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A B S T R A C T

Emotional dysregulation symptoms in youth frequently predispose individuals to increased risk for mood dis-
orders and other mental health difficulties. These symptoms are also known as a behavioral risk marker in
predicting pediatric mood disorders. The underlying neural mechanism of emotional dysregulation, however,
remains unclear. This study used the diffusion tensor imaging (DTI) technique to identify anatomically specific
variation in white-matter microstructure that is associated with pediatric emotional dysregulation severity.
Thirty-two children (mean age 9.53 years) with varying levels of emotional dysregulation symptoms were re-
cruited by the Massachusetts General Hospital and underwent the DTI scans at Massachusetts Institute of
Technology. Emotional dysregulation severity was measured by the empirically-derived Child Behavior
Checklist Emotional Dysregulation Profile that includes the Attention, Aggression, and Anxiety/Depression
subscales. Whole-brain voxel-wise regression tests revealed significantly increased radial diffusivity (RD) and
decreased fractional anisotropy (FA) in the cingulum-callosal regions linked to greater emotional dysregulation
in the children. The results suggest that microstructural differences in cingulum-callosal white-matter path-
ways may manifest as a neurodevelopmental vulnerability for pediatric mood disorders as implicated in the
clinical phenotype of pediatric emotional dysregulation. These findings may offer clinically and biologically
relevant neural targets for early identification and prevention efforts for pediatric mood disorders.

1. Introduction

Emotional dysregulation (ED) is a frequently encountered pediatric
behavioral and emotional manifestation predictive of subsequent mood

disorder. It is characterized by a set of symptoms in which children fail
to manage their emotions, resulting in quickness to anger, inability to
refocus attention from strong emotions, and low frustration tolerance
(Biederman et al., 2012a; Biederman et al., 2012b). Better emotion
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regulation in youth has been found to be protective against adverse
physical and mental health outcomes (Bell and McBride, 2010; National
Research Council and Institute of Medicine, 2009), and longitudinal
evidence has shown that ED in childhood predicts subsequent onset of
mood disorders and suicidality (Biederman et al., 2009; Holtmann
et al., 2011). In addition, ED symptoms have been attributed to in-
creases in comorbidity among pediatric psychiatric disorders and are
associated with more severe functionally impairing outcomes (Arnold
et al., 2011; Biederman et al., 2012a; Biederman et al., 2012b; O'Brien
and Frick, 1996). Therefore, emotional dysregulation in childhood is
known to represent a prodrome to various adult psychopathologies
(Bertocci et al., 2016). Here, we asked whether emotional dysregulation
symptom in children can be identified by anatomically specific differ-
ences in white-matter microstructure.

Emotion regulation is conceptualized as top-down regulatory pro-
cesses associated with prefrontal and medial frontal control over
bottom-up emotional reactivity associated with limbic structures
(Gross, 2013; Ochsner et al., 2002; Ochsner et al., 2004). Therefore, ED
symptoms may reflect difficulty in the cortical regulation of emotions.
This suggests that the strength of brain connection between the emo-
tion-regulating frontal cortical regions and the emotion-generating
limbic subcortical structures may be diminished in children struggling
with ED. We hypothesized that abnormal connectional microstructure
between the frontal cortical and the subcortical (limbic) systems would
be predictive of ED symptom severity in children. Functional neuroi-
maging evidence concerning pediatric ED suggests abnormalities in
amygdala-insula resting-state connectivity (Bebko et al., 2015) and in
functional activation of prefrontal regions (Bertocci et al., 2014), the
limbic system (Bertocci et al., 2014; Tseng et al., 2016), and fronto-
limbic and sensorimotor areas (Portugal et al., 2016). Existing struc-
tural imaging data in youth regarding emotional dysregulation are
limited, and prior investigations were restricted to pre-defined white-
matter tracts of interest (Bertocci et al., 2016; Versace et al., 2015). One
study in youth regarding ED reported that greater cingulum length (and
not psychiatric diagnosis) at baseline assessment predicted lesser
emotional dysregulation in a 14.2-month longitudinal follow-up as
measured by a manic behavior scale (Bertocci et al., 2016). Another
study in youth with multiple different psychiatric diagnoses categorized
by emotional versus behavioral dysregulation characteristics reported
abnormalities of white-matter microstructure (decreased fractional
anisotropy and axial diffusivity) in uncinate fasciculus and cingulum
tracts associated with the emotional dysregulation (Versace et al.,
2015).

This study aligns with the NIH Research Domain Criteria (RDoC)
(Insel et al., 2010) (https://www.nimh.nih.gov/research-priorities/
rdoc/index.shtml) that expand from the conventional diagnosis-driven
to a dimensional-based approach, and aims to improve current under-
standing of the etiology of pediatric mood disorders. We combined a
clinical dimensional approach (a clinical-based ED profile derived from
the Child Behavior Checklist (CBCL)) and imaging method (diffusion
tensor imaging (DTI)) to characterize neuroanatomical correlates of ED.
Within the CBCL, the composite standard T scores combining the At-
tention, Aggression, and Anxiety/Depression subscales (A-A-A) effec-
tively identify children with various levels of ED symptoms and long-
itudinally predict subsequent onset of mood disorders and suicidality
(Achenbach, 1991; Biederman et al., 2009; Biederman et al., 2012a;
Biederman et al., 2012b). This specific profile—CBCL-Emotional Dys-
regulation (ED) (Achenbach, 1991; Biederman et al., 2009; Biederman
et al., 2012a; Biederman et al., 2012b)—has been useful to supplement
structured interviews for screening lifetime and current diagnoses of
major depressive and bipolar disorders (Carlson and Kelly, 1998;
Faraone et al., 2005; Geller et al., 1998; Hazell et al., 1999; Mick et al.,
2003; Uchida et al., 2014; Wals et al., 2001). An abnormal CBCL-ED
profile (i.e., combined T score of the A-A-A > 180) helps identify
children with increased susceptibility to developing mood disorders;
and a severe ED profile (i.e., T score of A-A-A > 210) has been

particularly sensitive for screening pediatric bipolar disorder (Faraone
et al., 2005; Mick et al., 2003; Uchida et al., 2014). In the current study,
we investigated 32 children (mean age 9.53 years) with low to high
levels of ED symptoms determined by the CBCL-ED measure, and em-
ployed DTI techniques to determine the brain connectional micro-
structure underlying the clinical dimension of ED. We used a con-
servative, whole-brain voxelwise search approach to reveal variations
in white-matter microstructure associated with ED severity. This ap-
proach allowed us to identify regional significance and locate brain
pathways in major white-matter tracts.

This study is the first investigation attempting to relate a well-va-
lidated clinical measurement of emotion dysregulation (CBCL-ED pro-
file) with a whole-brain measure of brain structure, specifically white-
matter microstructure. The whole-brain analysis allowed for evidence
of regional specificity about any white-matter correlates of ED symp-
toms (prior studies only examined restricted regions of interest).
Identifying neural substrates underlying pediatric ED is of critical
clinical importance because such knowledge could be used to provide
biologically-relevant neurodevelopmental targets for early detection
and prevention of mood disorders, guiding treatment choices and
aiding in novel therapeutic approaches for children at-risk (Hasler
et al., 2006; Phillips and Frank, 2006). The outcome of this study could
improve the understanding of the neural susceptibility for bipolar mood
disorders and may contribute to preventive strategies for young cohorts
at risk.

2. Material and Methods

2.1 Participants

Participants were recruited from the community by Massachusetts
General Hospital (MGH). Fig. 1 presents the PRISMA flow diagram
detailing subject enrollment. The final sample for the study consisted of
32 children (mean age=9.53, SD=1.83; 16 boys and 16 girls) with
low to high degree of ED difficulties. Children with neuroimaging
contraindications, suicidality, psychosis, and risk of harming others
were excluded. The effect of age was controlled in all statistics as a
covariate. The original data were supplemented with 10 children
from a prior study's control group (Chai et al., 2016) who under-
went the same psychiatric and neuroimaging assessment proce-
dures using the same scanner. . The effect of participants from dif-
ferent sources was statistically controlled as a covariate in all analyses.
As the current study focuses on the dimensional rather than diagnostic
approach, we did not exclude children with lifetime history of depres-
sion. Seven children had lifetime history of mood disorders, which was
statistically controlled for in all analyses. This study was approved by
the Institutional Review Boards of MGH and Massachusetts Institute of
Technology (MIT). (MGH approval ID: 2014P000439; MIT approval ID:
1,414,006,349). Written informed consent from all parents and assent
from all child participants were obtained.

2.2 Assessment of Emotional Dysregulation—Child Behavior Checklist
(CBCL)

The CBCL is a widely used clinical tool with empirically derived
scales and excellent psychometric properties (Achenbach, 1991; Althoff
et al., 2006; Faraone et al., 2005; Hudziak et al., 2005; Hudziak et al.,
2005; Mick et al., 2003). It characterizes a child's behavior in the past
six months by parent-report, and the data are transformed into di-
mensional behavioral problem standard scores (Angold et al., 1998). All
raw scores were converted to standardized T scores for clinical use
based on age and gender by a computerized program. The CBCL-ED
profile was derived from a composite score combining the standardized
T scores of the three (A-A-A) empirical syndrome scales: The CBCL
Anxious/Depressed subscale, Attention Problems subscale, and Ag-
gressive Behavior subscale (Fig. 2). Higher AAA score indicates greater
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ED severity. The CBCL assigns a minimum T score of 50 to any syn-
drome scale truncating low-end raw scores that are considered clini-
cally normal, and symptom-free (Achenbach and Rescorla, 2001;
Achenbach, 1991). We include participants with symptom-positive ED
profiles with ED scores > 150 that are clinically meaningful, and ex-
clude symptom-free participants (ED score= 150). The participants’ ED
scores in the study ranged from 151 to 265. The 1991 version of the
CBCL for children between 6 and 18 years was completed by the par-
ticipants’ parents.

2.3 Psychiatric Assessment

The Kiddie Schedule for Affective Disorder and Schizophrenia-
Epidemiological version (KSADS-E) modules on mood disorders were
used to define the presence or absence of major depressive or bipolar
disorder (Orvaschel, 1994). The KSADS-E is a semi-structured psy-
chiatric diagnostic interview designed for use in clinical and epide-
miologic research to obtain past and current history of psychiatric
disorders for children ages 6 to 17 years.

2.4 Magnetic Resonance and Diffusion Tensor Imaging

All participants underwent MRI scanning, including T1-weighted
whole-head anatomical and diffusion-weighted imaging scans in the
same session at the Martinos Imaging Center at the McGovern Institute
for Brain Research at MIT. Imaging data were acquired on a 3 Tesla
Siemens Trio scanner using a 32-channel head coil. T1 MPRAGE se-
quence parameters included 1.1×1.1 mm2 in-plane resolution,
1.0 mm slice thickness, field of view (FOV)=247×247 mm2, ma-
trix= 220×220, 176 slices, four-echo sequence with TE=1.57ms,
3.33ms, 5.09ms, and 6.85ms, and TR=2.53 s. Prospective acquisition
correction was used to mitigate artifacts due to head motion. The dif-
fusion-weighted scan sequence included 1 non-diffusion weighted re-
ference volume (b=0) and 30 diffusion directions (b=700 s/mm2)
with acquisition parameters: 2.0× 2.0 mm2 in-plane resolution,
2.0 mm slice thickness, FOV=256×256 mm2, matrix= 128×128,
TE= 84ms, and TR= 8.04 s.

2.5 Diffusion Data Processing

All diffusion data were pre-processed by DTIPrep for quality control
followed by TRACULA (TRActs Constrained by UnderLying Anatomy)
(Yendiki et al., 2011). Images in each diffusion weighted imaging (DWI)
series were aligned to the first non-diffusion-weighted image using af-
fine registration (Jenkinson and Smith, 2001), (Leemans and Jones,
2009; Rohde et al., 2004). The TRACULA-outputted fractional aniso-
tropy (FA) maps were further processed by Track-Based Spatial Statis-
tics (TBSS) (Smith et al., 2004; Smith et al., 2006) The FA volumes were
non-linearly aligned to a common space. FMRIB58_FA image was used
as the target image for a linear registration to the standard space. Each
participant's mean diffusion measure image was generated and thinned
to create an alignment-invariant tract representation (the ‘skeleton')
representing the centers of all tracts common to the group. The group
data were thresholded at 0.2 before statistical testing.

Fig. 1. PRISMA Diagram of subject enrollment. Breakdown of participant recruitment, screening procedures, and eligible data for analysis.

Fig. 2. The CBCL-ED profile and T score distribution. The CBCL-ED profile, or
AAA score, is a composite standardized T score combining three empirical
syndromal subscales of the CBCL: The Anxious/Depressed subscale, the
Attention Problems subscale, and the Aggressive Behavior subscale. Higher
AAA score indicates greater ED. Abnormal CBCL-ED profile (i.e., AAA score >
180) helps identify children with increased susceptibility to developing mood
disorders. Youth's ED profile has longitudinally predicted subsequent onset of
mood disorders and suicidality, and severe CBCL-ED score (i.e., AAA ≥ 210) is
particularly sensitive for screening for pediatric bipolar disorder. The figure is
produced with granted permission by dr. Achenbach.
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2.6 Whole-Brain Diffusion Analysis

Voxelwise analyses on the FA, mean diffusivity (MD), axial diffu-
sivity (AD), and radial diffusivity (RD) were carried out in Tract-Based
Spatial Statistics (TBSS) (Smith et al., 2004; Smith et al., 2006) using
general linear models by regressing the CBCL-ED score against each
diffusion measure throughout the whole brain to identify significant
regions correlated with ED symptom severity. Non-parametric rando-
mized permutation test was performed (number of permuta-
tions= 5000) (Winkler et al., 2014), correcting for multiple compar-
isons using the threshold-free cluster enhancement method (Smith and
Nichols, 2009) and controlling for family-wise error rate with a
threshold of p < 0.05. For any TBSS-significant findings, individual
mean diffusion weighted imaging (DWI) values were averaged across
significant voxels in the standard space for visualization in the scatter
plot.

2.7 Quality Assurance

Four DTI motion measures were derived by TRACULA (Yendiki,
2014), including the average translation score, rotation score, signal
drop-out score (percentage of bad slices), and signal drop-out severity
(Yendiki, 2014; Benner et al., 2011). A composite head motion score
was computed for each participant based on these 4 motion measures
(Yendiki, 2014). In all analyses, the individual motion composite score,
and age, data source, lifetime history of mood disorders were modeled
as nuisance covariates controlling for the impacts from these factors.

2.8 Tract-Based Region-Of-Interest (ROI) Analysis

To determine specific locations within tracts of interest associated
with ED based on the whole-brain analyses, tract-based analyses were
performed on the TRACULA outputted DWI values along each ROI
tract's ‘spline representation’ (the average center location of the tract).
Individual DWI values along each tract were interpolated from the
native space to standardized positions for group statistical tests on
comparable spline location points. For each spline point along each
tract of interest, Spearman's correlation test was applied across group to
determine the relationship between ED symptom severity and DWI
measures scores for that location. P value < 0.05 was applied to
threshold the results. Locations larger than three consecutive points
passing the threshold were considered significant.

3. Results

3.1 Whole-brain TBSS Results

TBSS voxel-wise analysis of all 32 children showed a significant
positive correlation between RD and CBCL-ED score (P < 0.05 voxel-
wise, corrected for multiple comparisons) located in the cingulum (CG)
and corpus callosum (CC) pathways (Fig. 3A - 3C), including the
anterior and posterior subdivisions of the cingulum (aCG; pCG), con-
nected with the body and the splenium of CC and (the anterior and
superior) corona radiata (CR), and extending laterally into small clus-
ters of the superior longitudinal fasciculus (SLF). The individual RD
extractions from the TBSS-significant regions visualized their sig-
nificant positive relationship with the ED symptom severity (Fig. 3D;
Spearman's Rho= 0.47, P=0.002). No other significant results were
found with FA, MD, or AD measures at the whole-brain level.

3.2 Tract-based Results

FA and RD measures were examined in relation to ED for tracts of
interest as the post-hoc assessment on each spline point for the dorsal
and ventral cingulum bundles bilaterally (dorsal bundle: cingulum
cingulate bundle/CCB; ventral bundle: cingulum angular bundle/CAB),

and the parietal and temporal bundles of the SLF bilaterally (parietal
bundle: SLFp; temporal bundle: SLFt). Results of FA analysis showed
significant locations of negative correlations with ED score along ven-
tral bundles of cingulum bilaterally (CAB; P < 0.05, Spearman's cor-
relation; Fig. 4B). Results of RD analysis showed significant positive
correlations with ED along all bilateral cingulum bundles (CCB and
CAB; P < 0.05, Spearman's correlation tests; Fig. 4A).

4. Discussion

Using whole-brain diffusion weighted imaging and a dimensional
framework that aligns with the NIH Research Domain Criteria (Insel
et al., 2010; Versace et al., 2015), this study revealed that pediatric
emotional dysregulation (ED), as a clinical dimension independent from
psychiatric diagnosis, is specifically linked to variation in white-matter
microstructure within cingulum-callosal neurocircuitry. Children with
greater ED severity showed increased RD and decreased FA in the
cingulum-callosal regions. These results contribute to improved un-
derstanding of the etiological nature of pediatric mood disorders. These
findings suggest that abnormal diffusivity of this circuitry may re-
present a developmental risk biomarker for bipolar mood disorders and
other syndrome-congruent disabilities.

4.1 Myelination related susceptibility reflected by increased RD and
decreased FA

In normal myelinated axons, diffusion is restricted in directions
perpendicular to the axon as characterized by RD. Elevated RD in-
dicates that the water molecules diffuse more freely and are less re-
stricted in perpendicular directions in the axons. RD has been demon-
strated to be particularly sensitive to demyelination, or changes in the
axonal diameters or density, as reported in animal and ex-vivo studies
(Alexander et al., 2007; Alexander et al., 2011; Feldman et al., 2010).
Animal studies have suggested RD as an indicator of myelin damage
(Aung et al., 2013) and RD has been observed to correlate with myelin
degradation in mice (Song et al., 2003). Moreover, increased RD cor-
responded to demyelination in the corpus callosum, followed by nor-
malization of RD in the recovery stage during remyelination (Song
et al., 2005; Sun et al., 2006; Xie et al., 2010). Unlike RD, the FA
measures the strength of directionality of the local white-matter tract.
Decreases in FA coupled with increases in RD, further indicate potential
underlying problems related to myelination (Song et al., 2002). Taken
together, the current findings of increased emotional dysregulation
severity associated with increased RD and decreased FA suggest pos-
sible neural susceptibility related to axonal myelination along the cin-
gulum and callosal pathways, which contribute to emotional dysregu-
lation in children.

4.2 Implicated cingulum-callosal neurocircuits underlying emotional
dysregulation

We found that emotional dysregulation in children correlated with
microstructures in the cingulum and connected callosal pathways that
extend laterally into corona radiate. The cingulum and callosal bundles
constitute the largest white matter tracts in the brain, connecting dorsal
cortical brain areas (including the frontal, visuoparietal, and sensor-
imotor systems) with ventral brain areas in the medial temporal lobe,
including the limbic system (Catani and Thiebaut de Schotten, 2012;
Schmahmann and Pandya, 2009). These are neural pathways im-
plicated in emotional attribution, attentional allocation, and executive
control, all of which play key roles in emotion regulation (Buhle et al.,
2014; Ochsner and Gross, 2005; Vandekerckhove et al., 2020). The
cingulum bundle primarily receives neuronal inputs from the cingulate
cortex (Catani and Thiebaut de Schotten, 2012), the brain region im-
plicated in the regulation of cognitive and emotional control processes
that is altered in mood disorders (Bush et al., 2000; Giuliani et al.,
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2011; Versace et al., 2015; Wessa and Linke, 2009). The callosal fibers
connect the two hemispheres and extend into sensorimotor regions (via
the corona radiata) and are involved in sensorimotor coordination and
maintaining balance of arousal and attentional vigilance (Rueckert and
Levy, 1996; Rueckert et al., 1999; Sauerwein and Lassonde, 1994).

The broad-range connections of cingulum and callosal pathways

support the multi-faceted nature of the clinical phenotype of ED oper-
ationalized via empirically-derived CBCL-ED, including components of
the Attention, Aggression, and Anxiety/Depression dimensions. The
cingulum and callosal fibers integrate cortical structures including the
cingulate, fronto-parietal regions, and temporoparietal junction, which
together constitute large-scale executive, attentional, and motivational

Fig. 3. TBSS whole-brain results of significant white matter re-
gions positively correlated with emotional dysregulation char-
acterized by CBCL-ED. (3A) The skeleton map red color shows
where RD significantly and positively correlated with ED
symptom severity along the cingulum (CG) and corpus callosum
(CC), specifically including the anterior and posterior subdivisions
of the cingulum (aCG; pCG) that are connected with the body and
the splenium of corpus callosum (CC; sCC) and the anterior to
superior corona radiata (CR), extending laterally into small clus-
ters of the SLF. (3B) The significant brain areas are filled into the
mean FA map to visualize implicated local tracts (red color). (3C)
3D rendering of the TBSS-significant filled images in standard
template brain, where RD significantly showed a positive re-
lationship with the severity of ED symptoms. All images are
threshold with P < 0.05 voxelwise and corrected by multiple
comparisons. The FMRIB58 1mm standard FA template image is
used for overlay display. The JHU DTI-based atlases are used
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) to determine
white-matter locations of significant results. (3D) Scatter plot vi-
sualizes mean RD values extracted from the significant brain re-
gions (Y-axis) plotted against the CBCL-ED scores (X-axis, with
150 being the lowest obtainable ED score) and with the prediction
line (middle line) and 95% confidence interval (curved lines). The
plot shows that worse (higher) CBCL-ED scores are associated
with higher values of RD. The Spearman's correlation coefficient
of the relationship (rs) is displayed for illustrational purposes.

Fig. 4. Tract-based results of sig-
nificant regions where diffusivities sig-
nificantly correlate with ED. Post-hoc
examinations along tracts of interest
show significant locations of positive
correlations between RD and ED
(yellow color in brain images in 4A)
and negative correlations between FA
and ED (4B) along the bilateral cin-
gulum bundles (P < 0.05; dorsal
bundle= cingulum cingulate bundle,
CCB; ventral bundle= cingulum an-
gular bundle, CAB). The bar graphs
visualize the strength of the correla-
tions (Y-axis, Spearmans’ correlation
coefficient) along each tract's spline
point (X-axis).
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neurocircuitries connected by long-range white matter tracts allowing
for network synchronization (Catani and Thiebaut de Schotten, 2012).
Imbalance between the dorsal brain network (including the anterior
and posterior cingulate and prefrontal cortical regions) and the ventral
brain network (including the limbic system) has been proposed to un-
derlie deficient emotion regulation in mood disorders, particularly bi-
polar disorder (Wessa and Linke, 2009). This imbalance involves not
only compromised down-regulation of the emotion-related ventral,
limbic activity, but also insufficient up-regulation of the excitatory
dorsal, frontal activity.

The current pediatric finding complements previous evidence for
associations between cingulum differences and emotional dysregulation
in adolescents and adults. The correlation between diffusion from the
cingulum region and the emotional dysregulation severity measured by
the CBCL-ED tool is consistent with a region-of-interest spectroscopy
study (Wozniak et al., 2012) that examined the relationship between
the anterior cingulate cortex glutamate concentrations levels and se-
verity of ED measured by the CBCL-ED scores. Increases in ACC gluta-
mate levels were positively related to ED severity among participants
with abnormal ED profiles (CBCL-ED scores > 180) (Wozniak et al.,
2012). In addition, greater cingulum fiber length predicted lower mania
scores in adolescents with ED symptoms compared with controls
(Bertocci et al., 2016). Increased AD was associated with more severe
manic symptoms in the cingulum tract in emotionally dysregulated
adolescents compared with controls (Versace et al., 2015). Higher FA in
the cingulum was associated with high emotional approach, and in-
creases in MD in the body and the splenium of the corpus callosum were
associated with low emotional approach in healthy adult females
(Vandekerckhove et al., 2020). Furthermore, corpus callosum fibers
were also found to be thinner in adult patients with bipolar disorder
relative to healthy controls, with particularly reduced thickness in the
splenium (Walterfang et al., 2009).

4.3 Clinical implications: risk neuromarker for pediatric mood disorders

Clinical evidence suggests that the CBCL-ED profile (or the CBCL A-
A-A score) is useful in the differential diagnosis of pediatric mood
disorders and in the longitudinal prediction of mood disorders. Clinical
data has shown that the CBCL-ED score effectively assisted with diag-
nostic precision in structured interviews to sensitively identify mood
disorders in youth (Carlson and Kelly, 1998; Faraone et al., 2005; Geller
et al., 1998; Hazell et al., 1999; Mick et al., 2003; Uchida et al., 2014;
Wals et al., 2001), and has been associated with current and future
diagnosis of mood disorders (Spencer et al., 2011; Uchida et al., 2014).
An elevated CBCL-ED score (i.e., A-A-A score > 180) has identified
children with increased susceptibility to developing mood disorders,
and a severely elevated ED profile (i.e., A-A-A score ≥ 210) was par-
ticularly sensitive for identifying children who were later diagnosed
with pediatric bipolar disorder (Arnold et al., 2011; Biederman et al.,
2012a; Biederman et al., 2012b; O'Brien and Frick, 1996). Further, the
CBCL-ED score was predictive of children developing mood disorders in
a 10-year prospective longitudinal study: A high CBCL-ED score at
baseline predicted subsequent diagnoses of major depressive disorder
and bipolar disorder, as well as syndrome-congruent functional im-
pairments ranging from school problems to interpersonal difficulties
and higher risk for psychiatric hospitalization (Biederman et al., 2009).

In the current study, we found that the CBCL-ED score, which is
clinically associated with risks for development of mood disorders in
general and bipolar disorder in particular, is linked with compromised
microstructure along the cingulum-callosal brain connection tracts,
implicating possible etiological changes that are frequently reported in
mood disorders (Bush et al., 2000; Giuliani et al., 2011; Versace et al.,
2015; Wessa and Linke, 2009). Converging evidence has indicated that
abnormalities in the frontotemporal white-matter development are
highly implicated in the emotional dysregulation characteristic in bi-
polar mood disorders (de Zwarte et al., 2014). Impaired white-matter

integrity in children and adolescents with bipolar illness has been found
in the pericingulate and mid-posterior cingulate-callosal fibers ex-
tending into the parietal-occipital corona radiata regions (Barnea-
Goraly et al., 2009; de Zwarte et al., 2014; Frazier et al., 2007; Gao
et al., 2013; Gonenc et al., 2010) as well as observed in the callosal
regions (Caetano et al., 2008). The cingulum-callosal bundles connect
the dorsal cortical brain systems with the limbic system, particularly via
its posterior-to-inferior (angular) bundle. These brain circuits connect
the cortico-limbic emotional system, the fronto-parietal attentional
system, and the frontal motor-control system. The CBCL-ED measure-
ment may index this brain network because the A-A-A profile captures
the neuropsychological constructs (Anxiety/Depression, Attention, and
the Aggression) supported by cingulum-callosal structures linking the
required brain networks.

4.4 Limitations and future directions

The current DTI measure did not fully characterize crossing fibers,
thus we are limited to interpreting the small significant regions of the
SLF that could intersect with corona radiata and cortical spinal tract.
Future research using more advanced microstructural measures (e.g.,
diffusion spectrum imaging) may further characterize potential attri-
bution of brain regions of emotional dysregulation in developmental
cohorts. Incipient pediatric mood disorders can follow a unipolar or
bipolar course, which require different treatment approaches. This
prompts future work aimed at identifying clinical biomarkers of risk to
help identify children at risk of one type of mood disorder or another.

5. Conclusions

The present study provides the first whole-brain neurobiological
account underlying the pathophysiological risk mechanism of ED for
pediatric mood disorders. Findings revealed that weakened micro-
structural integrity in the cingulum-callosal pathways is associated with
elevated severity of ED symptoms. Altered cingulum and callosal mi-
crostructure may manifest as a susceptibility neural biomarker pre-
dictive of a potential pathological course towards mood disorders. New
insights from this study may shed light on ongoing efforts to find sen-
sitive predictive tools, develop preventive intervention strategies, and
improve treatment precision and outcomes.
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