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In the neonatal rodent hippocampus, the first and predominant pattern of correlated
neuronal network activity is early sharp waves (eSPWs). Whether and how eSPWs
are organized bilaterally remains unknown. Here, using simultaneous silicone probe
recordings from the left and right hippocampus in neonatal rats in vivo we found that
eSPWs are highly synchronized bilaterally with nearly zero time lag between the two
sides. The amplitudes of eSPWs in the left and right hippocampi were also highly
correlated. eSPWs also supported bilateral synchronization of multiple unit activity
(MUA). We suggest that bilateral correlated activity supported by synchronized eSPWs
participates in the formation of bilateral connections in the hippocampal system.
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INTRODUCTION

Interhemispheric synchronization is a hallmark of neuronal network activity in the hippocampal
system. Bilateral recordings revealed high level of synchronization of various hippocampal activity
patterns including theta and gamma oscillations, sharp waves (SPWs) and paroxysmal activity
patterns (Suzuki and Smith, 1987; Buzsáki, 1989, 2015; Buzsáki et al., 2003; Carr et al., 2012;
Shinohara et al., 2013; Wang et al., 2014; Pfeiffer and Foster, 2015; Benito et al., 2016; Tanaka
et al., 2017; Villalobos et al., 2017). Interhippocampal synchronization is supported by several
mechanisms including commissural connections between hippocampi and synchronous input
from entorhinal cortex (Mizuseki et al., 2009; Shinohara et al., 2012; Benito et al., 2016; Fernández-
Ruiz et al., 2017). However, when and how bilateral synchronization emerges in the hippocampal
system remains unknown.

During development, neuronal networks generate particular patterns of correlated activity
that participate in the formation of neuronal circuits (Katz and Shatz, 1996; Khazipov
and Luhmann, 2006; Blankenship and Feller, 2010; Hanganu-Opatz, 2010; Colonnese and
Khazipov, 2012; Luhmann and Khazipov, 2018). Early activity patterns are expressed in a
way of local (patchy) intermittent activity bursts such as spontaneous movement driven
spindle- and gamma-bursts in somatosensory cortex (Khazipov et al., 2004; Yang et al.,
2009, 2013; Mohns and Blumberg, 2010; Minlebaev et al., 2011; Akhmetshina et al., 2016) or
retina/cochlea driven waves in visual and auditory cortex, respectively (Hanganu et al., 2006,
2007; Colonnese and Khazipov, 2010; Ackman et al., 2012; Babola et al., 2018). These early
forms of neocortical activity occur largely asynchronously in the two hemispheres, however.
Lateralization is particularly prominent in somatosensory cortex (Yang et al., 2009; Marcano-
Reik et al., 2010). It is also present in visual system where only a small proportion of events,
presumably generated by retinal waves originating from binocular retina regions is bilaterally
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FIGURE 1 | Interhemispheric synchronization of hippocampal early sharp waves (eSPWs) in neonatal rats. (A) Top: the microphotograph of DiI traces at insertion
sites of two silicone probes on the surface of the left (L) and right (R) brain hemispheres in a P6 rat pup. Middle—Bottom: recording sites of 16-channel probes
overlaid on cresyl violet stained coronal slices of the left (LH, middle) and right (RH, bottom) hippocampi. (B) Simultaneous local field potential (LFP) and multiple unit
activity (MUA) recordings from the left hippocampus and right hippocampi from CA1 pyramidal cell layer (pcl, recording sites #3 and #19 on panel A) and strata
lacunosum-moleculare (sl-m, recording sites #9 and #26 on panel A). Black arrows above the traces indicate eSPWs. Bottom, overlaid sl-m LFP traces from left (blue)

(Continued)
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FIGURE 1 | Continued
and right (red) hippocampus. (C) The eSPW from panel (B; red asterisk) and
average left eSPW-triggered LFP in the left and right hippocampus on
expanded time scale. (D) Left eSPWs-triggered LFPs (black) in the left and
right hippocampi overlaid on CSD maps. (E) Left eSPW onset-triggered
raster plot of right eSPW onsets. (F) Left eSPW onset-triggered normalized
PETH of right eSPW onsets (red) and corresponding z-score values (green).
Group averages (mean ± SD; n = 6 animals) show the peak value of
normalized PETH (red circle), the peak value of z-score (green circle) and the
time lag between left and right eSPWs (black circle). (G) Five example traces
of eSPWs recorded simultaneously in CA1 sl-m of left (blue) and right (red)
hippocampi. (H) Relationships between left and right eSPW amplitudes
recorded in CA1 sl-m layer (animal #2). Average amplitude values are
indicated by an open circle with error bars corresponding to SD. Red arrows
indicate the data points (outlined with red) corresponding to eSPWs shown
on panel (G). See also Supplementary Figure S1 for all animals.
(I) Amplitude averages of eSPWs in the left (blue) and right (red) hippocampi
of six P5–7 rats (closed circles) and group values (open circles). Error bars
show SD.

synchronized (Hanganu et al., 2006; Ackman et al., 2012), and
in the auditory system where cochlea driven activities are biased
towards predominant contralateral cochlear input (Babola et al.,
2018).

In the neonatal hippocampus, the first and predominant
pattern of correlated neuronal network activity is early SPWs
(eSPWs; Leinekugel et al., 2002; Karlsson et al., 2006; Mohns
et al., 2007; Mohns and Blumberg, 2008; Marguet et al., 2015;
Valeeva et al., 2019). eSPWs are intermittent events characterized
by sharp negative potentials in CA1 strata lacunosum-moleculare
(sl-m) and radiatum (sr) reversing at pyramidal cell layer
(pcl), and synchronous neuronal firing in CA3, CA1 and
dentate gyrus. eSPWs are generated by cooperation of inputs
from medial entorhinal cortex and intrinsic intrahippocampal
connections. eSPWs are typically triggered by spontaneous
myoclonic neonatal movements and are preceded by activity
bursts in superficial layers 2–3 of medial entorhinal cortex
(Karlsson et al., 2006; Marguet et al., 2015; Valeeva et al., 2019).
However, whether eSPWs support bilateral synchronization of
activity in the left and right hippocampus as adult SPWs do
(Suzuki and Smith, 1987; Buzsáki, 1989, 2015) remains an open
question.

Here, we addressed this question by bilateral recordings
from the right and left CA1 hippocampus using silicone probes
in neonatal P5-7 non-anesthetized head restrained rat pups.
We found that nearly all eSPWs occur in both hippocampi
synchronously with almost zero time lag and that eSPWs support
high level of bilateral synchronization of neuronal activity.

MATERIALS AND METHODS

Ethical Approval
This work has been carried out in accordance with EU Directive
2010/63/EU for animal experiments and all animal-use protocols
were approved by the French National Institute of Health and
Medical Research (INSERM, protocol N007.08.01) and Kazan
Federal University on the use of laboratory animals (ethical
approval by the Institutional Animal Care and Use Committee
of Kazan State Medical University N9-2013).

Animal Preparation
Wistar rats of either sex from postnatal days (P) 5–7 were
used. Preparation of the animals for recordings was performed
under deep isoflurane anesthesia the day before recording as
previously described (Akhmetshina et al., 2016; Valeeva et al.,
2019). Briefly, while under isoflurane anesthesia the skull was
cleared of skin and periosteum and covered by dental cement,
leaving ≈5 mm2 windows above the left and right hippocampi.
The wound was treated with xylocaine (2%) and chlorhexidine
(0.05%). Animals were warmed up and returned to the litter to
recover from surgery and did not receive additional medications
during recordings.

Electrophysiological Recordings
Recordings were performed from head-restrained
non-anesthetized rats. A metal ring was fixed to the skull
with dental cement and via ball-joint to a magnetic stand.
Animals were surrounded by a cotton nest and heated via
a thermal pad (35–37◦C). During recordings, animals were
regularly fed with heated milk and continuously monitored for
any sign of pain or discomfort, and if such occurred, the animals
were sacrificed with an overdose of urethane.

Extracellular recordings of local field potentials (LFPs)
and multiple unit activity (MUA) were performed along the
CA1—dentate gyrus axis of the dorsal hippocampus using a
pair of 16-site linear silicon probes with 50 µm separation
distance between the electrodes (four animals) or two eight-
shank 64-site probes with 200 µm separation distance (two
animals; NeuroNexus, Ann Arbor, MI, USA). Two craniotomies
of 0.2–0.3 mm diameter each were performed above the left
and right hippocampi. DiI coated electrodes were placed using
stereotaxic coordinates (Khazipov et al., 2015). A chloride silver
wire, placed in the neocortex, served as a ground electrode.
Signals from extracellular recordings were amplified and
filtered (10,000×; 0.15–10 kHz) using DigitalLynxSX amplifier
(Neuralynx, Bozeman, MT, USA) and digitized at 32 kHz. From
30 min to an hour of spontaneous activity were recorded in each
animal.

Histology
After recordings the animals were deeply anesthetized with
urethane (3 g/kg, intraperitoneally) and perfused intracardially
with 4% paraformaldehyde and 1% glutaraldehyde (Sigma).
The brains were removed and left for fixation for a few
days. One-hundred micron-thick coronal slices were cut
using a Vibratome (Thermo Fisher Scientific, Waltham, MA,
USA). Electrode positions were identified from the DiI tracks
overlaid on the microphotographs of sections after cresyl violet
staining.

Data Analysis
Wideband recordings were preprocessed using custom-written
functions in MATLAB (MathWorks, Natick, MA, USA).
eSPWs were detected semi-automatically from down-sampled
(1,000 Hz), bandpass filtered (3–100 Hz, Chebyshev type 2 Filter)
LFP signal. All events reaching the amplitude greater than
1.5 standard deviations at filtered LFP on sl-m and pcl channels
(negative and positive peaks, respectively) were first considered
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FIGURE 2 | Bilateral synchronization of CA1 MUA during eSPWs. (A) Left eSPW onset-triggered raster plot of CA1 pcl MUA in the left (blue dots) and right (red
dots) hippocampus. (B) Left eSPW onset-triggered and normalized to the baseline MUA peri-event time histograms (PETHs) in left and right hippocampi (top),
corresponding MUA z-scores (middle) and average LFP (bottom). (C) Normalized cross-correlograms of MUA in right vs. left hippocampus within the time window of
eSPWs (left) and during non-eSPW epochs (right). Cross-correlograms were normalized to the maximum value during eSPW epochs. (B,C) Group averages from
three animals. Shaded areas show confidence intervals. MUA PETHs, z-scores and cross-correlograms were smoothed using a 20 ms-long sliding window.

as putative eSPWs. To discard movement and static artifacts,
LFP segments from −1 s to 1 around the eSPW were visually
inspected. The eSPW onset was defined as a time when the
first LFP derivative in sl-m reached a threshold of 2 mV/s.
Raw data were filtered using 250–4,000 Hz bandpass wavelet
filter (Daubechies 4) and spikes were detected as negative events
exceeding −3.5 standard deviations of filtered signal. Time lags
between the left and right hippocampus were calculated from
peri-onset time histograms smoothed by moving average filter

(4 ms window for eSPWs onsets and 20 ms for MUA). Z-scores
were estimated on the basis of a shuffled artificial data as
described previously (Valeeva et al., 2019).

Statistics
Statistical analysis was performed using the MATLAB Statistics
toolbox. Group comparisons were done using one- and paired-
sample Wilcoxon signed-rank tests. P-value of less than 0.05 was
considered significant. Correlations between variables were
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estimated using the Pearson (r) correlation coefficients. Unless
indicated, data are presented as mean ± SD.

RESULTS

In the present study we performed simultaneous LFP and
MUA recordings from the dorsal part of the left and right
CA1 hippocampus in six non-anesthetized head-restrained
postnatal days [P] 5–7 rats (Figure 1). The location of the
recording sites was identified during post hoc analysis of the DiI
electrode tracks in coronal sections (Figure 1A).

In keeping with previous results, hippocampal activity on
both sides was characterized by the ripple-lacking eSPWs which
were associated with a negative sharp potential below the CA1
sr and sl-m and polarity reversal at the pcl, and often followed
by ‘‘tails’’ (Leinekugel et al., 2002; Karlsson et al., 2006; Mohns
et al., 2007; Mohns and Blumberg, 2008; Marguet et al., 2015;
Valeeva et al., 2019; Figures 1B–D). eSPWs attained maximal
negativity in sl-m (left: 253 ± 68 µV; right: 297 ± 111 µV;
n = 6) and their current-source density profile was characterized
by the two main sinks, one in sr and another in sl-m (Figure 1D)
as reported previously (Valeeva et al., 2019). eSPWs were
also associated with MUA bursts (Figures 1B, 2A–C). The
frequencies of eSPWs in the left and right hippocampus were
of 3.8 ± 1.5/min and 3.9 ± 1.6/min, respectively (p = 0.44). As
shown in Figure 1B, eSPWs in the right and left hippocampus
were also highly synchronized. We further assessed the bilateral
co-occurrence probability and the time lags between eSPWs
in the right and left hippocampi. We found that 97 ± 4% of
eSPWs in the right hippocampus co-occurred with eSPWs in
the left hippocampus (z-score = 144 ± 30) and, vice versa,
96 ± 4% of eSPWs in the left hippocampus co-occurred with
eSPWs in the right hippocampus (z-score = 140 ± 29) within
a ±100 ms time window (Figures 1E,F). The vast majority
of eSPWs occurred simultaneously with nearly zero time lag
between hemispheres, although some eSPWs occurred with a
time lag in the range of up to 10 ms. On average, the time
lags separating eSPWs in the left and right hippocampi were
of 0.3 ± 2.3 ms. These results indicate that eSPWs are highly
synchronized bilaterally.

eSPWs in the left and right hippocampi also highly correlated
in amplitude. While the eSPWs’ amplitude varied in both
sides, larger in amplitude eSPWs in one hippocampus were
associated with larger eSPWs in the contralateral hippocampus
(Figures 1G–I, Pearson’s r = 0.84 ± 0.14; n = 6; p < 0.001;
see also Supplementary Figure S1 for all animals). Also,
eSPWs were slightly more ample in the right hippocampus
(p = 0.03).

In agreement with the results from previous studies, eSPWs
were associated with an increase in MUA in CA1 pcl. MUA
peri-event time histograms (PETHs) triggered by left eSPW
onsets attained maximal values of 0.04 ± 0.01 spikes/ms
(4.2 ± 0.2-fold increase above baseline; z-score 2.6 ± 0.5)
and 0.05 ± 0.02 spikes/ms (5.0 ± 0.4-fold increase above
baseline; z-score 2.6 ± 0.8) with time lags of 41 ± 8 ms and
60± 4ms (p > 0.05) in the left and right hippocampi, respectively
(Figures 2A,B; n = 3 rats; animals with MUA frequency <5/s

were excluded from MUA analysis). Co-occurrence of eSPWs
in the left and right hippocampi supported bilateral MUA
synchronization during eSPWs that was evident on the MUA
cross-correlograms within a time window of±1 s from the eSPW
onset. Peak of MUA cross-correlation during eSPWs attained
0.027 ± 0.014 and showed a time lag of 9 ± 9 ms between the left
and right hippocampi. Bilateral MUA cross-correlation was also
observed during the non-eSPW epochs, but its level was lower
(0.017 ± 0.008 with a time lag of 18 ± 9 ms) than during eSPWs
(Figure 2C).

DISCUSSION

Our main finding is that eSPWs are highly synchronized
and support correlated neuronal activity in the left and right
hippocampus in the rat pups in vivo. Previously, several forms
of synchronized bilateral activity in the developing hippocampal
system have been described in vitro. For example, giant
depolarizing potentials (GDPs), recurrent neuronal network
discharges originating in CA3 network are synchronized
bilaterally in the preparation of interconnected hippocampi
in vitro (Khalilov et al., 1997; Leinekugel et al., 1998).
Epileptiform discharges induced by various epileptogenic agents
also propagate between hippocampi and bilaterally synchronize
hippocampal activity in this preparation (Khalilov et al., 1997,
1999, 2005; Khazipov et al., 1999). Lesion of the ventral
hippocampal commissure or pharmacological suppression of
commissural action potential propagation results in complete
bilateral desynchronization of GDPs and paroxysmal activities
indicating that commissural communication is pivotal for
their bilateral synchronization (Khalilov et al., 1999; Khazipov
et al., 1999). Consistent with these findings in vitro, we
found perfect bilateral synchrony in eSPWs in neonatal rat
pups in vivo. Bilateral eSPWs synchronization likely involves
CA3-CA3 commissural connections as in the case of GDPs
and paroxysmal events in vitro as described above. This is
supported by activation of CA3 neurons during eSPWs also
manifested by a current sink of eSPWs in CA1 sr, where
CA3-CA1 synapses are located (Valeeva et al., 2019). However,
bilateral eSPWs synchronization in vivo may also involve
synchronous bilateral inputs from entorhinal cortex that is
evidenced by synchronous eSPWs’ current sinks in CA1 sl-
m, where synapses from the entorhinal cortex are located
(ibid). This suggests that the activity bursts in superficial
layers of entorhinal cortex preceding hippocampal eSPWs are
also bilaterally synchronized. In the future, it would be of
interest to determine mechanisms involved in bilateral activation
of entorhinal cortex in relation to eSPWs and spontaneous
body movements, which reliably trigger entorhinal-hippocampal
activity in neonatal rats (Karlsson et al., 2006; Marguet et al.,
2015; Valeeva et al., 2019).

In conclusion, we have shown that bilateral synchronization
of activity in the hippocampal system emerges early during
postnatal development and that early bilateral synchronization is
supported by highly correlated eSPWs. Bilateral synchronization
of eSPWs likely contributes to the development of synaptic
connections between hippocampi by means of synchronization
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of neuronal activity and activity-dependent plasticity. Our results
also provide further evidence that eSPWs are a developmental
prototype of adult SPWs, which also display a high level of
bilateral synchrony (Suzuki and Smith, 1987; Buzsáki, 1989,
2015).
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