Chapter 6 )
The Many Roads to an Ideal Paper-based  ouix
Device

Margot Karlikow and Keith Pardee

The recent Zika and Ebola virus outbreaks highlight the need for low-cost diag-
nostics that can be rapidly deployed and used outside of established clinical
infrastructure. This demand for robust point-of-care (POC) diagnostics is further
driven by the increasing burden of drug-resistant diseases, concern for food and
water safety, and bioterrorism, among many other necessities. As has been discussed
in previous chapters, paper-based tests provide a simple and compelling solution to
such needs. Paper-based tests and devices are themselves not new and in fact were
first developed in the 1930s [1], but have only emerged recently as broadly capable
tools for rapid diagnostics outside of laboratory settings.

The most widely recognized paper-based diagnostic is the home pregnancy test
that came on the market in 1988 [2]. This one-step assay to assess urine for the
pregnancy hormone human chorionic gonadotropin uses the chromatographic effect
of paper to drive flow for the onboard immunoassay that underpins detection. While
the pregnancy test has been a tremendous success, many other clinical needs require
portable diagnostics that are similarly complex and sensitive and, in turn, this has
given birth to a whole field dedicated to the development of paper-based, POC
diagnostics [3]. Accordingly, the lateral flow assay concept has been extended to
a wide range of infectious disease antigens, nucleic acid sequences, and illicit drugs
from diverse sample types (e.g., sputum, blood, fecal, food).

In 2004, the Whitesides group developed the “POCKET immunoassay” [4],
a microfluidic compatible immunoassay to bring enzyme-linked immunosorbent
assays (ELISAs) to the field and resource-limited environments where such ana-
lytical techniques are not usually available. Three years later this was followed
by another report, from the same group, that used patterned paper to create paper-
based microfluidics for the simultaneous analysis of glucose and protein in urine [5].
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These two papers laid the groundwork for new types of paper-based devices to meet
the growing need for complex, yet portable, diagnostics. Most prominently this has
included microfluidic paper-based analytical devices (WPADs) for the development
of low-cost and portable devices.

Paper-based devices can be designed for diverse sensing purposes, but those
for health-related POC applications have especially stringent regulatory guidelines,
such as those laid out by Kettler et al. in a 2004 WHO white paper. Referred to
as ASSURED standards (Affordable, Specific, Sensitive, User-friendly, Rapid and
robust, Equipment-free and Deliverable) these guidelines have become a standard
for the field and provide a framework for engineers and clinicians alike to develop
safe and effective paper-based diagnostics [6].

The ultimate goal in the paper-based diagnostics field is the development of
fully integrated devices, able to achieve sample-in answer-out processes. But in
the quest for the ideal paper-based devices, many obstacles remain. Here we
survey some of the most recent and innovative paper-based diagnostics and the
technologies that surround them, in hopes of helping to define what would be an
ideal device. Accordingly, we review the areas of ongoing tool development, such as
sample handling and preparation, sensitivity, and signal amplification, to frame our
discussion and share advances in the field. However, the sensing modality employed
in a device in many ways defines the challenges along the developmental path.
Therefore, we will often discuss tool development for paper-based devices using
antibody-based detection and those using nucleic acid amplification separately. This
will be followed by a discussion of key technical aspects that we believe will lead
the future directions of POC diagnostics, and then look at how, as a community, the
vision of low cost and accessible diagnostics can be realized.

6.1 Sample Preparation

Sample preparation is “the forgotten beginning” [7] and a major bottleneck for
POC diagnostics [8]. A recent study compared 13 different commercially available
or close-to-market POC devices and found that in more than half of them the
sample preparation was not included [9]. Further, as late as in 2016, a review
from Tang et al. highlighted the fact that most analyte extraction methods require
either an external electrical power, an external pump, or multiple steps [10]. In POC
settings, the processing of biological samples for diagnostics is a critical challenge
complicated by the diversity and the intrinsic complexity of patient samples (e.g.,
blood, saliva, urine). These challenges begin with the sample collection and require
the development of a workflow to separate, extract, and often amplify the analyte of
interest for the paper-based diagnostic system. Each step needs to be considered as
part of the whole workflow and in the context of sample, patient, and environmental
factors [11]. Below we discuss each of the sample preparation steps and explore
how engineering efforts are advancing sample preparation in the pursuit of the ideal
paper-based device.
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6.1.1 Collection of the Sample

An ideal POC diagnostic would be free of the need for skilled personnel to operate
and would provide results the same day, ideally during the same hour, obviating
the need for collected samples to be stored. With these target features in mind, the
sample collection modes to consider should be noninvasive procedures that can be
performed by untrained or only semiskilled users.

6.1.1.1 Blood

Blood is the most clinically important diagnostic sample type due to the fact that it
provides a rich source of molecular information that can be monitored by either
antibody or nucleic acid-based approaches [12]. By far, the most widely used
technique for POC blood collection is the finger stick, which uses a blood lancet
for capillary blood sampling. The technique is widely used for monitoring blood
glucose in POC settings and more recently has been used to explore among others
early innate transcriptomic responses generated over time after vaccination [13].
Exciting work in this space also includes the demonstration that RNA quality and
gene expression data obtained using finger stick collection correlates well with more
conventional venipuncture [14], which suggests a strong future for robust nucleic
acid analysis at the POC.

Skin chemistry is also a “window to body’s health” [15] and can be used as
a substitute of blood analysis. Indeed, serum-rich interstitial fluid in the dermis
contains numerous biomarkers (glucose, creatinine, lipids, nucleic acids, proteins,
urea, etc.). Moreover, as a protective barrier to our bodies, the skin hosts significant
immunological machinery and, as such, is an excellent potential tissue for mon-
itoring the state or history of the immune system and infection. Skin chemistry,
however, has proven difficult to monitor because of the lack of convenient methods
of sampling [15].

Fortunately microneedles have recently emerged as a method to sample skin
chemistry. Initially developed for transdermal drug delivery [16—18] and glucose
monitoring [19], Corrie and colleagues developed an innovative POC device for
the monitoring of specific biomarkers from the serum-rich fluids of the upper
dermis [20]. To do so they engineered chemically and mechanically modified
microprojection arrays to selectively retrieve protein biomarkers from the skin.
With this minimally invasive technique for sampling soluble markers, authors
demonstrated the capture of anti-FluVax® IgG in mice vaccinated with FluVax®.
More recently microprojection arrays have also been developed as a wearable patch
for multiplexed sampling of biomarkers directly from the skin of mice [21].
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While these devices are not paper based, they are portable and have the potential
to enable low-cost diagnostics in the field. Importantly microprojection arrays also
have the potential to further enable pain-free sample collection and may provide
a method for integrating multiplexed sample collection to established paper-based
diagnostic platforms. However, important challenges remain to be solved: factors
such as (1) the time required to recover samples from the skin (which can take
several hours for low-abundance biomarkers [20]); (2) the design of arrays, for
instance, the depth at which targeted cell types are found varies between the
gender and age of patients, and accordingly the thickness of arrays/projects must
be properly calibrated to avoid sampling artifacts; and (3) the analyte type to be
harvested by this method. Further, reports to date have been limited to protein-based
antigens. Nucleic acid sampling with microneedles/microprojections could greatly
improve the development of skin chemistry as a diagnostic target. Interestingly, the
recovery and analysis of nucleic acids from microprojections were described in an
early patent [22].

Taken together, advances in blood and interstitial fluid collection are beginning
to enable the harvest of minute samples in a way that can be done by untrained
individuals in settings outside of the lab for the sampling of both proteins and
nucleic acids.

6.1.1.2 Respiratory Samples

Sputum is a thick, cloudy, and sticky sample coughed up from the lower airway that
contains a mixture of mucus, with endogenous and exogenous components, mucin
molecules, filamentous actin, elastin fibers, bacteria, cell debris, and DNA. It can be
coughed up in a natural way or be induced by inhalation of steam, sterile saline, or
glycerin aerosol. Importantly, sputum samples are not saliva samples, which contain
large amount of oral bacteria [23] that can contaminate sputum [24]. This complex
mixture is part of the immune system that functions as a natural barrier to infection
and as such is an interesting fluid to study. The value of sputum as a diagnostic
fluid has even been demonstrated through the monitoring of color changes that have
been correlated with lung cancer, and bacterial or viral infections. A particularly
relevant use of sputum samples in diagnostics has proven to be tuberculosis. Here
nucleic acid-based POC tests have been developed for the detection of tuberculosis,
efficacy of treatment, and determination of coinfection with HIV [25, 26] [27, 28].

6.1.1.3 Other Sample Types

There are many other sample types that can be collected from patients, including,
among others, urine, tears, stool, and buccal samples. In many cases the disease
involved is an important factor in determining the best sample. Urine, for instance,
is one that is easily collected and has shown significant diagnostic value. One timely
example of the use of urine is as a sample for molecular diagnostics of the Zika virus.
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The Zika virus has been found in blood plasma for only a median period of 10 days
following infection and this has made the detection of the virus difficult for a disease
where most patients are asymptomatic (Jean Michel [29]). Interestingly, Zika virus
can be found in patient urine and saliva for as long as 30 days [30]. Whole blood
(22 days) and semen (62 days) also appear to provide a greater diagnostic window
for Zika virus than plasma [29, 31, 32].

Swab-based methods (e.g., skin and buccal) are another important means of
collecting samples from patients [33]. Swabs are often used in lateral flow POC
tests for respiratory infections such as influenza and streptococcal antigens (e.g.,
Strep test). While most tests require swabs to be eluted, shaken and pipetted on the
device (like the Alere BinaxNOW RSV), a recent paper from the Yager lab reports
a nasal “swab-to-result” device for diagnosis of two strains of influenza with an
average time to result of 35 min [34].

As the field of POC diagnostics moves forward, there is great opportunity to
probe some of these less frequently considered sample types as well as exploit
pathogen physiology by selecting fluids enriched in the telltale signs of target
infections. Regardless of sample type, once collected, crude samples are often too
complex for direct analysis. To remove interfering agents or background, and obtain
a better sample to analyze, a separation step is often required as part of sample
preparation. At the POC, this can be a challenging operation and one that, while
often neglected, is starting to see real progress.

6.1.2 Separation
6.1.2.1 Blood

Blood plasma, which makes up about 55% of whole blood, is extremely rich in
proteins, nucleic acids, ions, and molecules, making it an invaluable target for
diagnostics. However, red blood cells constitute the majority of the remaining blood
volume and this complicates the separation process. If not correctly and carefully
removed, red blood cells can clog, rupture, block, and foul a diagnostic device
and the subsequent assay. Under laboratory conditions, blood samples are easily
processed at 4 °C and centrifuged to isolate the plasma fraction without clotting. In
the field or at home, the task of separating the plasma is decidedly more challenging
and as a result POC blood separation techniques have fallen behind that of other
sample types.

That said, there are some exciting innovative approaches that are extending the
preparation of plasma from whole blood to field environments. Liu and colleagues
[35] developed a plasma separator that allows the isolation of plasma from undiluted
blood. This technique however requires almost 2 mL of blood to extract 300 nL
of plasma and, as a result, a trained individual is needed to collect the sample.
More recently a low-volume (2—4 L) microfluidic on-chip blood separation device
compatible with finger stick collection has been developed that, when compared to
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off-chip separation, recovers 90% of the proteins and 100% of the nucleic acids
from whole blood [36].

Microdialysis has been another important method for POC blood separation. The
approach uses nanofiltration, where the molecular weight cutoff of the membrane is
used to selectively concentrate a wide range of targets [37-39]. However, several
challenges like membrane fouling and clogging persist [40], and pressure- or
voltage-driven mechanisms, among others, are still needed for devices to work.
Byrnes and colleagues recently demonstrated the use of passive lateral flow and
anion-exchange chromatography to simultaneously purify and concentrate DNA
from samples with high protein content or blood, using porous membranes coated
with chitosan [41]. While in their study membranes clogged at concentrations
of below that of whole blood, they demonstrated that on-site dilution of patient
samples would be a simple and easily implemented solution. Using an orthogonal
approach, D’ Amico and colleagues developed a microfluidic membrane-less tech-
nology to isolate and concentrate bacteria from whole blood [42] based on their
dielectrophoretic behavior compared to red blood cells.

6.1.2.2 Urine (and Other Secreted Fluids)

In the case of secreted fluids like urine, tears, or sweat, there can be a need to
concentrate target molecules before diagnostic analysis. A simple concentration
method based on evaporation and passive pumping was developed by Walker and
colleagues using microfluidics [43] where they used evaporation-induced flow to
concentrate beads (pathogen proxy) and fluorescently labeled BSA. This concept
was recently extended by using heat and the high surface area of paper to augment
evaporation for the concentration of analytes in urine [44]. This creative approach
was effective at a 20-fold concentration of a urine biomarker (TB-related glycolipid
lipoarabinomannan) and it would be interesting to know if a similar approach could
be used to concentrate nucleic acids. With longer biopolymers like DNA/RNA it
might be possible to capture target molecules at the inflow edge, rather than at the
site of evaporation, by essentially using a filtering or chromatography effect.

Another exciting approach for the concentration of diagnostic analytes has
recently been demonstrated using digital microfluidics (DMF, [45]). DMF is a fluid-
handling technique that uses electrical charge to move aqueous droplets around on
Teflon-coated electrodes (a more detailed description of the potential for DMF is
developed later in this book chapter). As a tool for analyte concentration, Choi and
colleagues used DMF to perform solid-phase microextraction (SPME) of steroid
hormones from urine. SPME fibers coated with CI18 silica particles selectively
concentrated the steroid from the complex sample matrix, allowing detection with
downstream mass spectrometry analysis. While in this case DMF was not coupled to
POC diagnostics, the technique does offer an interesting and potentially economical
means of performing complex sample preparation in the field.
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6.1.2.3 Sputum

Due to its nature, isolation of analytes from sputum samples is perhaps the most
challenging of the possible matrices and yet, as we discussed, it is an important
noninvasive source of diagnostic material. Laboratory-based processing of sputum
samples for diagnostics involves chemical (mucolytic agents) or mechanical (son-
ication, vortexing) liquefaction prior to nucleic acid tests [46]. Very few portable
systems have yet to be developed for mucus separation and sample extraction. One
exciting example is the Cepheid GeneXpert technology that uses an automated
cartridge for the ultrasonic lysis of organisms like Mycobacterium tuberculosis
captured in a filter. This is followed by PCR-based detection of the pathogen and
determination of rifampicin resistance [25, 47]. However the cost of the Cepheid
Xpert instrument is not trivial, with a unit cost of at least $17,000 USD [48, 49]. A
Phase I SBIR clinical trial has also recently been reported for the development of
a new automated POC cassette for processing of sputum samples for nucleic acid
extraction; however, the associated costs have yet to be reported (https://www.sbir.
gov/sbirsearch/detail/706169). A recent study offers a potentially more accessible
and minimally instrumented approach. Here sputum is disinfected and liquefied and
then pathogen is mechanically lysed using a battery-operated bead beater. Using
this approach DNA could be isolated for gPCR (or POC diagnostics) from spiked
TB cultures in under 10 min [26].

6.1.3 Extraction

As described above, each sample type requires a tailored method for separation of
the pathogen from the surrounding matrix. This effort must then be paired with an
appropriate extraction step for the analyte of interest. In the lab there are many tools
at our disposition to isolate the target proteins and nucleic acids from these matrices.
These include mechanical (e.g., grinding, douncing, or even bead beating), thermal,
or chemical methods (e.g., detergent, chelating agent, proteases). The resulting
lysate is then often subjected to physical (e.g., centrifugation), chemical (e.g.,
phenol/chloroform), or a solid phase-based separation (e.g., nucleic acid column).
Of course, these conventional methods of extraction are generally not well suited
for use in the field where specialized equipment and skilled technicians may not
be available. The POC diagnostics field, fortunately, has been focused on adapting
many of these laboratory methods to field-appropriate techniques [50].

6.1.3.1 Heat

In a POC context, heat may be the simplest approach for nucleic acid extraction
from pathogens. Boiling water is something that is almost universally available and
a simple 40-s boiling water bath has been demonstrated to release cellular contents
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without damage to nucleic acids [51]. Similar results have been reported for the lysis
of virus [52-54]. Often the thermal lysis of pathogens is sufficient and lysates can be
loaded directly into the diagnostic workflow or analytical device. For example, the
thermal lysis of bacterial cells in PCR buffer, followed by PCR amplification and
sizing, was performed on a reusable chip in 1998 [55]. More recently, extraction and
isolation of Vibrio cholerae from fecal samples were performed using solar-thermal
energy. Here, without the need of external electrical power, a stable temperature of
95 °C was achieved in less than 5 min [56].

6.1.3.2 Enzymatic/Chemical

Enzymatic and chemical hydrolysis of capsids, cell walls, and membranes is
used routinely in the lab to extract analytes from samples. Some of the most
commonly used enzyme-based approaches are proteases or lysozyme, which are
highly effective but do have limitations for POC applications when pathogen
identity is not known. For example, in the case of lysozyme, some bacterial species
(e.g., Staphylococcus sp.) have evolved resistance to the glycoside hydrolase in
response to the enzyme’s role as an antimicrobial in the innate immune system
[57]. An interesting alternative without this limitation is the bacteriolytic enzyme
achromopeptidase (ACP; [58, 59]). As with other proteases this enzyme can
cause problems with downstream nucleic acid amplification reactions; however,
ACP activity is labile to heat (>80 °C) so can be easily inactivated, allowing
for subsequence molecular steps to be done without purification of nucleic acids.
Importantly, ACP is stable dry-stored for easy POC distribution [60, 61].

Chemical hydrolysis of pathogens (e.g., alkaline lysis, detergents, organic sol-
vents), while also very effective at extraction, comes with their own limitations as
they must often be neutralized, removed, or diluted so as not to impede downstream
analysis. Such additional complexity and potential point of failure is not an ideal
scenario for POC applications [52]. Whatman FTA papers, which have lytic reagents
embedded, may provide a more simplified workflow, but their use still requires
extended washes to remove lytic agents before downstream molecular steps.

To address the challenge of lytic agents, Schilling and colleagues demonstrated
continuous chemical lysis of bacteria in a pressure-driven microfluidic device that
also performed separation of lysed versus non-lysed debris and optical detection
[62]. To develop this system they used passive diffusion and formularized flow
patterns and pump rates to monitor the fluorescence emitted by a fluorogenic
enzyme when cells where lysed. Intact cells were sorted due to the flow rate and
their inability to diffuse at the correct location in the device for detection. Similarly,
Byrnes and colleagues have recently reported the development of a pressure-
controlled device called SNAP (the system for nucleic acid purification) for nucleic
acid extraction from whole blood mixed with a lysis buffer, at ambient temperature,
in an enzyme-free manner without electricity [63]. The eluted samples yielded
qPCR-compatible nucleic acids without any subsequent purification. Impressively,
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their device performed extraction of HIV-1 viral RNA from virions in whole blood
in less than 35 min.

Another interesting alternative has been developed by the Keso lab, called
filtration isolation of nucleic acid (FINA), which allows DNA extraction from
whole blood lysed using the surfactant Triton X-100 (1%) in less than 2 min. Here
authors carry out lysis on a Fusion five membrane (Whatman Inc.) that is backed
with blotting paper to draw material through. Comprised of glass oxide fibers, the
membrane has high affinity for DNA and thus serves as a capture agent to allow
simple processing steps. Once lysed, the coated membrane is rinsed with NaOH to
remove inhibitory proteins (e.g., hemoglobin). The residual NaOH does not inhibit
downstream steps and so the DNA-bound membrane can be transferred directly to
gPCR for analysis. Authors have demonstrated this approach in processing HIV-
containing blood samples, where it has yielded sensitive and specific results for the
detection of the virus [64—66]. Cost, however, of this approach is likely a limiting
factor for global health applications, with an estimated price $50 USD/test and
$3000 USD for the analyzer. Nonetheless, the technical concepts demonstrated with
this and the two previous methods are compelling and hold significant potential for
incorporation into lower cost paper-based devices.

6.1.3.3 Mechanical

Mechanical lysis uses force to burst cells and has been used to create some interest-
ing options for analyte extraction. One clever design has used sharp nanoscale barbs
in a microfluidic system to perform efficient lysis of cells without contaminating the
sample with additional chemicals [67]. Here, using different microfluidic designs,
flow and pressure of the sample can be increased or decreased without any external
power. Another device, which has been commercialized, uses bead shearing/beating
for rapid lysis of bacteria in small static volumes (<80 L) or larger volumes (1 mL)
in continuous-mode bacteria preparation [68]. Sold by Claremont BioSolutions, the
device boasts excellent rates of lysis (>90%, 30 s) and has been used in a number of
recent diagnostics-related publications [26, 69]. Each homogenizer is available for
as little as $6.90 and is designed for single use [70].

Other mechanical disruption options are available, including the sonication-
based approach used by GeneXpert described above for processing of sputum. The
prototype for this minisonicator was first demonstrated with highly resistant spores
from Bacillus and reported an optimal disruption for PCR analysis in only 30 s. The
combined sample preparation and PCR identification were done in an impressive
15 min [71]. While these mechanical methods of disruption are stunning, they
come at a cost (Claremont BioSolutions: $7; GeneXpert: $16.86) that may be a
limiting factor for global health applications [48, 49] and perhaps even for domestic
applications.

To address the hardware and/or consumable costs associated with mechanical
disruption, there have been some clever solutions that combine microfluidics with
chemistry-based extraction of nucleic acids. Baier and colleagues developed such
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a hand-free sample preparation device for nucleic acid analysis from cervical fluid
for HPV diagnostics. The two-stage, credit card-sized device first concentrates cells
and then extracts HPV-mRNA for an isothermal amplification-based detection [72].
Microfluidic origami also offers an exciting low-cost extraction option for use in
remote settings. Here chemistry-based lysis is merged with a folded paper device
that is operated by sequentially bringing taps together to process complex samples.
The device was able to extract DNA from samples with as little as 33 bacterial
CFU/mL from simulated sputum for an estimated cost of about $2 USD. Sample
processing did take between 1 and 1.5 h, with or without heat, respectively, but the
device is nonetheless compelling for many applications in global health [73].

6.1.3.4 Electrical

Electrical fields can also be used to induce lysis in diagnostic samples. This
approach takes advantage of a well-studied phenomenon where high-strength
electric fields (kV) can induce significant change in cellular membranes, leading
to the formation of transient holes [74]. This effect has been used in a process called
electroporation for the loading of cells with DNA or pharmacological substances
[75, 76] and at higher electrical field strengths can be used to effectively kill/lyse
microorganisms (99.99%; [74]). This lysis method has the advantages of no moving
parts or the addition of reagents to samples. Moreover, the field value for cell lysis
is dependent on the cell type (e.g., bacteria, fungi, and mammalian) and thus can be
used for the selective lysis of cells.

Early attempts at the electrolysis of cells required substantial voltage in microflu-
idic systems (1400 V) [77]. However, with the incorporation of direct current and
small, modified channel geometry voltage, the requirements for electrolysis have
been reduced to a scale that can be delivered in the field by small batteries (e.g.,
2-50 V) [78-80]. The potential to precisely localize electrolysis has also been
exploited for diagnostics. While most lysis methods release analytes into bulk
solution, which leads to dramatically lower concentrations for diagnostic assays,
Besant and colleagues recently developed a device for the electrolysis of bacteria at
a minimal distance to the site of detection [81]. To do this, authors built nanoscale
compartments (1 nL) where cells were electrolyzed directly in next diagnostic
sensors, enabling high local mRNA concentrations at the detector.

While these methods for electrolysis are currently too technical for low-cost
POC deployment, they offer food for thought on what might be possible. Paper
can be made conductive with the use of printable conductive inks [82], which
have already been used to create paper diagnostics with electrochemical outputs
[83, 84] and paper-based batteries [85]. So with a goal of looking toward an ideal
paper-based device, it is exciting to think about the potential for printable all-in-one
devices, with no moving parts, that could carry out both automated electrolysis and
electrochemical sensing.
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6.2 Overcoming Challenges in Sensitivity and Specificity

For low-cost portable diagnostics to have a meaningful impact on public health, they
must incorporate high sensitivity and specificity. These requirements are highlighted
by the WHO’s ASSURED criteria. However, due to constraints on cost, time, size,
and complexity, portable diagnostics often provide lower performance than lab-
based counterparts. This fortunately is starting to change as paper-based diagnostics
are beginning to extend lab-grade capabilities out into the world with detection
thresholds in the low femtomolar to attomolar range [54, 69, 86].

Sensitivity refers to the threshold of detection for an analyte. For POC diagnos-
tics an ideal device is able to identify target molecules directly from samples without
concentration. Accordingly, sensitivity is consistently listed as a top priority for
portable tests, and while improvements are being made a recent survey of POCs for
sexually transmitted diseases highlighted that many tests lack the sensitivity needed
to be useful in practical application [87]. Specificity is the measure of the rate at
which devices report the correct results and is similarly of great importance because
of the implications for false diagnosis. The ideal rate of specificity accordingly is
100%. These two features, sensitivity and specificity, often work against each other
as is seen in the reciprocal effect observed between lateral flow speed and sensitivity
[88] (Millipore). While challenging, the development of tools with high sensitivity
and specificity is critical to extending the reach of lab-grade diagnostics globally
and has tremendous potential for public health.

How diagnostic sensitivity and specificity can be achieved is very dependent
on the mode of detection. For instance, in the case of sensitivity, antibody-based
diagnostics need to accommodate the nature of protein-based analytes that are not
easily replicated and thus generally rely on post-detection amplification. Conversely,
nucleic acid-based diagnostic strategies generally involve amplification of target
sequences and thus provide signal enhancement as part of the assay. For many
applications, providing clinically relevant sensitivity in either of these modes will
likely require the inclusion of simple equipment into the diagnostic workflow.
Over time, we anticipate nanomaterials and molecular technologies to fulfill these
current equipment-dependent roles to ultimately provide ideal devices that are truly
equipment free.

6.2.1 Antibodies: Signal Amplification

The need for greater sensitivity in antibody-based diagnostics has been met through
strategies that rely on first detecting the analyte and then the use of enzymes,
metal ions, or nanoparticles to amplify the output signal from the assay reaction.
Within these signal amplification modes there has been a wide range of techniques
developed.
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6.2.1.1 Enzymes

The first of these, enzymes, have a long history of application as sensors in
diagnostics; perhaps the most widely recognized enzyme in POC diagnostics is
glucose oxidase for the measurement of blood sugar [89]. However, enzymes are
now also being used to amplify the signal from antibody-based detection of analytes.
Examples of such enzyme-based amplification include the use of enzymes like
horseradish peroxidase (HRP) [90] and alkaline phosphatase [91] to catalyze the
generation of optical signal outputs from tests. An exciting new application of HPR
signal enhancement was recently reported where the enzyme was used to deposit
polydopamine for a high-contrast color-based signal. In HIV p24 lateral flow assays,
this technique provided authors with a 1000-fold increase in signal detection [92].

The use of enzymes for signal amplification of course raises the issue of long-
term stability of protein-based reagents for distribution to remote locations. In many
cases, freeze-drying with cryoprotectants enables such use, but importantly recent
advances have also aimed to tackle more challenging enzymes. In one report, the
Yager lab demonstrated the long-term dry storage of the enzyme HRP by combining
the cryoprotectant trehalose with FeSO4 [93] and in a second approach, from our
own lab, showed that antibody-enzyme conjugates could be manufactured on-site
using a freeze-dried cell-free expression system [94].

6.2.1.2 Nanoparticles

The use of particles and nanomaterials has also proven to be effective in signal
amplification for antibody-based assays. These materials include metal and silica
nanoparticles [95-97], functionalized latex particles [98], magnetic particles [99,
100], quantum dots [101], and carbon nanomaterials [102], among others. Of these,
gold nanoparticles (AuNPs) have a number of features that make them especially
well suited to POC diagnostics, and accordingly have become widely used. AuNPs
are very stable, which enables distribution and storage either in solution or in a
dry powder and, despite the value of gold material itself, only extremely small
amounts of the AuNPs are needed for detection. Gold nanoparticles are also
easily functionalized with antibodies and other biomolecules and do not fade with
exposure to light [103, 104]. Most importantly however, AuNPs have unique optical
and electrical properties that make them useful as both visual and electrochemical
outputs for diagnostics. The optical properties of AuNPs include a deep color that
ranges from deep red to blue, depending on their diameter, that allows for diagnostic
outputs to be read directly by the naked eye [103, 105]. For electrochemical assays,
antigen-antibody interactions can be used to recruit AuNPs to electrodes, which
augments the conductivity of electrode surfaces for diagnostic detection [106].

The most conventional use of AuNPs in diagnostics is as part of a “sandwich”
immunoassay in a lateral flow device, where target antigen is first captured by
a target-specific antibody and then probed by a second antibody conjugated to
AuNPs. These colorful/electro-active nanoparticles serve as labels that allow users
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to track molecular interactions occurring at the surface of the paper device with
the naked eye or companion electronics. In such lateral flow assays, positive
results are usually indicated by the formation of a band or dot next to a positive
control [95, 107]. Despite success of diagnostics like the pregnancy test, for many
applications antibodies may lack the sensitivity for detection at clinically relevant
concentrations [95].

Fortunately, the limit of detection (LOD) for these AuNP-labeled interactions
can be enhanced in a number of ways. Enzymes, such as HRP, have been
used to amplify the AuNP signal. In such applications, once target binding has
occurred, colorimetric enzyme-substrates are added and enzyme activity yields
a color change that augments LOD. This strategy has been reported to provide
tenfold improvement in sensitivity [108, 109]. While helpful, limited enzyme
stability and need for the construction of complex conjugates (e.g., AuNP + anti-
body + enzyme) could potentially pose challenges for real-world POC diagnostic
applications [105].

Metal ions offer an alternative method for signal enhancement. Silver and gold
ions have been used to increase the size of nanoparticles and in doing so increase
the visual target for the diagnostics user. Silver enhancement takes advantage of
autometallography, a process where donated electrons induce the reduction of silver
ions to metallic silver [110]. In the mid-1980s, this method was used to increase
the observable size of antibody-conjugated AuNPs for electron microscopy [111].
Building on this concept, silver enhancement was incorporated 5 years later in
lateral flow devices where it can provide an increased LOD of 50- to 100-fold [112,
113].

6.2.2 Nucleic Acids: Signal Amplification

With the goal of extending the reach of lab-based clinical diagnostics to the POC,
efforts toward truly portable and low-cost nucleic acid amplification tests (NAATS)
are some of the most exciting. These techniques are approaching, or in some cases
already achieving, 100% specificity and are increasingly available for patient care
and surveillance of infectious disease in global health [100, 114]. As we will discuss,
NAATs have a surprising range of diversity in their design and similarly provide
variable sensitivity and specificity.

6.2.2.1 Isothermal Amplification

Polymerase chain reaction (PCR), the most common lab-based method for NAAT
diagnostics, is a powerful technique that allows for the detection of minute amounts
of specific nucleic acids through a series of amplification reactions that require
thermal cycling. While it would be ideal to deploy PCR to POC settings for
diagnostics, this task comes with significant challenges. PCR is expensive and



184 M. Karlikow and K. Pardee

requires specialized equipment, laboratory infrastructure, and skilled technicians, all
of which are often limited at POC settings. As a result, patient samples are generally
shipped for PCR tests in clinical labs, often leading to delayed reporting to patients
[115].

There has been tremendous effort invested into moving this capability to the POC
and much of this work has focused on the development of alternative isothermal
nucleic acid amplification methods. As the name suggests, these amplification
reactions operate at a single temperature, rather than thermal cycling, and as such
do not require sophisticated equipment. In fact, heating for these reactions can even
be provided using a chemical heater (e.g., calcium oxide and water reaction) [116].
Other benefits of isothermal methods include a simplified workflow, meaning that
work can be done outside of the lab by individuals with little to no training [117].
Commercial isothermal reactions have recently become available and with these
isothermal amplification of nucleic acids has begun to appear in paper-based formats
[118, 119]. In this section we review isothermal amplification mechanisms and some
of the ways that they have been coupled to paper-based diagnostics. For a complete
review on this topic please see an excellent review by Craw and Balachandran [120].

NASBA, or nucleic acid sequence-based amplification, is an isothermal ampli-
fication developed in 1991 by Jean Compton at Cangene [121]. This non-cycling
nucleic acid amplification method involves three enzymes and two primers, and
works in two steps: (1) initial denaturation and primer annealing at 65 °C (2 min)
followed by (2) nucleic acid amplification at 41 °C (>30 min). This method has
been shown to have comparable sensitivity to RT-PCR [122] and was recently
incorporated into the workflow of some of our paper-based diagnostics for the Zika
virus where we found that the 65 °C step could be omitted [54].

Loop-mediated amplification assay (LAMP) was developed by Thai and col-
leagues in 2004 during the SARS coronavirus crisis and is one of the most
commonly used isothermal amplification methods. In their seminal paper, they
demonstrated high sensitivity (100%) and specificity (87%) when compared to
reverse transcription PCR (RT-PCR) of viral RNA. While LAMP requires a constant
operating temperature of 60—65 °C it has been developed as a POC diagnostic. This
includes Liu and colleagues’ work [123] who developed a single-chamber cassette
for HIV detection. The cassette used a FTA membrane for isolation, purification, and
concentration of the nucleic acids for amplification with RT-LAMP and detection
in less than 1 h (~10 HIV particles). More recently, Rodriguez et al. extended
LAMP to a paper-based method that enabled extraction of clinical nasopharyngeal
samples, isothermal RNA amplification (RT-LAMP), and detection of the influenza
A (HIN1) all on the same piece of paper [124].

Helicase-dependent amplification (HDA) and recombinase polymerase amplifi-
cation (RPA) are two other popular isothermal amplification methods. HDA uses
DNA helicases in place of high temperatures to generate the single-stranded DNA
templates necessary for primer hybridization. The HDA reaction yields new dsDNA
that are then also bound by helicases for the cycle to repeat [125]. RPA is an
increasingly popular, easy-to-use isothermal amplification method that is both fast
(5-30 min) and sensitive. Working at 37 °C—42 °C, this method uses three enzymes
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and a pair of primers to isothermally amplify DNA and can be extended to the
detection of RNA by simply adding reverse transcriptase to the reaction. In the
original paper RPA is used to detect methicillin-resistant Staphylococcus aureus
[126] and has since been extended to the detection of a wide range of pathogens
(viruses, parasites, bacteria) [127-129]. For a complete review on the use of RPA
for diagnostics, please see Daher and colleagues’ recent work on the subject [130].

The development of these isothermal methods represents a remarkable advance-
ment in the development of portable and convenient field-ready nucleic acid tests.
However, despite this success, there is still room for improvement of these reactions.
Perhaps the most important challenge is that these methods are susceptible to
contamination, which can yield off-target products and false-positive results [131].
As we will discuss below, one strategy to address this shortcoming is to add a second
sequence-specific step to the detection process.

6.2.2.2 Synthetic Biology

As we have just discussed, isothermal amplification underpins most POC NAATs
and, with ongoing innovation in this area, this trend can be expected to continue
well into the future. However to address some of their limitations, other molecular
tools are also being brought to bear in an effort to increase sensitivity, improve
specificity, and add new molecular capabilities. Recent work from the field of
synthetic biology has contributed to this effort. This includes work of ours, and
that of colleagues, with the development of a paper-based diagnostic platform that
operates using an isothermal transcription and translation reaction. The approach
uses a new type of riboregulator, called a toehold switch, as a diagnostic RNA
sensor. The necessary enzymes and DNA encoding the toehold switch are embedded
into paper and freeze-dried to allow storage and distribution without refrigeration
[132, 133]. The freeze-dried paper device is activated by rehydration and the toehold
switch DNA is transcribed to form an RNA hairpin at the 5" end of a reporter mRNA.
In the presence of target RNA, the hairpin of the toehold switch becomes linear,
which allows ribosomes to bind for the translation of a reporter enzyme. Here the
translation of the p-galactosidase enzyme catalyzes a visible color change on the
paper in as little as 20 min after rehydration. As part of the proof-of-concept work,
diagnostics for the strain-specific detection of the Ebola virus (Zaire vs. Sudan) and
antibiotic resistance were demonstrated.

While this new capability was exciting, it lacked the sensitivity necessary to
meet real needs in the field and so efforts turned to increasing the detection
threshold of the system. This led to a follow-up work in May 2016 that reported
a portable molecular diagnostic for the Zika virus [54]. The similarity between
Zika and Dengue viruses causes cross-reactivity in serological assays for patient
antibodies and so, with the outbreak in Latin America, there was great need for a
portable molecular diagnostic for the virus. To solve the challenge with sensitivity,
isothermal amplification was added in the workflow upstream of the toehold switch.
By combining isothermal amplification with the toehold switch, not only was
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there an increase in signal amplification and sensitivity, but importantly this also
addressed the general problem of false positives for isothermal amplification. In this
configuration the detection of isothermal amplification products is now contingent
on the second sequence-dependent toehold switching event for a paper-based color
change.

As with isothermal amplification methods, toehold switch design is rational and
can be done rapidly using an algorithm that selects regions of pathogen’s genome
with low secondary structure and that are unique from closely related pathogens and
the human genome. Toehold switches are able to tolerate up to 11% mismatch in
base pairing, yet the above computational selection of targets ensures no homology
with off-target sequences [54]. This is an important feature that accounts for the
constant evolutionary drift in pathogen genomes, meaning that toehold switches
designed for first sequenced American strain of the Zika virus (2016) are also, in
theory, capable of detecting all strains of the virus since its discovery in 1947 while
still distinguishing from closely related Dengue virus isotypes.

This molecular capability was paired with a low-cost, battery-powered electronic
reader to facilitate quantification in the field. When combined, the system was able
to detect Zika virus at clinically relevant concentrations (2.8 femtomolar) from
viremic plasma. Further, a combination of NASBA and CRISPR/Cas9 cleavage
was used to discriminate between strains of the Zika virus with single base pair
resolution at the POC [54]. Having demonstrated these paper-based Zika diagnostics
with live virus and infected plasma, work is continuing in a patient and field trial in
Latin America to solve the challenges of deployment. Follow-on work by the Collins
and Zhang labs has further extended these capabilities with new work that relies on a
different Cas protein. The system called SHERLOCK for “Specific High Sensitivity
Enzymatic Reporter UnLocking” was demonstrated with the identification of the
Zika and Dengue viruses, pathogenic bacteria, and SNPs in the human genome [69].

Synthetic biology has also developed many cell-based sensors for applications
such as heavy metal or pesticide detection [134]; however for the most part these
tools have not been translated into practice because of concerns over biosafety and
challenges with getting efficient transport of analytes into cells [135]. A recent
paper has incorporated brewer’s yeast into a paper-based dipstick that can be used
with patient samples, such as blood and urine [136]. Ostrov et al. achieved this
by engineering extracellular G-protein-coupled receptors on the surface of yeast to
sense peptides from human, plant, and food fungal pathogens. Spotted onto paper
and dried for storage, these yeast cells turn a bright orange color in response to target
pathogens. While work remains to translate these sensors to practical applications,
one of the most exciting aspects of this work is that this is a self-replicating
diagnostic that could provide very-low-cost diagnostics in global settings.
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6.3 Equipment-Free Diagnostics

One of the most debated elements of POC devices relates to its instrumentation. The
ASSURED features suggested by the WHO were developed as general guidelines to
assist in the development of ideal POC devices. Among those criteria, “E” indicates
equipment-free devices. However, should we really exclusively focus on developing
non-instrumented devices?

The call for equipment-free diagnostics is a compelling and rational goal
for global applications where resources are limited (at home or in the field for
example). Such designs will help to ensure robustness and low cost. Further, in POC
environments with potentially limited access to electricity, it does make sense to
strive for autonomous devices that are not reliant on electrical power infrastructure.
This argument also extends to communities with limited or no access to smartphones
with cameras. However, such scenarios are growing less, not more, common.
Electric grids are becoming more reliable and in remote regions solar power, other
renewable energy sources, and battery technologies are increasingly available [137,
138]. Similarly, mobile phone access is growing exponentially. There are currently
over 5 billion unique mobile phone subscribers globally and this number is expected
to grow by another billion in the next 5 years, and much of this growth is expected
in developing regions where concern over access originally prompted the call for
equipment-free diagnostics [139, 140].

Accordingly, we advocate that the equipment-free goal should be a longer term
target and that providing portable, lab-grade sensitivity and specificity is most
critical and should take precedence. Over time these capabilities will be progres-
sively extended to locations with greater logistical challenges. Urbanization has
brought large populations into cities where power is available [137, 141], although
perhaps sporadically, and the resources are available to enable diagnostics with
minimal equipment requirements. Urban populations are in great need of accessible
diagnostics outside of hospitals, and we would argue that such applications can
help to catalyze the long-term aspiration of complete independence from equipment.
At home or in the clinician’s office, this same minimal equipment-based approach
for POC diagnostics would satisfy a significant unmet need in the near term and
similarly drive the improvements necessary for truly equipment-free tools, where
needed.

A recent paper from the Yager and Lutz labs does a great job of striking a balance
between the need for equipment and the goal of equipment-free diagnostics by
combining the necessary functions into a single-use cartridge [142]. Fitting within
the equipment-free mandate, their system, called the multiplexable autonomous
disposable nucleic acid amplification test (MAD NAAT), does not require skilled
users nor rely on a smartphone for delivery or transmission of results. Other
important features include a simple design where only a few manipulations are
required by the user, the energy to perform the nucleic acid amplification comes
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from batteries within the cassette, and the device provides a simple yes/no answer.
This is an exciting step toward equipment-free diagnostics and a trend that is
reflected by other recent commercialization efforts.

But of course, not all clinical needs are compatible with a “yes/no” answer.
Features such as quantification and test multiplexing are important milestones on
the path to the ideal device [11, 143]. So while the field may be on the verge of
equipment-free solutions for applications of yes/no answers, the incorporation of
simple equipment will likely be important in meeting many other clinical needs
at the POC. With the rise of Arduino, Raspberry Pi, and other DIY components,
as well as provider-subsided mobile phones, the requirement for equipment does
not necessarily mean expensive. This argument is further underscored by the
complexity and presumable price of equipment-free, disposable all-in-one cartridge-
type diagnostics. While such cartridge-based diagnostics may provide a promising
option for unmet needs in countries where governments and health insurance cover
the cost, global health applications are not likely able to bear the cost even when
concessional prices are applied [49]. Thus, for now, we advocate for the research and
development of diagnostics that seek a balance between high-quality results and cost
through minimal equipment workflows, rather than equipment-free solutions alone.

6.3.1 Paper-Based Devices

Clever designs based on paper are serving to miniaturize some of these equipment-
dependent steps into compact and inexpensive devices. Paper is a simple material
and inexpensive to manufacture and its intrinsic capillary force moves liquids
without the need of pump, batteries, or an external power source. Lateral flow
assays, like the pregnancy test, are the most common commercial examples of
where paper fulfills such a role. They provide robust and reliable performance, but
are limited to a single diagnostic function and are not easily adapted to complex
multistep processes. However, as we have discussed throughout the chapter, inno-
vative researchers are extending paper materials to these more complex tasks. In an
early example of this, Martinez and colleagues developed a 3D microfluidic paper
analytical device (WPAD) by stacking layers of wax-patterned paper to allow for
more complex molecular processes and multiplexing (fluid distribution into arrays
with >1000 zones) while keeping simplicity in fabrication and cost low [144].
Wang et al. [145] developed a “pop-up” device from a folded single sheet of paper,
enabling sequential control of the timing and the fluidic path.

There are also the origami devices mentioned earlier that enable complex pro-
cesses like sample preparation [73]. Moreover, paper has found its way into hybrid
devices where it is embedded into plastic channels as fluidic media for instrument-
free use [107]. Here the addition of water and the action of folding allowed the
sequential delivery of dry-stored reagents to diagnostic samples. Another creative
approach has taken advantage of another cellulose-based commodity, cotton thread.
Here Zhou and colleagues [146] developed an immunoassay on threads allowing
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multiplexing as well as quantification of the analyte. So by simply stacking,
weaving, folding, or unfolding the paper/cellulose, creative 3D devices can reduce
dependence for equipment by mediating sequential organization and control over
sample preparation and/or detection.

6.3.2 Paper Digital Microfluidics

Digital microfluidics (DMF) will be a key disruptive technology for POC diag-
nostics on the path to minimal equipment and equipment-free workflows. Just
as molecular technologies and nanomaterials promise to replace equipment by
providing lower temperature diagnostic regimes and signal amplification, DMF
promises to dramatically simplify low-cost fluid handling and automation of
complexity. Through an array of patterned electrodes, DMF uses the application
of an electrical field to dispense, move, and mix microdroplets (pico- to microliters)
in a chip [147]. While most microfluidic devices rely on external pressure sources,
pumps, continuous flow, and large amount of samples or reagents, DMF technology
enables savings in reagents, sample, and therefore cost. In 2004, Srinivasan et al.
[148] were able to actuate by electrowetting, human physiological samples like
whole human blood, serum, plasma, urine, saliva, sweat, and tear as well as perform
a glucose assay. The flexibility of DMF enables functions like sample separation and
extraction, for example, with the use of mixing areas with lytic agents or heating
zone on a single device. In 2009 Mousa et al. [149] successfully separated and
extracted estradiol from breast tissue, whole blood, and serum and in 2015 Ng et
al. [150] presented a proof of concept for the use of DMF as a diagnostic platform
for detection of infectious diseases. The demonstration was performed with a fully
integrated sample preparation for the detection of rubella infection. The shoebox-
sized automated platform was able to aliquot, dilute, and multiplex four parallel
assays as well as deliver an automated digital readout of the assay. Recent work
has combined DMF with paper (paper-DMF) to create cheap, fast, complex, and
multiplexed diagnostic devices [151] using conductive silver ink on paper.

What is especially exciting about the technology is that it is adaptive. A common
electrode array can be reprogrammed after manufacturing to execute virtually
any of the steps in the diagnostic workflow. All of the reagents necessary for
sample preparation and analysis can be incorporated into the device, along with the
preprogrammed sequence of droplet movement. Thus, the paper-DMF platform can
provide sequential flow of the sample and reagents, as well as complex multistep
processes, without any intervention of the user. Importantly, recent advances in the
manufacture of DMF devices, with roll-to-roll production, have brought device cost
down to $0.63 USD per chip [152]. Finally, a device called the DropBot has recently
been released as an open-source platform for controlling droplet actuation in DMF
[153]. Open-source hardware and software is an important new trend for diagnostics
that allows anyone to build and modify companion devices for their own needs. So
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while paper-DMF is indeed instrumented, with such impressive capabilities and
economics, we will likely see DMF technology embedded in many future POC
diagnostics.

6.4 Future of the Technology

With the future of diagnostic technologies in mind, we asked ourselves where is
paper-based device technology heading. What can we expect from the field in the
next years? Based on the current literature, we propose a “what if” list of what could
the technology become.

“What if” paper-based devices allowed:

¢ Together with the massive development of wearable electronics like watches,
and even clothing (like Cityzen sciences or Hexoskin, among others), sensors
that monitor vital signs are starting to be found in everyday life. Giider
and colleagues recently developed a smart paper that functions as a low-cost
electrical respiration sensor that is able to transmit data concerning respiration
to a smartphone [154]. So “what if” smart papers were the new low-cost
technology allowing routine monitoring of vital signs and other clinical features
in individuals admitted to the hospital?

e Understanding and consent of the populations for research is an important
challenge facing the research community. However, as paper-based diagnostic
capabilities grow, an automated, anonymized electronic reporting becomes
possible, and “what if”” paper devices could allow large epidemiological studies
through citizen science? Such studies could be health related, but they could also
aid with monitoring disease vectors (e.g., ducks for influenza), environmental
factors, etc. [89, 155].

e “What if” paper devices (low-cost technology) and citizen science could make a
shift from responding to illness to anticipating disease with early detection and
health monitoring?

* Recent work reports electrically activated paper actuators that fold and bend in
response to an applied current [156]. “What if” paper-based diagnostic devices
could move on their own, following a preprogrammed sequence of movements,
to complete a diagnostic workflow from sample collection to the delivery of the
result?

e In 2013, Safavieh and Juncker introduced the term of Capillarics, a prepro-
grammed, self-powered microfluidic circuit built from capillary elements where
liquid handling is encoded in the structure and chemistry of the conduits [157].
“What if” paper-based devices could be similarly self-powered through careful
design of their materials?

e “What if” paper-based devices, thanks to their low-cost technology and produc-
tion, could permit the development of a more accessible type of personalized
medicine?
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* But maybe the most important point: “What if” POC diagnostic devices were
designed and developed for a specific problem and in collaboration with end
users? This could improve the ratio of devices capable of success at the POC. In
a paper by Kumar and colleagues, two case studies exemplify the potential benefit
of this approach and highlight the technical and operational lessons provided by
such community-based partnerships [11].

6.5 Conclusion

Looking back over the contents of the book we are struck by the pace, scale,
and diversity of ongoing work, as well as the realization that the field of POC
diagnostics has grown beyond a scope that can be mastered by any one technique
or investigator. This of course is exciting, but also daunting, for researchers as they
seek to advance the field. The ASSURED criteria will provide ongoing guidance
to the development of relevant tools, but of course it is important to recognize
that each design feature should be considered in the context of the intended POC
environment. In other words, the intended application of an ideal diagnostic device
must be considered from the outset of design. When cost is not the main limiting
factor to deployment, ultrarapid, self-contained disposable cassettes may be ideal.
However in well-established but poor urban environments, other factors such as time
or convenience may be less of a constraint on design in favor of being able to provide
clinical-grade results. There may even be a future for applications where even
sensitivity or specificity can be sacrificed in favor of strategies in which multiplexed
detection and low cost provide redundancy for diagnosis of complex disease (e.g.,
paper-based gene expression profiling; [158]). The key is that without a final set of
applications and target population in mind, the complete design space available to
build practical portable diagnostics may not be recognized (Fig. 6.1).

Similarly, as developers of POC diagnostics we must also be held to account on
implementation, including a workflow from sample through to answer. Steps toward
implementation must follow technology development; otherwise our efforts become
only an academic exercise, which must not happen. Unfortunately, the literature
is replete with reports of incremental advances that have not been demonstrated
with real samples and/or under real-field conditions. While the reasons for this are
complex, future leaders in the field, and those who will see their designs catch the
attention of the funders, will be the ones who take the time (and risk) to push the
limits of their technology and iterate until their design criteria are met. This may
require a series of studies and vertical integration of our laboratory efforts, but the
responsibility is on us to demonstrate the value of our work at point of care.

Other trends that will continue to be important to the advancement of our field
will be the adoption and adaptation of disruptive technologies from other areas of
study. The field is built upon this approach and as we seek to extend our tools to
new populations, environments, and clinical needs, we will need to continue to
combine these innovations into our designs. Technologies that we see as key areas
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Fig. 6.1 Design of an ideal (paper-based) device workflow. The successful design and implemen-
tation of paper-based diagnostics require a holistic view that considers the goals of the test, the
limitations in the intended environment for its use, and the context of the sample from which
it will be expected to perform. This technical design and development must also be paired with
partnerships at the community level and, ultimately, tested under field conditions

to watch are the following. (1) Sample preparation technologies that are portable
and cost effective are perhaps the most critical to the success of our field as well
as the compatibility of the preparation, extraction, and analysis steps. It is this
capability that will convert innovative assays into field-ready tools. Here we see
digital/microfluidics as key to implementing low-cost and automated workflows that
can be used by nonexperts under field conditions. (2) Nucleic acid amplification
and other molecular technologies will be an increasing source of capability for
POC diagnostics as researchers incorporate new techniques and enzymes, as well
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as methods for deployment without refrigeration. (3) Materials engineering and
nanotechnologies will also provide exciting and increasingly cost-effective ways
of moving laboratory assays to the field.

Taken together, the merging of new sensor technologies with the incredible
advances in materials, electronics, and telecommunications suggests that the field of
POC diagnostics is on the verge of a revolution. This potential boon in capabilities
could not come at a better time. The human population is growing at a rate of 1.6
million every week, and so, with such growth, our ability to provide timely access
to health care will increasingly depend on distributed care through portable tools of
diagnosis. Moreover, this drive to reduce cost and extend access to health care is
something that will be globally beneficial and our challenge as a field will be how to
meet such diverse needs. And it is through this lens that we suggest that the journey
to the ideal device(s) has many paths.
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