
intervention, and although two-sample t-tests are often employed, 
analysis of covariance (ANCOVA) models using pre-data as 
covariates is considered the optimal statistical design.15–18

Because no data from a control arm are available, this 
study design is referred to as ‘one-group pre–post testing’, 
and the following statistical model is analogous to ANCOVA 
for RCTs, although the group effect was omitted as follows

	 D Xi i i= + +α β ε 	 (1)

where Di denotes the difference in efficacy between pre- and 
post-intervention measurements in each patient, α indicates 
the effects of the intervention, β refers to the influence of the 
pre-intervention value Xi  and ε i  represents measurement 
error. From equation (1), the mean pre–post difference (D) can 
be defined as ( )D X= +α β  , which comprises α  (without 
covariate influences) and β X  (with influences of pre- 
intervention values). Although equation (1) incorporates only 
the influence of the pre-intervention value into the model, 
even models that accommodate the influence of numbers (p) 
of covariates (D X Xi i p ip i= + + + +α β β ε1 1  ) usually allow 
the mean pre–post differences D  to be divided into interven-
tion effects (α ) and covariance effects β β1 1

� � �X Xp p+ + )  
during model application.

Intervention effect models with covariates

The objective of the one-group pre–post design is often lim-
ited to hypothesis generation with exploratory data analysis 
rather than hypothesis testing with pre-specified statistical 
models. Moreover, the significance of covariates in multiple 

Table 1.  Demographic and clinical characteristics of subjects.

No. Percentage

Sex
  Male 19 73.1
  Female   7 26.9
Age (years)
  Median 58.5  
  Range 22-81  
Performance status
  0 2 7.7
  1 11 42.3
  2 6 23.1
  3 7 26.9
  4 0 0
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regression models is strongly influenced by the magnitude of 
associations between them. Thus, because multiple covari-
ates are often strongly associated with each other, clinical 
interpretations of covariate effects are often difficult during 
comparisons of results from several regression models. To 
resolve this problem, hypothesized models that allow simple 
clinical interpretations can be created using SEM, which 
enables simultaneous modelling of associations among 
covariates and their influences on efficacy indicators. To 
illustrate the proposed data analysis approach, the path dia-
gram shown in Figure 1(a) is modelled using pre–post out-
come change scores as endpoints and age, sex, performance 
status (PS) and pre-intervention outcome values as covari-
ates. The depicted associations among measurements are 
only one of many possibly clinically interpretable model 
structures, and structural equations corresponding to the 
Figure 1(a) are defined in equation (2)

	

Y X X

Y Y X X

Y Y
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= + + +
= + + + +
= + +
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X

X

+ + +
= +
= +

	 (2)

where Dif (the pre–post difference) in Figure 1(a) corre-
sponds to Y3  in equation (2), and α3  is a parameter that 
expresses the intervention effect (similar to α  in equation 
(1)). Equation (2) describes a model with the assumption that 
a given covariate affects the dependent (objective) variable 
directly or indirectly via other covariate(s), and each covari-
ate effect can be expressed as the product of a path coeffi-
cient. For example, the influence of PS on Dif can be 
expressed as the sum of α β1 31, which is an effect that origi-
nates in the path from PS to Dif, and α β β1 21 32, which is an 
effect that originates in the path mediated by the pre-value. 
Similar to the model in equation (1), Y 3  can be determined as 
the sum of α3  independently of covariates and as a part that 

Figure 1.  Path diagrams of (a) the full model and (b) the reduced model.

is dependent on covariates ( ).β β γ γ� � � � � � � �
31 1 32 2 31 1 32 2Y Y X X+ + +

This equation is also consistent with the results of the gener-
alization ( )D X= +α β  , as shown in the preceding section. 
Because the standard error of the influence of covariates can 
be approximated using the multivariate delta method,19 it is 
possible to calculate confidence interval (CI) for each esti-
mate of the effect independently of covariates and their 
influences.

Square box indicates observed measurements, and Greek 
letter indicates model parameter. Single-headed arrow 
depicts direction of association between two measurements.

Statistics

Statistical analyses were performed using STATA version 
12.0 (Stata Corporation, College Station, TX). All p-values 
were generated from two-sided tests and were considered 
significant when p < 0.05. All CIs had a two-sided probabil-
ity coverage of 95%.

Results

SEMs

The results of analyses using the present method were gener-
ated using physical function data. The full model shown in the 
path diagram (Figure 1(a)) was applied, and estimates, stand-
ard errors and CI were calculated for each parameter (Table 2). 
The total effect comprised the sum of intervention and covari-
ate effects and was consistent with the mean pre–post differ-
ence ( . )D = 0 513 . The HPCT intervention effect (α3) tended 
to improve physical function, although the change was not 
significant (intervention effect: 24.57; CI: −16.791 to 65.932; 
p = 0.24). In contrast, the analysed covariates tended to lower 
physical function, although this was not significant (covariate 
effect: −24.06; CI: −65.687 to 17.571; p = 0.26).

Age and PS were affected less by covariates and were 
excluded from the full model to generate the reduced model. 
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To obtain a parsimonious construct and retain potentially 
significant covariates in the reduced model, p-values of 
covariates in the full model were set to 0.15. Accordingly, 
the path diagram (Figure 1(b)) shows that the reduced model 
encompasses the effect of gender mediated by a pre-value 
and the direct effect of the pre-value and gender on Dif. 
Table 3 shows the intervention effect on physical function 
and the estimated values of covariates. As in the full model, 
α3  tended to improve physical function, although this was 
not statistically significant (intervention effect: 14.749; CI: 
−4.407 to 33.905; p = 0.131). Together, the analysed covari-
ates tended to lower physical function, although the change 
was not statistically significant (covariate effect: −14.236; 
CI: −33.708 to 5.236; p = 0.152).

Impact of small sample size on SEM

Only small samples were available to fit full and intervention 
effect models. However, all models converged after few iter-
ative calculations. Because the normal likelihood method 
was used to estimate standard errors of parameters, the sta-
bility of these estimates was examined by evaluating the 

variance of the estimator using bootstrapping. Estimates of 
asymptotic standard errors and bootstrap standard errors, and 
of bias-corrected CI, are shown in Table 4. Results of boot-
strap analyses indicated that SEM with observed measure-
ments was applicable to relatively small sample sizes.

Discussion

Studies of palliative care often adopt single-arm study 
designs to accommodate patient conditions that preclude 
randomization. However, single-arm studies offer limited 
estimates of causal relationships between interventions and 
effects. Hence, study designs that meet the requirement of 
evidence-based palliative care have recently been pro-
posed.20,21 In this study, we propose a method for effective 
use of data from single-arm studies by modelling relation-
ships among covariates.

In one-group pre–post studies, intervention effects are 
usually evaluated using paired-t tests.22,23 In contrast, the pre-
sent analytical method uses ANCOVA models that exclude 
group effects and enables clinical interpretation using SEM to 
evaluate the effects of palliative care interventions on QOL. 

Table 2.  Intervention effect models with covariates (full model).

Effect Parameter Estimate SE 95% CI

Intervention effect α3 24.571 21.103 −16.791 to 65.932
Covariate effect Covariate total −24.058 21.239 −65.687 to 17.571
Pre α β2 32 −54.121 18.323 −90.034 to −18.209
PS (⩾2) → Pre α β β1 21 32 1.341 6.734 −11.858 to 14.540
Age → PS (⩾2) → Pre κ γ β β1 11 21 32 7.727 6.903 −5.802 to 21.257
Age → Pre κ γ β1 21 32 14.776 11.039 −6.861 to 36.413
Sex (male) → Pre γ β22 32 −7.434 4.621 −16.491 to 1.622
Sex (male) → PS (⩾2) → Pre γ β β12 21 32 −1.159 2.522 −6.102 to 3.783
PS (⩾2) α β1 31 0.877 4.443 −7.832 to 9.585
Age → PS (⩾2) κ γ β1 11 31 5.053 5.656 −6.032 to 16.138
Sex (male) → PS (⩾2) κ γ β2 12 31 −0.758 1.726 −4.142 to 2.626
Age κ γ1 31 −18.283 14.750 −47.193 to 10.626
Sex (male) γ 32 27.924 6.824 14.549 to 41.300
Total effect (intervention + covariate) 0.513 5.679 −10.618 to 11.644
Paired t-test 0.513 5.472 −10.212 to 11.238

SE: standard error; CI: confidence interval; PS: performance status.

Table 3.  Intervention effect models with covariates (reduced model).

Effect Parameter Estimate SE 95% CI

Intervention effect α3 14.749 9.773 −4.407 to 33.905
Covariate effect Covariate total −14.236 9.935 −33.708 to 5.236
Pre α β2 32 −32.844 9.439 −51.346 to −14.343
Sex (male) κ γ2 32 27.812 7.034 16.211 to 39.412
Sex (male) → pre κ γ β2 22 32 −9.204 5.919 −20.804 to 2.397
Total effect (intervention + covariate) 0.513 5.365 −10.003 to 11.029
Paired t-test 0.513 5.472 −10.212 to 11.238

SE: standard error; CI: confidence interval.
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Critically, this model accommodates associations among 
covariates and permits extraction of factors that directly or 
indirectly influence efficacy indicators, thus enabling consid-
eration of randomization designs in which these factors serve 
as allocation factors. However, future studies are required to 
assess the advantages and shortcomings of this approach in 
comparison with conventional ad hoc allocation factor selec-
tion methods.

During modelling of associations among covariates using 
SEM, trial calculations of bias-free sample sizes are possible as 
in analyses using ANCOVA models, which are used to estimate 
intervention effects (not affected by covariates) and their dis-
persions. However, the present method enables estimation of 
intervention effects by adjusting the influences of covariates on 
efficacy indicators. Moreover, HPCT interventions and covari-
ate effects were estimated even during modelling of simultane-
ous influences of multiple covariates. Thus, the proposed 
method may serve as a novel analytical tool for one-group pre–
post studies that are performed under study-limiting condi-
tions. Data analyses using SEM usually require large sample 
sizes.24 Thus, application of SEM to small samples may lead to 
unstable estimates of model parameters. Thus, unusually large 
parameter estimates require cautious interpretation.
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