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Diabetes, as one of the major diseases in industrial countries, affects over 350 million
people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms
with both types having invariable genetic influence. It is accepted that a subset of all
diabetes patients, generally estimated to account for 1–2% of all diabetic cases, is
attributed to mutations in single genes. As only a subset of these genes has been identified
and fully characterized, there is a dramatic need to understand the pathophysiological
impact of genetic determinants on b-cell function and pancreatic development but also on
cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic
lineage provide a valuable research platform to study such genes. This review
summarizes current perspectives in applying this platform to study monogenic
diabetes variants.

Keywords: pluripotent stem cells, diabetes, monogenic variants, Maturity Onset of Diabetes in the Young, type 2
diabetes, type 1 diabetes
INTRODUCTION

Diabetes, as one of the major diseases in industrial countries, affects over 350 million people
worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms. T2D accounts for
most diabetes cases and is a multifactorial metabolic disease where insulin deficiency is caused by
insulin resistance in target organs and pancreatic b-cell failure. The current diabetes classifications
are insufficient to explain the large clinical and biological variability of diabetes, suggesting an
unrecognized level of heterogeneity (1). T1D is described as a chronic autoimmune disease against
insulin-producing b-cells leading to hyperglycemia. T1D results from the combination of multiple
factors, including environment, genes, and a prominent role of the immune system. Genetic studies
have long recognized that mutations of the human leukocyte antigens (HLAs) within the Major
Histocompatibility Complex (MHC) represent major genetic risk factors in T1D (2, 3). More
recently, genome-wide association studies (GWAS) and candidate gene approaches have identified
Abbreviations: CRISPR, Clustered regularly interspaced short palindromic repeats; ER, Endoplasmatic reticulum; GWAS,
Genome-wide association studies; hESC, Human embryonic stem cell; HLA, Human leucocyte antigen; hPSC, Human
pluripotent stem cell; iPSC, Induced pluripotent stem cell; JOD, Juvenile-onset diabetes; KO, Knockout; MHC, Major
histocompatibility complex; MODY, Maturity Onset of Diabetes in the Young; PNDM, Permanent neonatal diabetes mellitus;
SNP, Single nucleotide polymorphism; T1D, Type 1 diabetes; T2D, Type 2 diabetes.
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more than 50 other loci contributing to T1D risk, including INS,
PTPN22, CTLA4, and GLIS3 genes (4, 5). In addition, mutations
in several genes, such as AIRE, FOXP3, and STAT (6, 7), may
cause rare monogenic forms of autoimmune diabetes.

Similarly, genetic studies of T2D identified many single
nucleotide polymorphisms (SNPs) associated with T2D risk,
which are located near several functionally relevant genes such
as PPARG (8), WFS1 (9), KCNJ11 (10), KLF14 (9), ANK1 (11),
INS (12), HNF1A (9), HNF1B (13), and GLIS3 (14). In addition
to genetic predisposition, environmental factors and epigenetic
changes are influencing the pathophysiology of T2D, which may
contribute to the additional variance in susceptibility.

Overall, genetic studies of T1D and T2D resulted in the
identification of many disease-associated variants, most of
which, with the exception of the HLA locus for T1D,
contribute to a small increase in disease risk (5, 15, 16). These
studies have provided valuable information on putative genes
and the mechanisms involved in diabetes. For example, many
genes identified by T2D GWAS are expressed in human islets
(17) and may regulate b-cell mass and function (18). While a
large proportion of T1D susceptibility genes are surprisingly not
related to the immune system (19), studies from D. Eizirik’s
group have also shown that >60% of these genes are expressed in
b-cells, and their expression is affected upon exposure to
cytokines, viruses, and double-stranded RNA, a by-product of
viral infection, in human and rodent b-cells (19–21). Altogether,
these studies suggest an essential role of mechanisms acting at
the level of b-cells in the etiology of both T1D and T2D (19–21).

Interestingly, several of these genes are involved in both
monogenic diabetes (rare variants) and multifactorial diabetes
(frequent variants). This is the case of the insulin gene (INS,
monogenic neonatal diabetes, Maturity Onset of Diabetes in the
Young (MODY)andmultifactorialT1D), aswell asKCNJ11,WFS1,
HNF1A, HNF1B (neonatal, syndromic, or MODY monogenic
diabetes, and multifactorial T2D) and GLIS3 (neonatal
monogenic diabetes and multifactorial T1D and T2D). This
plethora of genes involved in common multifactorial and rare
monogenic forms of diabetes suggests that some disease
mechanisms and biological pathways may be shared between
different forms of diabetes. The identification and detailed study
of genes responsible formonogenicdiabetes are therefore extremely
valuable to investigate important genes and pathways involved in
both monogenic diabetes and common forms of diabetes.
Noteworthy, it has become evident most recently that a subset of
all diabetes patients, generally estimated to account for 1–5% of all
diabetic cases, is attributed to mutations in single genes (22, 23).

As only a subset of these genes has been identified and fully
characterized, there is a dramatic need to understand the
pathophysiological impact of genetic determinants on b-cell
function and pancreatic development but also on cell
replacement therapies. Although islet transplantation can lead
to insulin-independency of diabetic patients for 5 years or longer,
this therapeutic option is only accessible for a rare number of
patients due to the limited number of cadaveric human islets and
complex handling (24). On the other hand, the use of human
pluripotent stem cells [hPSCs, induced pluripotent (iPSC) and
Frontiers in Endocrinology | www.frontiersin.org 2
embryonic stem cells (hESC)] may bypass this need by
generating mature b-cells in vitro upon improving the current
protocols of b-cell generation.

PSCs have been used as a relevant model system to elucidate
pathophysiological mechanisms in diseases such as diabetes, blood
disorders, defined neurological disorders, and genetic liver disease
(25–27). Induced pluripotent stem cells (iPSCs) allow dissecting
monogenic humandiseasemechanisms (28) as well asmechanisms
of genetically complexhumandisorders such as schizophrenia (29).
This opens promising perspectives in both regenerative medicine
but also in drug development to screen for innovative, “druggable”
targets (30) and to develop ex vivo gene-targeting therapies (28).
Given the still high intra- and interpatient variability of patient-
derived iPSCs, controls are the key for a precise analysis (31).Recent
advances in the development of genomic editing tools such as the
Zinc-finger or clustered regularly interspaced short palindromic
repeats (CRISPR)/Cas9 technology have further revolutionized this
research field. Now researchers can precisely modify a human
pluripotent stem cell genome with (i) high efficiency, (ii) on a
single-base resolution, (iii) without altering the pluripotent
capacity, and (iv) with negligible off-target effects to provide
isogenic controls and to facilitate data interpretation. In turn,
these recent tools represent novel state-of-the-art disease-in-a-
dish models and will pioneer research fields aiming to understand
also the mechanisms underlying monogenic diseases (32–35).
Human pancreatic disease modeling is highly dependent on
reliable and efficient differentiation protocols for human PSCs.
We and others have recently challenged the currently existing
protocols (36), first, to optimize the step toward pancreatic
progenitor cells (37), second, to drive maturation in a 3D
environment (38–40), and third, to increase yields of true
monohormonal b-cells (41–44). In turn, optimized differentiation
platforms now allow for appropriately modeling complex
pancreatic diseases such as diabetes (45). A schematic overview of
currently available disease modeling tools for diabetes employing
hPSCs is presented in Figure 1.
MATURITY-ONSET DIABETES
OF THE YOUNG

So far, 14 subtypes of maturity-onset diabetes of the young
(MODY) have been described to be caused by mainly
heterozygous dominant mutations in genes for pancreas-
specific transcription factors as well as enzymes, hormones,
and ion channels (46, 47). These mutations impair endocrine
function at various levels ranging from alterations in
development, glucose sensing, synthesis, and storage of insulin
to inappropriate secretion of insulin in b-cells. The most
frequently identified mutations are located in the HNF4A gene
(MODY1) (48) with a frequency of 4–10% (49–51), in the GCK
gene (MODY2) (52) with 30–60% (49–51, 53) and in theHNF1A
gene (MODY3) (54) with 30–50% (49–51) depending on the
study population. MODY1 patients are particularly characterized
by defective glucose-stimulated insulin secretion possibly caused
by disrupted gene expression playing a role in glucose transport
May 2021 | Volume 12 | Article 648284
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and glycolysis (48, 55, 56). MODY2 due to glucokinase deficiency
often results in mild hyperglycemia during early life (57). These
patients have a defect in glucose-stimulated insulin secretion
caused by impaired glucose sensitivity in b-cells. MODY3
patients develop b-cell dysfunction and hyperglycemia caused
by impairment of glucose-dependent insulin secretion (58).

In addition, rare MODY cases [accounting for up to 6% of all
MODY forms (49)] have been diagnosed with mutations in
PDX1 (59), HNF1B (60), NEUROD1 (61, 62), KLF11 (63), CEL
(64), PAX4 (65), INS (66), BLK (67), ABCC8 (68), KCNJ11 (69),
and APPL1 (70) (known as MODY4-14).

mpaired functions of proteins caused by pathogenic variants
can vary depending on the nature of the mutation, therefore
causing a spectrum of clinical manifestations. Patients harboring
heterozygous HNF1B mutations suffer from MODY, but may
also feature pancreas exocrine dysfunction as well as kidney and
liver abnormalities (71) and vaginal and uterine malformation
(72). Few specified cases of NEUROD1 mutations are
Frontiers in Endocrinology | www.frontiersin.org 3
characterized mainly by early onset diabetes (61, 62, 73), but
patients with neurological defects such as pituitary gland
hypoplasia, growth hormone deficiency, epilepsy, and
intellectual disability have also been described (74, 75). CEL
mutations cause early onset diabetes associated with exocrine
pancreatic dysfunction and chronic pancreatitis (76, 77). In
addition to the diabetic phenotype in patients with PAX4
mutations, diabetic complications such as retinopathy and
nephropathy have been observed (65, 78). MODY-causing INS
mutations have been associated with early onset diabetes as well
as ketoacidosis in some cases (79), whereas rare cases with BLK
mutations have also been associated with overweight (67).

No other clear clinical manifestation besides diabetes has been
described for patients with heterozygous mutations in KLF11
(MODY7), ABCC8 (MODY12), KCNJ11 (MODY13), and APPL1
(MODY14). A summary of confirmed MODY-causing mutations
as well as of other prominent clinical features is presented in
Table 1.
FIGURE 1 | Schematic overview of currently existing protocols for the investigation of diabetes on an hPSC-based platform. Gene editing with CRISPR/Cas9 allows
precise editing of diabetes-relevant genes and generation of hESC for further differentiation experiments. Different differentiation protocols allow the generation of
monohormonal cells by passing through different milestones during embryonic development. Important stage-specific transcription factors are indicated below the
schematics. Subsequent analysis of monohormonal b-cells, including insulin secretions assays, can be performed and generate hypotheses about the influence of specific
genetic variants. The figure was modified from Smart Servier Medical Art (https://smart.servier.com/) under a Creative Common Attribution 3.0 Generic License.
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Noteworthy, the homozygous status for mutations in several
MODY genes has been found to lead to extreme clinical
presentations, contrasting with the less severe early onset diabetes
observed in heterozygous carriers. For example, homozygous
mutations in the PDX1 gene result in early onset diabetes
associated with pancreatic agenesis and maternal miscarriages
(59, 98).

A subset of patients with MODY-like phenotype doesn’t carry
any mutation in the known MODY genes, suggesting the
involvement of additional genes. The identification of these
additional genes responsible for rare MODY forms is now
facilitated by the availability of large databases of diabetic cases
and control cohorts that enable increased efficiency to detect novel
genes with rare contributing variants (including MODY-like
effects) (99), compared to earlier studies with smaller sample size
(100). In addition, the availability of large databases of control
subjects (e.g., gnomAD, TOPMED) provides now the possibility to
estimate the frequency of rare coding variants in candidate genes,
hence allowing for efficient association and burden-testing for rare
monogenic contributions, such as MODY. Consequently, recent
studies identified RFX6 as a novel MODY gene (101) and WFS1,
PPARG, and GLIS3 have recently been proposed as potential
candidates for these rare MODY forms (101–103).

Taken into consideration the overlap in genes involved in
common multifactorial and rare monogenic forms of diabetes,
the specific analysis of monogenic pathogenic variants can
therefore reveal novel interaction partners and gene targets
that might be helpful to better understand the mechanisms
involved in the onset of T1D and T2D.
PERMANENT NEONATAL
DIABETES MELLITUS

Permanent neonatal diabetes mellitus (PNDM) is the second
form of monogenic diabetes. It is characterized by hyperglycemia
Frontiers in Endocrinology | www.frontiersin.org 4
and partial or complete insulin deficiency in patients in the first 6
months postnatal (104, 105). Moreover, patients with PNDM
may suffer from intrauterine growth retardation, glycosuria,
ketoacidosis, failure to thrive as well as various clinical features
depending on the gene. Mutations in more than 20 genes with
monogenic contribution important for b-cell development have
been identified to cause PNDM (46). Treatment of PNDM
includes oral sulfonylureas or insulin therapy and may require
pancreatic enzyme replacement for infants with pancreatic
aplasia or hypoplasia.

Some genes, including ABCC8 (106), GCK (107), INS (108),
KCNJ11 (109), and PDX1 (110) may alternatively cause PNMD
or MODY, with various severity and clinical features depending
on the gene, nature of the mutation, and genotype (homozygous
or heterozygous). Common variants in these genes may also be
associated with multifactorial T1D or T2D.

In addition to diabetes, KCNJ11-PNMD patients may also
have neurological features such as developmental delay and
epilepsy (DEND syndrome) (111). Similarly, pathogenic
homozygous PDX1-PNDM patients have pancreatic agenesis
and pancreatic hypoplasia leading to exocrine pancreatic
insufficiency (110, 112). Pancreatic agenesis is furthermore
caused by homozygous mutations in another pancreatic
transcription factor, PTF1A (113). Here, PNDM patients
additionally suffer from severe intrauterine growth retardation,
cerebellar agenesis, and neurological dysfunction.

In addition, PNDM may manifest in the context of specific
syndromes. Homozygous mutations in EIF2AK3 cause Wolcott–
Rallison syndrome, characterized by PNDM, exocrine pancreas
dysfunction, and abnormalities such as liver failure, developmental
delay, and epiphyseal dysplasia (114). Inactivating GATA4
variants can induce pancreatic agenesis or hypoplasia, causing
PNDM but also lead to extrapancreatic symptoms such as cardiac
and neurodevelopmental abnormalities (115). Similarly, GATA6
mutations cause pancreatic agenesis leading to PNDM, together
with abnormalities of the heart, biliary tract, and gut development
TABLE 1 | Different MODY forms, including their frequencies, affected genes, and potential other prominent clinical manifestations are presented.

MODY
form

Affected
gene

Frequency Potential prominent additional clinical manifestations besides
diabetes and its complications

Affected gene
investigated using

hESC

Affected gene
investigated using

hiPSC

MODY1 HNF4A 4–10% Not relevant No Yes (80–82)
MODY2 GCK 30–60% Not relevant No Yes (80, 83)
MODY3 HNF1A 30–50% Not relevant Yes (84, 85) Yes (80)
MODY4 PDX1 Rare Pancreatic agenesis and miscarriages Yes (86) Yes (87–89)
MODY5 HNF1B Rare Exocrine pancreatic dysfunction, kidney and liver abnormalities, vaginal aplasia, and

uterus hypoplasia
No Yes (80, 90, 91)

MODY6 NEUROD1 Rare Neurological defects including pituitary hypoplasia, growth hormone deficiency,
epilepsy, and intellectual disability

No No

MODY7 KLF11 Rare Nothing else described No No
MODY8 CEL Rare Exocrine pancreatic dysfunction, chronic pancreatitis No Yes (80)
MODY9 PAX4 Rare Not relevant Yes (92) No
MODY10 INS Rare Not relevant No Yes (93)
MODY11 BLK Rare Overweight No No
MODY12 ABCC8 Rare Nothing else described Yes (94, 95) No
MODY13 KCNJ11 Rare Nothing else described Yes (96) Yes (97)
MODY14 APPL1 Rare Nothing else described No No
May 2021 | Volume
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(116). Homozygous mutations in GLIS3 cause PNDM together
with congenital hypothyroidism associated with congenital
glaucoma, hepatic fibrosis, and polycystic kidneys (117). In
addition to neonatal diabetes, NEUROD1 mutations cause
cerebellar hypoplasia, sensorineural deafness, and visual
impairment (118), whereas NEUROG3 mutations affect intestinal
development leading to congenital malabsorptive diarrhea (119–
121). Mutations in PAX6, encoding a transcription factor involved
in b-cell development as well as eye and brain development, cause
neonatal diabetes combined with abnormalities of the central
nervous system and visual system (e.g. microencephaly, optic
nerve defects, microphthalmia) (122). In addition to PNDM,
mutations in the transcription factor RFX6 cause pancreatic
hypoplasia, intestinal atresia, and gall bladder hypoplasia (123,
124). Patients with Wolfram syndrome caused by mutations in
WFS1 suffer from early onset diabetes as well as optic atrophy,
deafness, ataxia, and dementia (125). Other neonatal diabetes
syndromes have been described for mutations in SLC19A2
(associated with thiamin-responsive megaloblastic anemia,
neurological disorders, cardiac abnormalities, and deafness) (126,
127), MNX1 (associated with growth retardation, delayed central
nervous system development, hypoplastic lungs, renal
maldevelopment, skeletal dysplasia) (128), NKX2.2 (further
leading to growth retardation, delayed central nervous system
development, constipation) (128), and IER3IP1 (additional
microcephaly, CNS maldevelopment) (129). Furthermore, some
mutations in the glucose transporter SLC2A2 can cause neonatal
diabetes prior to the Fanconi–Bickel syndrome associated with
glycosuria, galactosemia, aminoaciduria, proteinuria,
hepatomegaly, as well as glucose and galactose intolerance (130,
131). Franco et al. recently showed that mutations in YIPF5 cause
neonatal diabetes associated withmicrocephaly and epilepsy (132).

Interestingly, an overlapping phenotype between PNDM and
autoimmune T1D was observed for a patient with an activating
mutation in the STAT3 gene (133). Although the autoimmune-
mediated destruction of b-cells was prominent Saarimäki-Vire
et al. revealed an additional mechanism (PNDM) due to the
observed pancreatic hypoplasia (134).

An overview of all described genes leading to the development
of PNDM if affected by mutations is presented in Table 2.
MODELING PANCREATIC
ENDOCRINE DEVELOPMENT

The detailed pathomechanisms of monogenic diabetes are not yet
fully understood since mouse models do not completely recapitulate
the human disease phenotype (121, 144, 145), and patient samples
such as b-cells have very limited availability. Moreover, animal
models with a specific knockout of MODY genes show species-
specific differences that do not entirely recapitulate the patient
phenotype (146–150). Therefore, even more suitable disease
models are crucial to develop an adequate therapy.

In the recent years, human pluripotent stem cells have been
deployed as a suitable human model system. On the one hand,
human embryonic stem cells (hESCs) can be subjected to a directed
differentiation protocol to investigate different mechanisms during
Frontiers in Endocrinology | www.frontiersin.org 5
differentiation of mature pancreatic b-cells. Additionally, patient-
specific induced pluripotent stem cells (iPSCs) can be generated
from materials such as fibroblasts and keratinocytes, allowing to
address various genetic backgrounds of patients. Of note, gene-
mutated iPSCs show high heterogeneity in terms of differentiation
efficiency and are best controlled with isogenic, repaired lines.
Furthermore, patient-specific iPSCs are a useful tool for biobanking
becauseof theirunlimited expansioncapacity. Subsequently, these cells
are differentiated in vitro into disease-relevant cell types such as
pancreatic endocrine cells or b-cells.

To better understand the importance of certain genes in the
maturation of b-cells, genetic engineering may be performed with
hESCs and iPSCs. Here, state-of-the-art gene-editing tools such as
zinc-finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs), and the more recent clustered regularly
interspaced short palindromic repeats (CRISPRs)/Cas allow the
generation of specific point mutations or gene knockouts (KOs). A
potential optionof genetic engineeringmight involve gene correction
in iPSCs. This allows the generation of autologous b-cells for
transplantation that may circumvent immune reaction and
donor scarcity.

The generation of pancreatic endocrine cells is achieved by
different differentiation protocols. Established protocols try to
mimic signaling pathways of in vivo embryonic developmental
stages by involving different/various combinations of growth
factors, cytokines, and small molecules known/reported to guide
the stem cells through stages of definitive endoderm, gut-tube
endoderm, pancreatic endoderm, pancreatic progenitors, and
endocrine progenitors to finally yield mature mono-hormonal
endocrine cells (Figure 1).

Overall differentiation models of hESCs and hiPSCs provide a
versatile tool to study the influence of genetic disorders on b-cell
development in the human pancreas as well as the embryonic
development of the human pancreas itself. Different published
protocols whose concepts are described below allow the
investigation of multiple facets of b-cell maturation during
different steps of embryonic development. However, the
procedure itself may have a huge influence on the phenotype of
differentiated cells. This might lead to the bias that a “good”
differentiation protocol can overcome the inherent genotypic
features, which would rather underestimate the phenotypic
features of a certain genotype. This is, for example, the case for a
GATA6-mutant iPSC cell line with a severe phenotypic loss of
endoderm and b-cell differentiation capacity in a differentiation
condition involving low levels of retinoic acid. On the other hand,
high levels of retinoic acid mask this phenotype (136). The same
principle might apply to a “poor” differentiation protocol that may
overestimate the phenotypic properties of a certain genotype.

GENERATION OF MATURE PANCREATIC
b-CELLS REQUIRES COMPLEX AND
SOPHISTICATED DIFFERENTIATION
PROTOCOLS

During the last decade, differentiationprotocols have been adapted to
achieve a more mature state of in vitro differentiated b-cells. Since
May 2021 | Volume 12 | Article 648284
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earlier pancreatic endocrine differentiation protocols in monolayers
yield mainly an immature or heterogeneous population of
polyhormonal cells lacking robust insulin secretion in response to
glucose stimulation, a prerequisite of b-cells (36, 151), novel in vitro
approaches including different culture conditions have been
established. Recent protocols include a transition to 3D culture
using a suspension culture system with spinner flasks and orbital
shaker generating endocrine spheres (41, 42). Alternatively, a switch
from the initial culture in monolayer to an air–liquid interphase
culture stage promoting basal and apical cell polarity generates even
more functionally mature b-cells (152) (Figure 1).

Air–liquid interphase culture systems require spotting the
cells from the pancreatic endoderm stage on filters. Upon
formation of small cell clusters, the differentiation is further
improved as measured by NGN3 and insulin expression (43).
This transition might help to mimic the natural 3D environment
Frontiers in Endocrinology | www.frontiersin.org 6
and cell orientation within the developing tissue, thus promoting
in vitro differentiation (153).

Further progress in b-cell maturation was also achieved by
reaggregating immature cells into enriched b-cell clusters using
an insulin-driven fluorescence reporter (154). Veres et al.
combined cellular reaggregation and b-cell purification using
CD49a to enrich endocrine cells and promote functional
maturation of b-cells able to maintain their identity for several
weeks in culture (155).

An alternative approach is to enrich precursor cells in the
differentiation process. A recent study demonstrated that
enrichment of anterior definitive endoderm with CD177
results in a more homogenous pancreatic progenitor
population and subsequent better functional maturation (156).

Moreover, besides optimizing technical conditions for
differentiation, the modulation of signaling pathways and
TABLE 2 | Overview of mutations in genes that can lead to PNDM.

Affected
gene in
PNDM

Affected gene also
described for

MODY

Part of a
syndromic
phenotype

Potential prominent additional clinical manifestations Affected gene
investigated in

hESC

Affected gene
investigated in

hiPSC

ABCC8 MODY12 No Nothing else described Yes (94, 95) No
EIF2AK3 No Yes, Wolcott-Rallison

syndrome
Exocrine dysfunction, acute liver failure, developmental delay,
epiphyseal dysplasia

No No

GATA4 No Yes Pancreatic agenesis, cardiac, and neurodevelopmental abnormalities No No
GATA6 No Yes Pancreatic agenesis, abnormalities of heart, biliary tract, and gut

development
Yes (135, 136) Yes (135, 136)

GCK MODY2 No Not relevant No Yes (80, 83)
GLIS3 Potentially Yes Congenital hypothyroidism, congenital glaucoma, hepatic fibrosis,

polycystic kidneys, pancreatic exocrine insufficiency, kidney, liver,
and biliary dysfunction

Yes (86) No

IER3IP1 No Yes Microcephaly, CNS maldevelopment No No
INS MODY10 No Not relevant No Yes (93, 137,

138)
KCNJ11 MODY13 No Nothing else described Yes (96) Yes (97)
MNX1 No Yes Growth retardation, delayed central nervous system development,

hypoplastic lungs, renal maldevelopment, skeletal dysplasia
Yes (86) No

NEUROD1 MODY6 Yes Cerebellar hypoplasia, sensorineural deafness, visual impairment No No
NEUROG3/
NGN3

No Yes Intestinal maldevelopment with malabsorptive diarrhea Yes (86, 139) No

NKX2.2 No Yes growth retardation, delayed central nervous system development,
constipation

No No

PAX6 No Yes Abnormalities of the central nervous system and visual system
including microencephaly, optic nerve defects, microphthalmia

No No

PDX1 MODY4 Yes Pancreatic agenesis and miscarriages Yes (86) Yes (87–89)
PTF1A No Yes Intrauterine growth retardation, pancreatic agenesis, cerebellar

agenesis, and neurological dysfunction
Yes (86) No

RFX6 Potentially Yes, Mitchell–Riley
syndrome

Pancreatic hypoplasia, intestinal atresia, and gall bladder hypoplasia Yes (86) Yes (140)

SLC19A2 No Yes, Thiamine-
responsive
megaloblastic anemia

Megaloblastic anemia, hearing loss, neurological disorders, cardiac
abnormalities

No No

SLC2A2 No Yes, Fanconi–Bickel
syndrome

Glycosuria, galactosemia, aminoaciduria, proteinuria, hepatomegaly,
glucose intolerance, galactose intolerance (130, 131)

No Yes (141)

STAT3 No Potentially correlated
to autoimmune
diabetes

Strong autoimmune component of diabetes, pancreatic hypoplasia No Yes (134)

YIPF5 No Yes Microcephaly, epilepsy Yes (132) Yes (132)
WFS1 Potentially Yes, Wolfram

syndrome
Optic atrophy, deafness, ataxia, and dementia No Yes (142, 143)
Ma
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cytoskeleton is a promising mean to increase the b-cell yield.
Inhibition of certain pathways such as ROCKII and WNT using
specific inhibitors promoted maturation (157, 158). Hogrebe et al.
investigated the role of the actin cytoskeleton in promoting the
expression of pancreas-specific transcription factors such as
NEUROG3 during differentiation (159). The manipulation of
actin polymerization during early developmental stages influences
the expression of transcription factors important for the
specification of lineage fate in pancreatic progenitors.
Depolymerization of the cytoskeleton during endocrine induction
further improved the functionality of derived b-cells, also allowing
for a planar differentiation protocol.

Another strategy to improve differentiation efficacy is to
modulate the basic content of cell culture media. Two studies
explored metabolic changes during b-cell maturation (160, 161).
Adaptation of nutrient-sensing via mTORC1 signaling during
the transition from fetal to adult pancreatic islets can be
recapitulated by reduced amino acid content in differentiation
media, further advancing cellular insulin content and glucose-
stimulated insulin secretion (160). Similarly, epigenomic
characterization of primary and in vitro differentiated
pancreatic cells revealed that entrainment to cycles of fasting
and feeding leads to circadian control of genes important for
energy and insulin metabolism, further improving b-cell
function (161).

Protocol improvements resulted in more mature b-cells and
faster reversal of diabetes after transplantation in mice. However,
manifold successful approaches show that regulation of human
pancreas development is still not fully understood, and various
adaptations to endocrine differentiation protocols are difficult to
compare because they use different cell lines and culture methods
as well as slightly different functional assays. Therefore, more
research is necessary to determine the appropriate combination
of culture methods, cytokine and small molecule cocktails,
purification markers, and metabolic modifications, generating a
protocol that robustly produces the desired pancreatic cell types.

For potential clinical use, several questions/issues regarding
the composition of transplanted cells containing only b-cells or
more than one endocrine cell type, the best transplantation site,
and whether transplanted cells benefit from co-transplantation
with other cell types such as mesenchymal stem cells need to be
answered. Moreover, long-term survival and functionality of
transplanted cells exceeding the life span of mice have to be
addressed. Additionally, the possibility of teratoma formation
from the remaining progenitor cells even after prolonged time
has to be eliminated. Encapsulation of cells in suitable
biomaterials such as alginates or synthetic polymer hydrogels
might not only reduce the risk of tumor formation but also
provide protection from the immune rejection of the host,
removing the need for lifelong immunosuppression.

Although the latest research significantly improved our
knowledge about transcriptional regulation, signaling pathways
as well as metabolic adaptation during in vitro differentiation and
maturation of b-cells and paved the way for future clinical use,
more research is necessary until in vitro-generated pancreatic
endocrine cells can be used as potential diabetes therapy.
Frontiers in Endocrinology | www.frontiersin.org 7
PLURIPOTENT STEM CELL MODELS TO
UNDERSTAND MONOGENIC DIABETES

Although iPSC could be successfully generated fromT1D and T2D
patients, complex autoimmune reactions, environmental influence,
as well as multifactorial genetic factors hampered the intimate
recapitulation of pathogenesis (162–164). Despite the complexity
of T1D and T2D pathogenesis, some recent approaches have been
performed to model T1D using pluripotent stem cells. Co-culture
studies of iPSCs derived from T1D patients together with immune
cells are one such way to model the mechanisms of T1D in vitro
(165). Yet, it has to be kept in mind that this kind ofmodel requires
additional prerequisites such as environmental factors and complex
composition of different immune cell types as recently reviewed by
Joshi et al. (166). Modeling T2D in vitro is far more complex as
many more different pathogenic mechanisms can cause or even
interact to promote T2D development, including multiple genetic
and environmental factors. This fact makes it even harder to
investigate T2D by pluripotent stem cell-based approaches solely
in vitro.

Whereas modeling T1D and T2D using PSCs remains
challenging due to their complex nature, monogenic alterations
leading to a MODY or PNMD diabetes phenotype are ideal to be
investigated by PSC-based approaches. The role of specific
variants of the respective genes has already been investigated
using pancreatic differentiation of pluripotent stem cells.
Compared to various genetic and environmental aspects
contributing to other diabetes types, single mutations present
in monogenic diabetes allow tighter control of the observed
phenotypes. Deciphered mechanisms for the development of
MODY, which were uncovered using hPSC-based systems, are
presented in Figure 2 (MODY1, 2, 3, 4, 5, 10, 13).

Teo et al. showed that karyotypically normal iPSC expressing
pluripotency markers and able to differentiate in all three germ
layers could be derived from different MODY patients (MODY1,
MODY2,MODY3,MODY5, andMODY8) (80) and can serve as a
tool to study the role of the respective genes in pancreatic
development. A more detailed study of these MODY1 iPSCs with
premature HNF4A protein truncation revealed impaired foregut
and hepatopancreatic progenitor development. These events were
associated with HNF4A mislocalization and reduced expression of
target genes such as theFOXA gene family,HNF1B, PDX1,GATA4,
andRFX6 (81). In turn, impaired activation of target genes disturbs
b-cell gene signatures. Prior to that study, iPSCs from MODY1
patients with a nonsense mutation were characterized (82). Here,
the patient phenotype was caused by a reduction in levels of
functional HNF4A accompanied by increased expression of
pancreatic transcription factors and pancreatic hormones as a
compensatory mechanism (82).

Understanding the role of transcription factor HNF1A in
MODY3, human ESC lacking one or both alleles have been
differentiated to study endocrine development (84). HNF1A
deficiency increased expression of markers for a-cells but reduced
expression of b-cell markers suggesting a role in endocrine hormone
expression. In addition, HNF1A is required for insulin secretion, in
line with hyperglycemia observed in patients. Moreover, mutated
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FIGURE 2 | Successful uncovering of pathomechanisms for different MODY forms. Different MODY forms were modeled by employing hESC/hiPSC with respective
mutations. Mechanisms leading to monogenic diabetes could be delineated/characterized. In MODY1, mutated HNF4a leads to reduced FOXA gene family
expression and impaired b-cell signature. MODY2 is characterized by reduced differentiation or reduced glucose-dependent insulin secretion. MODY3 is caused by
reduced b-cell differentiation and insulin secretion. MODY4 shows reduced endocrine lineage entrance and impaired insulin secretion. MODY5 is caused by
diminished b-cell differentiation. MODY10 is highlighted by lacking production and secretion of insulin. MODY13 is characterized by impaired glucose-dependent
insulin secretion. The figure was modified from Smart Servier Medical Art (https://smart.servier.com/) under a Creative Common Attribution 3.0 Generic License.
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cells show metabolic defects in glycolysis and mitochondrial
respiration, also typical for T2D. This observation, together with
the finding that frequent HNF1A variants are associated with T2D,
suggests a link between mechanisms identified in MODY and in
common T2D. Furthermore, iPSCs from a patient harboring
heterozygous HNF1A mutation generated by non-integrative viral
transduction, show a normal karyotype, and express pluripotency
factors (85). These cells can be used for further functional analysis of
this specific mutation.

Relevant defects in the GATA6 gene disrupt the endoderm
differentiation by decreased cell survival. Later, the pancreas
specification and b-cell function were identified using iPSC and
genome-edited ESC (135, 136). By circumventing the
developmental block at the endoderm stage, cell lines with
GATA6 mutations were differentiated with low dose retinoic
acid to mimic severe patient phenotype. These cells failed to
show normal insulin secretion after glucose stimulation and
harbor defective insulin processing (136).

Fibroblasts from patients with heterozygous point mutations in
the PDX1 transactivation domain were successfully reprogrammed
to iPSCs and can be used to study diabetes-associated
pathomechanisms (87–89). Further pancreatic differentiation
reveals that mutations in the PDX1 transactivation domain
disturb the pancreatic endocrine lineage development and result
in impairment of the glucose-responsive function of b-cells (88).

The analysis of patient-derived iPSCs with HNF1B mutations
(MODY5) suffering from early onset diabetes and pancreatic
hypoplasia revealed a compensatory increase in markers of
definitive endoderm and pancreatic transcription factor
expression such as PDX1 (90). Additionally, downregulation of
transcription factor PAX6, important for islet development
(167), may result in the observed patient phenotype (90).
Furthermore, iPSCs were generated from a Japanese MODY5
patient with a truncated HNF1B variant in order to account for
differences in insulin sensitivity and insulin response depending
on the genetic background (91). Yabe et al. compared iPSCs
derived from healthy and patient skin fibroblasts and detected
degradation of mutant mRNA by the nonsense-mediated decay
pathway in differentiated patient-derived iPSCs (91).

A more systematic analysis of pancreatic transcription factors
PDX1, RFX6, PTF1A, GLIS3, MNX1, NGN3, HES1, and ARX,
partly identified in monogenic variants of MODY and PNDM,
characterized the transcriptional control and corresponding
defects at several developmental stages (86). This study
highlights especially the role of RFX6 in controlling pancreatic
progenitor numbers and differences of NEUROG3 requirement in
humans and mice. Mutations in WFS1, causing Wolfram
syndrome, lead to chronic endoplasmic reticulum stress
activating the unfolded protein response, which impairs survival
ofb-cells and neurons (168–170). This could be recapitulated using
iPSCwithWFS1 variants (142). A recent publication fromMaxwell
et al. also characterized iPSC from a Wolfram syndrome patient
(143). Patient-specific iPSCs harboring a pathogenic variant of
WFS1 were corrected using CRISPR/Cas9 technology. This study
used a differentiation protocol with cytoskeletal modification,
which significantly improved differentiation efficiency compared
Frontiers in Endocrinology | www.frontiersin.org 9
to previously tested suspension culture in these cell lines (159).
Corrected cells showed higherWFS1 expression and robust insulin
secretion, probably benefiting from reduced ER stress and
improved mitochondrial respiratory capacity in endocrine cells
(143). In turn, furthermaturationof in vitrogeneratedb-cells allows
better identification of effects also in later stages, additionally
providing potential use for b-cell replacement therapy.

Homozygous mutations in the insulin gene (INS) are known to
lead to PNDM. Pancreatic differentiation of patient iPSC results in
CHGA-positive endocrine cells expressing b-cell markers NKX6.1,
PDX1, and MAFA but lacking insulin expression (93). Gene
correction rescued the phenotype and prevented diabetes in a
streptozotocin mouse model, providing a future tool for patient cell
therapy. Another study involved iPSCs generated from patients with
neonatal diabetes and heterozygous insulin mutations disturbing
proper proinsulin folding (137). Patient-derived iPSCs show
normal pancreatic differentiation comparable to corrected isogenic
iPSC but have reduced insulin expression. Moreover, INS mutation
increases ER stress and hampers proliferation of b-cells but without
increased apoptosis promoting diabetes development in patients. In
addition, fibroblasts from a PNDMpatient harboring an intronic INS
mutation have been efficiently generated and may serve as a diabetes
model to characterize the expected aberrant splicing (138).

Another study characterized iPSCs from MODY2 patients
with a heterozygous GCK mutation (83). Similar to control cells,
these iPSCs differentiated into insulin-producing b-cells but
showed reduced insulin secretion in response to glucose
stimulation. In addition, iPSCs with two inactive GCK alleles
also showed reduced differentiation efficiency recapitulating the
functional impairment observed in patients and mouse models.

After the identification of YIPF5 mutations causing a novel
PNDM syndrome, Franco et al. characterized in vitro
differentiated patient-derived iPSCs harboring a homozygous
YIPF5 mutation as well as genome-edited ESC in addition to a
b-cell line (132). Functional impairment of YIPF5, responsible
for trafficking between the endoplasmic reticulum and the Golgi
apparatus, caused proinsulin retention at the ER resulting in ER
stress-induced apoptosis and b-cell failure and, thus, diabetes.

In order to understand the role of activating mutations in
STAT3 during pancreatic development, iPSCs derived from
patient fibroblasts were subjected to pancreatic differentiation and
revealed a premature endocrine differentiation later preferentially
forminga-cells which is in line with the observed phenotype of the
patient (134).Thisdefect results fromenhancednuclear localization
of the mutant protein and NEUROG3 activation and could be
rescued by correction of the STAT3mutation.

Inactivating mutations in ABCC8 resulting in excess insulin
secretion have been successfully employed for modeling
congenital hyperinsulinism using ABCC8-deficient ESC (94, 95).
In contrast, activating mutations inABCC8 have been described in
diabetes (171). Thus, using the hPSC-systems, a better
characterization of the components of the b-cell ATP-sensitive
potassium channel may be obtained to understand the function of
b-cells and associated pathomechanisms such as diabetes (caused
by activating mutations) or the vice-versa effect of congenital
hyperinsulinism (caused by inactivating mutations).
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In the context of T2D susceptibility genes identified in
GWAS, Zeng et al. generated ESC with null alleles for KCNJ11,
also associated with MODY13 (96). Although the loss of KCNJ11
does not affect in vitro differentiation towards b-like cells and
insulin production, these cells show impaired glucose-stimulated
insulin secretion (96). In addition to hESCs with KCNJ11
mutations, iPSCs have been generated from peripheral blood
mononuclear cells with a heterozygous activating mutation in
KCNJ11 and are available for mechanistic studies as well as drug
testing in differentiated pancreatic cells (97).

Skin fibroblasts from patients with Michell–Riley syndrome
were used to generate iPSCs harboring a homozygous nonsense
mutation in RFX6 (140). Pancreatic differentiation revealed an
impaired formation of pancreatic endoderm and thus, supports
the impaired formation of endocrine cells in the pancreas in line
with the patient phenotype.

In order to better understand the impact of different pathogenic
NEUROG3 variants, Zhang et al. expressed NEUROG3 mutant
proteins at physiological levels in NEUROG3 knockout ESC during
pancreatic and intestinal differentiation determining the ability to
rescue the generation of endocrine cells (139). Depending on the
variant, expression resulted either in the decreased or abolished
formation of pancreatic endocrine cells recapitulating the
respective patient phenotype. Moreover, these effects could be
retraced to be caused by impairment of NEUROG3 protein
stability, DNA-binding affinity, and protein dimerization. Those
features can differ in various tissues, a fact that emphasizes the
importance of considering the relationship between protein
structure and function.

Adenoviral PAX4 overexpression during pancreatic
differentiation of ESCs results in decreased glucagon-positive
cells promoting the formation of monohormonal insulin-
positive cells supporting its role in cell fate specification (92).
This suggests a crucial role of intact PAX4 in the development of
healthy monohormonal insulin-positive cells.

A recent study reported the generation of iPSCs with a
homozygous mutation in the SLC2A2 gene (141). Peripheral
mononuclear blood cells from a patient suffering from Fanconi–
Bickel syndrome accompanied by early onset diabetes were
reprogrammed using a non-integrating Sendai virus vector. These
cells can beused to study the pathogenesis associatedwithdefects in
the GLUT2 glucose transporter in pancreatic b-cells.

In addition to KO mouse models, genome-engineered and
patient-specific hPSCs have helped to get more insight into
developmental and mechanistic processes as well as
transcriptional networks (81). Not only do they provide
additional information but sometimes even highlight the species-
specific differences that make them even more crucial for a better
understanding of monogenic diabetes.

A conditional Hnf4a KO in mice did not result in a diabetic
phenotype but revealed that expression of the potassium channel
subunit Kir6.2 regulating insulin secretion is promoted by Hnf4a
(148). Patient-specific iPSCs inform about changes in
transcriptional network (81). Similarly, Hnf1amouse models with
heterozygous KO present without developing diabetes, whereas a
homozygous KO impairs b-cell function by reducing the insulin
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secretion. Stem cell-based models provided further details
characterizing the developmental, transcriptional, and metabolic
role of HNF1a (84). Furthermore, loss of Wfs1 in mice showed
impairmentofb-cell development and functionwithamilddiabetic
phenotype (149). Patient-specific iPSCs provided deeper insight
into endoplasmatic reticulum stress andwere used to test a possible
therapeutic approach (142). Since GATA6 haploinsufficiency
resulting in pancreatic agenesis in patients cannot be
recapitulated in mice (172, 173), effects of GATA6 gene dosage
on pancreatic differentiation in vitro helped in understanding the
clinical presentation of different patients (135). Furthermore, hPSC
models facilitate the characterization of disease-specific variants.
For example, a Hnf1b heterozygous KO in mice is not associated
withadiabetic phenotype (150), but patient-specific iPSCcarryinga
heterozygous variant of HNF1B helped to explain the MODY5
phenotype (90). Inmice,Neurog3 is essential for thedevelopmentof
the endocrine pancreas (144), but the disease phenotype slightly
differs in humans (121). Expression of different disease-associated
NEUROG3 variants during in vitro differentiation helped in
explaining various phenotypes in patients (139).

Taken together, a comparison of human and mouse model
systems canprovide further insight into the role of specific genes but
also highlights the species-specific differences concerning, for
example, transcription factor activity. That explains why human
PSC-based models are crucially needed to compensate for those
specific differences.

Therefore, genomeediting inPSCorevenpatient-specifichiPSC
provide a versatile approach to study developmental and functional
effects of selected diabetes genes and variants and complement or
even contradict data obtained from mouse models.

So far, many stem-cell-based models exist that characterize
monogenic mutations resulting in early-onset diabetes. These
models nicely elucidate the diabetic patient phenotype and help
in understanding the common pathways in b-cell development
and function. Altogether, improved screening for pathogenic
variants in combination with thorough functional analysis will be
the first step to precision medicine in diabetes therapy.
CONCLUSION/OUTLOOK

In vitro pancreatic differentiation of pluripotent stem cells is a
powerful tool to better understand pancreatic development and
the specific role of the involved transcription factors.
Identification and characterization of specific variants in
monogenic diabetes help in characterizing the complex
transcriptional network and in overcoming phenotypic
differences between patients and corresponding mouse models.
In addition, these model systems provide the basis for drug
development and testing that could benefit both patients of
monogenic and multifactorial diabetes. Ideally, iPSCs of
genetically disordered persons could be repaired and serve as a
major source for tissue engineering and regeneration, e.g. b-cells
in the case of monogenic diabetes.

Yet, some major roadblocks need to be kept in mind before
translating genetically repaired iPSCs into clinics. First,
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epigenetic modifications of iPSCs which are derived from their
originating tissue, might reduce their differentiation capacity and
subsequent function as well as immune tolerance after
autologous transplantation (174). Furthermore, genetic
aberrations after reprogramming might bear tumorigenic
potential and thus provoke carcinogenesis in the transplanted
iPSC-derived tissues (174). Additionally, iPSC-derived tissues
need to be manufactured according to SOPs and GMP guidelines
which need lots of effort to implement those prerequisites into
standard clinical care (175).

Altogether, these studies further urge the involvement of
pluripotent stem cells in deciphering the underlying
pathomechanisms as well as the affected genes, particularly
when monogenic diabetes displays discrete clinical phenotypes
and needs specific treatment depending on the subtype.
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106. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, et al.
Activating Mutations in the ABCC8 Gene in Neonatal Diabetes Mellitus.
New Engl J Med (2006) 355:456–66. doi: 10.1056/NEJMoa055068

107. Njølstad PR, Søvik O, Cuesta-Muñoz A, Bjørkhaug L, Massa O, Barbetti F,
et al. Neonatal Diabetes Mellitus Due to Complete Glucokinase Deficiency.
New Engl J Med (2001) 344:1588–92. doi: 10.1056/NEJM200105243442104

108. Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin
Gene Mutations as a Cause of Permanent Neonatal Diabetes. Proc Natl Acad
Sci (2007) 104:15040–4. doi: 10.1073/pnas.0707291104

109. Flanagan S, Edghill E, Gloyn A, Ellard S, Hattersley A. Mutations in KCNJ11,
Which Encodes Kir6. 2, are a Common Cause of Diabetes Diagnosed in the
First 6 Months of Life, With the Phenotype Determined by Genotype.
Diabetologia (2006) 49:1190–7. doi: 10.1007/s00125-006-0246-z

110. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic
Agenesis Attributable to a Single Nucleotide Deletion in the Human IPF1 Gene
Coding Sequence. Nat Genet (1997) 15:106–10. doi: 10.1038/ng0197-106

111. Gloyn AL, Diatloff-Zito C, Edghill EL, Bellanné-Chantelot C, Nivot S, Coutant R,
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