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Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been
extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to
pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently.
Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological
mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector
(iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses
and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by
independent replications across distinct populations. These integrative analyses identify multiple high-confidence
depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in
this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly
predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene
expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological
processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and
long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and
psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and
might be a potential target for new antidepressants.

Introduction
A primary current challenge in the psychiatry field is to

dissect the underlying neurobiological basis of common
mental illnesses such as major depression, which is said to
be one of the ten most disabling conditions in the world1.
Given the substantial heritability of major depression

(~37%)2, the application of human genetic approaches is
believed to both promote the understanding of its biological
mechanisms and benefit discovery and development of
effective clinical treatment strategies. Indeed, recent
genome-wide association studies (GWAS) of depressive
subjects and healthy controls have identified multiple sta-
tistically robust loci3,4, providing numerous candidates for
in-depth exploration of its pathological mechanisms.
Notably, there is growing consensus on such “in-depth
functional exploration” of psychiatric disease-related loci,
and several critical steps have been raised: (1) probe the risk
genes from risk locus; (2) depict (novel or refined) disease
mechanisms based on the risk genes; (3) assess the drugg-
ability of the risk gene product itself or a proximate
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pathway5,6. This research regimen has been widely applied
in recent years, however, the fact that majority of the disease
risk loci identified by GWAS reside in the noncoding
genomic regions has significantly hampered the accom-
plishments in elucidating their biological and pathological
impacts. Fortunately, accumulating studies have found that
noncoding variations of complex diseases tend to be asso-
ciated with mRNA expression7, and analyzing the expres-
sion quantitative trait loci (eQTL) effects of the risk alleles
in relevant tissues is therefore a plausible strategy to probe
the risk genes from risk locus8–10. In line with this, several
integrative analyses using GWAS and brain eQTL data have
revealed susceptibility genes and potential biological
mechanisms for psychiatric disorders11–13.
For depression, recent genome-wide linkage dis-

equilibrium (LD) score regression analyses have shown
strong genetic correlations between this illness and mul-
tiple quantifiable behavioral phenotypes (e.g., emotional
traits and cognitive functions)4. In addition, accumulating
clinical and basic data derived from depression patients
and inbred model mice have demonstrated that depres-
sion is associated with multiple levels of abnormalities of
brain areas engaged in emotional and cognitive processes
(e.g., dorsolateral prefrontal cortex (DLPFC) and hippo-
campus), including aberrant structure and function as
well as neuronal atrophy and synaptic loss14–17. The
observation that some antidepressants likely exert effects
via blocking or reversing these aberrations further con-
firmed that such phenotypes might play pivotal roles in
depression18,19. Therefore, translating genetic findings of
depression may provide valuable insights into its patho-
logical mechanisms and even facilitate therapeutic
development, however, such translational approach
requires thorough integrations of the data obtained from
multiple perspectives including genomics, neuroscience,
pharmacology, and biochemical20.
In the present study, with an aim to identify risk genes

and relevant mechanisms of depression, we have
employed summary data-based Mendelian randomization
(SMR)21,22 and Bayesian integrative risk gene selector
(iRIGS)23 to integrate omics data from GWAS, DLPFC
eQTL, and genome-scale chromosome conformation
capture (Hi-C). Multiple depression risk genes are iden-
tified after combined investigation of integrative results,
among which the netrin 1 receptor (DCC) gene is prior-
itized as a high-confidence candidate. Risk alleles corre-
lated with brain DCC mRNA levels show robust link with
the onset of depression. We also find that DCC asso-
ciating variants significantly predict depression relevant
biological phenotypes, suggesting participation of this
gene in the biological processes of depression pathogen-
esis. These results further confirm the previous functional
analyses of DCC supporting the hypothesis that it is an
authentic and important risk gene for depression.

Methods and materials
All the protocols and methods used in this study were

approved by the institutional review board of the
Kunming Institute of Zoology, Chinese Academy of
Sciences.

Depression GWAS data
European GWAS data
Depression GWAS data was retrieved from that

Howard et al. meta-analyses of UK Biobank, PGC2, and
23andMe GWAS datasets (a total of 246,363 cases and
561,190 controls)4. There were originally 102 independent
loci identified as showing genome-wide significant asso-
ciations with depression in Europeans4. Due to the
restrictions on data share policy of 23andMe sample, the
authors publicly deposited the genome-wide statistics
combining UK Biobank and PGC2 GWAS datasets
(170,756 cases and 329,443 controls) (https://datashare.is.
ed.ac.uk/handle/10283/3203), which was utilized for the
current analyses. Detailed information of sample char-
acteristics, genotyping method, and statistical analyses of
each GWAS dataset can be found in the original studies4.

Chinese GWAS data
Data of the GWAS of major depression in Han Chinese

conducted by the CONVERGE Consortium was collected
for the current study24. A total of 5303 patients and 5337
non-psychiatric controls after quality control were inclu-
ded. Data was accessed via the public sharing portal at
https://doi.org/10.6084/m9.figshare.3840696. Details of
the samples, genotyping method and statistical analyses
can be found in the initial report24.

SMR integrative analyses
Mendelian randomization (MR) analyses utilize a

genetic variation as the instrumental variable to examine
causative effects of defined exposure variables (e.g., gene
expression) on an outcome (e.g., illness)25. It is thus
plausible to use MR analysis to identify the risk or even
causal genes of complex illnesses through integrating the
eQTL data. However, one potential handicap of MR
analyses is that this method requires a large cohort of
individuals with simultaneously available data on their
phenotype, genotype and gene expression profiles, which
is usually difficult to recruit. As a possible solution, Zhu
et al. have developed a novel alternative method called
summary data-based Mendelian randomization (SMR),
which requires summary level statistical data from inde-
pendent GWAS and eQTL datasets for the integration
and prioritization of genes whose expression levels are
relevant to the illness due to pleiotropic effects21. Based
on SMR, the authors further developed a multi-SNP-
based SMR test (--smr-multi) that considers multiple
SNPs at a cis-eQTL locus in the SMR test22, and this
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method is applied in this study. We respectively inte-
grated the brain eQTL datasets from BrainSeq Phase 226,
CommonMind27, and PsychENCODE28 with the Eur-
opean depression GWAS4 to perform the SMR analyses.
Details of the data and relevant procedure conducted are
discussed below.
The BrainSeq Phase 2 is a RiboZero RNA-seq eQTL

database of human brain tissues26. Data obtained from the
DLPFC tissues of 397 individuals older than 13 were inclu-
ded, and gene-level expression eQTL was calculated based
on the formula: log2(RPKM+1) ~SNP+ diagnosis+
sex+ SNP PCs+ expression PCs. The authors identified
1,577,964 eQTL associations at a false discovery rate
(FDR) ≤ 1% between 945,693 genetic variants and 13,510
genes, and the eQTL summary data were downloaded
from https://s3.us-east-2.amazonaws.com/libd-brainseq2/
SupplementaryTable15_eQTL.tar.gz, and then trans-
formed into SMR binary (BESD) file using SMR (version
1.02) for subsequent analyses21.
The CommonMind dataset contains polyA+ RNA-seq

eQTL data of DLPFC tissues collected from 467 European
donors (age > 17 years old)27. The mRNA levels of genes
were normalized using log (CPM) (read counts per mil-
lion per reads) and adjusted for diagnosis, sex, institution,
AOD, PMI, RIN, RIN2, clustered LIB, and 20 SVs. The
expression levels were then quantified using a linear
eQTL analysis on the imputed genotype dosages based on
the formula: adjusted gene expression ~SNP+ 5 ancestry
vectors+ diagnosis. This dataset identified 3,725,946 sig-
nificant cis-eQTL at a FDR ≤ 5% between 16,089 genes
and 2,072,425 SNPs. We downloaded the eQTL summary
data from Synapse (https://www.synapse.org/#!Synapse:
syn5652278) and transformed them into BESD file using
SMR (version 1.02) for the integrative analyses21.
A recent study provided the PsychENCODE eQTL

summary data at http://resource.psychencode.org/28.
Briefly, the authors calculated the eQTL association results
after correcting for 100 hidden covariate (HCP) factors28,
and the data was generated based on 1387 individuals
recruited by the research projects of CommonMind,
CommonMind-HBCC, BrainGVEX, LIBD, and BipSeq
etc.29. Therefore, although duplicative individuals exist
between PsychENCODE and CommonMind and BrainSeq
datasets, the PsychENCODE is a larger eQTL dataset with
a stronger detection power. The PsychENCODE eQTL
summary data in BESD format was directly downloaded
from http://resource.psychencode.org/28.
For SMR analysis, firstly, these eQTL summary statistics

were transformed to the binary format files named BESD,
as the key input files of SMR program. In addition, the
other major input file was the genome-wide statistics of
depression GWAS. SNPs and genes in the major histo-
compatibility complex (MHC) extended region were
removed before SMR analyses due to the complexity of

this genomic region (chr6:26M-34M, hg19). The thresh-
old of eQTL p-value in the SMR analysis was set to be
1.00 × 10−5 (--peqtl-smr 0.00001) and the default values
of other parameters were used. The genes with p-value
less than 5.00 × 10−4 of multi-SNP-based SMR test and
passed the HEIDI test (PHEIDI > 0.005) were considered as
susceptibility genes, whose mRNA expression alterations
associated with risk SNPs of depression.

Integrative risk gene selector (iRIGS) analyses
The growing knowledge of the importance of physical

interactions between distal regulatory elements (DREs)
and target promoters has promoted recent development
of multiple technologies (e.g., Hi-C) capable of detecting
such interactions30,31. Through integrating results of
studies applying these approaches, Wang et al.23 devel-
oped a Bayesian framework, named iRIGS, to probabil-
istically rank high-confidence risk genes at each GWAS
locus of schizophrenia. Following their method, we herein
focused on the 102 independent lead risk SNPs from
previous European depression GWAS4, and used the
iRIGS analyses to estimate whether these index SNPs
interacted with promoters of particular genes based on
the omics data of short-range and long-range enhancer-
promoter links. These omics data were derived from four
sources in three independent published studies as pre-
viously described23. The first study is the Hi-C analyses of
the cortical/subcortical plate and the germinal zone of
human cerebral cortex conducted by Won et al.31. This
study reported 221,069 and 228,323 DRE-promoter links
in the cortical/subcortical plate and the germinal zone,
respectively. The second study is a capture Hi-C analysis
of the cell line GM12878, a human Epstein-Barr virus
(EBV)-transformed lymphoblastoid cell line30 and identi-
fied 1,618,000 DRE-promoter links. The third study is
conducted by the FANTOM5 project to infer the
enhancer-promoter links across multiple human tissues,
and eventually obtained 66,899 enhancer-promoter
links32. The data of these studies were placed at https://
www.vumc.org/cgg/irigs in a ready-to-use format for
iRIGS analyses23. The R code of iRIGS were run using the
default pipeline. The Bayesian posterior probability of
observing the link between a SNP and a particular gene
higher than 0.8 was considered to be strong, in which case
the gene is a potential risk gene regulated by the SNP.

Gene-wise MAGMA analyses
The gene-wise p-values were respectively calculated

using MAGMA (v1.07b)33 based on the depression
GWAS statistics from Europeans and Han Chinese4,24.
MAGMA applies Brown’s method to combine SNP p-
values which will consider LD, and the window size of
each gene is defined as the region spanning 35-kb
upstream and 10-kb downstream of this gene as
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previously described3. The snp-wise=mean gene analysis
model was used in the present study, which tests the mean
SNP association for each gene. For the LD reference, we
utilized European-ancestry and Han Chinese-ancestry
individuals from the 1000 Genomes Project (Phase 3)34.

LD analyses
The Haploview program (version 4.1)35 was utilized to

estimate LD between paired SNPs using the r2 algorithm,
and to determine the haplotype blocks based on the SNP
data from the 1000 Genomes Project34. The regional
association results are plotted using LocusZoom (http://
locuszoom.sph.umich.edu/locuszoom/)36.

GWAS of depressive symptoms, neuroticism, life
satisfaction, positive affect, and well-being spectrum
Phenotypes such as neuroticism, life satisfaction, and

positive affect are generally believed to be associated with
depression. Specifically, neuroticism refers to a person-
ality trait characterized by significantly instable mood in
response to stress-inducing events37, and is presumed to
be a risk factor for depression38. Phenotypes of the well-
being spectrum, including depressive symptoms, neuro-
ticism, life satisfaction, and positive affect, have all been
found genetically correlated with depression38. We
therefore collected GWAS resources of these biological
phenotypes from a recent study39, in which the authors
measured the well-being spectrum using survey questions
on depressive symptoms, neuroticism, life satisfaction,
and positive affect, and applied multivariate genome-
wide-association meta-analysis (GWAMA) on univariate
GWAMAs of depressive symptoms (N= 1,295,946),
neuroticism (N= 582,989), life satisfaction (N= 80,852),
and positive affect (N= 410,603), as well as the combi-
natory well-being spectrum (N= 2,370,390).

GWAS of cognitive performance and intelligence
The data of cognitive performance were retrieved

from a recent GWAS of 257,828 individuals40. In their
study, the authors conducted a meta-analysis of the
general cognitive ability GWAS by the COGENT con-
sortium41 and additional results of the recent cognitive
performance analyses in UK Biobank42. Meanwhile, the
authors also conducted GWAS analysis of educational
attainment (N= 766,345)40, a proxy phenotype of cog-
nitive abilities that is believed to also reflect some per-
sonality traits. In addition, we also retrieved the results
of intelligence from a GWAS of 269,867 individuals into
the current study43. The authors calculated and applied
a common latent g factor underlying multiple dimen-
sions of cognitive functioning during statistical analyses
given the distinct approaches of intelligence measure-
ment in each sample.

GWAS of brain imaging phenotypes
Statistics of brain imaging analyses were extracted from

a recent GWAS of 3144 functional and structural brain
imaging phenotypes (e.g., hippocampal volume, putamen
volume, task functional MRI median BOLD faces) in
8,428 subjects by the UK Biobank (accessed at http://big.
stats.ox.ac.uk/)44. In this website, GWAS results of other
related phenotypes were also deposited (i.e., GWAS of a
total of 3999 UK Biobank brain imaging phenotypes and
other traits). We also collected the independent data from
the ENIGMA Consortium GWAS of different subcortical
brain volumes (accumbens, amygdala, caudate, hippo-
campus, pallidum, putamen, and thalamus)45. According
to the previous study44, there was a strong correlation
between the UK Biobank and ENIGMA imaging samples,
suggesting that methodologies applied in the measure-
ment and statistical analyses of these phenotypes were
relatively consistent. In addition, a more recent GWAS
has been conducted to meta-analyze imaging data from
CHARGE, ENIGMA and UK Biobank, resulting in a total
of 38,851 subjects46.

RNA-seq, mRNA correlation, and pathway analyses in
human brains
We downloaded the aligned (hg19 as reference genome)

RNA-seq data (bam files) of the DLPFC tissue from three
independent sample pools (BrainGVEX, CommonMind,
and LIBD)27,29, and only non-psychiatric controls were
utilized to prevent effects of confounders relevant to
medical treatment. Based on this criterion, 59 controls
from BrainGVEX, 50 controls from CommonMind, and
70 controls from LIBD were included. We applied the
same procedures and criteria for the quality control across
the three RNA-seq datasets as previously described47,48.
The counts of aligned reads at the gene level were cal-
culated using featureCounts according to the annotation
file of GRCh37p1349. We calculated the transcripts per
million reads (TPM) of each gene using R program fol-
lowing a previous study28, and only kept the protein-
coding genes with their average TPM ≥ 1.0 for the fol-
lowing analyses. The TPM of each gene was log2 trans-
formed followed by Pearson analyses to assess their
correlations with DCC. We used clusterProfiler50 to
analyze whether the “DCC-correlated” genes were sig-
nificantly enriched in specific molecular pathways and
biological processes via Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) annotations
based on the integrative database called org.Hs.eg.db, and
FDR q-value less than 0.1 was set to be reliable. We then
performed semantic similarity analyses with GOSem-
Sim51 to narrow down those GO terms based on their
similarity between each other (r > 0.5 was considered
highly similar).
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Results
Integrative analyses of multi-omics data identified high-
confidence risk genes for depression in Europeans
We applied multi-SNP-based SMR method to test the

associations between risk SNPs of depression identified in
the GWAS study4 and mRNA expression based on two
independent DLPFC eQTL datasets from BrainSeq Phase
2 (N= 397)26 and CommonMind (N= 467)27, respec-
tively. Subsequently, we performed additional analyses to
confirm these findings using a larger eQTL dataset from
PsychENCODE29, which consisted of more individuals
(N= 1387) that were also partly overlapped with those in
CommonMind and BrainSeq. The number of genes
included in the SMR analysis were 5502 (BrainSeq Phase
2), 6036 (CommonMind) and 13,567 (PsychENCODE),
respectively. The remaining genes were 5,455, 5,981 and
13,372 after ignoring the genes failing to pass the HEIDI
test and 3239 genes were overlapped in all datasets.
Finally, 16, 18, and 30 susceptibility genes (PSMR-multi ≤
5.00 × 10−4) were identified in the three eQTL datasets,
respectively. As expected, SMR analyses using this larger
eQTL samples replicated most of the risk genes identified
in the earlier datasets, and a total of 10 risk genes
exhibited statistical significance throughout all the SMR
analyses (Fig. 1; Table 1).
We then conducted iRIGS analyses to identify potential

risk genes through evaluating the physical interactions
between enhancers and promoters. Briefly, whether the
102 independent lead risk SNPs from previous European
depression GWAS were involved in such interactions
were examined4. SNPs and genes in the MHC extended
region were removed before iRIGS analyses, and the
enhancer-promoter links between 1229 genes and these
depression risk SNPs were then captured. Our results
revealed that the posterior probabilities of 16 genes were
higher than 0.8, indicating that they are potentially high-
confidence depression risk genes under the influences of
the risk SNPs (Fig. 1 and Table S1).
Through the SMR and iRIGS analyses, two genes were

identified in both approaches (marked in bold and
underlined in Table 1). The first gene, LRFN5 at 14q23.1,
showed significant associations in SMR (PSMR-multi=
4.05 × 10−6 in BrainSeq Phase 2, PSMR-multi= 1.96 × 10−4

in CommonMind, PSMR-multi= 4.11 × 10−4 in Psy-
chENCODE) and iRIGS analyses (posterior probability=
1.000). This gene encodes a protein of leucine rich repeat
and fibronectin type III domain containing 5, and pre-
vious studies implicated its crucial roles in synapse for-
mation and differentiation52–56.
Another high-confidence risk gene is DCC at 18q21.3

which encodes a transmembrane receptor for the protein
netrin-1. DCC exhibited significant association signals in
both SMR (PSMR-multi= 6.58 × 10−5 in BrainSeq Phase 2,
PSMR-multi= 1.27 × 10−4 in CommonMind, PSMR-multi=

2.78 × 10−5 in PsychENCODE) and iRIGS analyses (pos-
terior probability= 0.828). DCC has been extensively
described in a recent review regarding its potential roles
in the central nervous systems and psychiatric disorders57,
in brief, this gene is highly expressed in dendritic spines of
pyramidal neurons, and exerts pivotal regulatory effects
on synaptic function and plasticity in adult brain58. The
Dcc protein is known to be a cell adhesion molecule that
mediates the effects of netrin-1 on axon outgrowth59–61,
and deficits of Dcc in the adult forebrain neurons results
in aberrant long-term potentiation (LTP), long-term
depression (LTD) and dendritic spine morphology, as
well as impaired spatial and recognition57,58. Intriguingly,
recent studies have shown that DCC mRNA levels in the
prefrontal cortex of antidepressant-free depression
patients who committed suicide were significantly ele-
vated comparing with control subjects (i.e., DCC mRNA
levels were 48% higher in cases compared to control
subjects in the first cohort by Manitt et al. (p < 0.026)62,
and were ~40% higher in cases in comparison with con-
trols in the second independent cohort by Torres-Berrío
et al. (p= 0.02)63). Moreover, in a blood transcriptome
analysis, DCC was again significantly upregulated in
depression patients compared to controls in two inde-
pendent samples (GSK-HiTDIP cohort, fold change=
1.085, p= 0.0231; Janssen-BRC cohort, fold change=
1.137, p= 0.000655)64. In addition, in the mPFC of mice
exhibiting chronic social defeat stress (CSDS) exposure-
induced depressive-like symptoms, expression level of
Dcc is also increased63; on the other hand, decreased Dcc
expression in the mouse PFC pyramidal neurons pro-
duces resilience against stress-induced depression-like
phenotypes63.

Independent replications across populations further
confirmed the association of DCC with depression
Our analyses so far suggest pivotal roles of the SNPs

spanning LRFN5 and DCC in the risk of depression in
Europeans4. We then performed the gene-level analyses via
MAGMA33, which primarily consider LD structures. Intri-
guingly, the significant associations between these two
genes with the risk of depression were again observed in
Europeans (PMAGMA= 1.01 × 10−11 for LRFN5, PMAGMA=
2.85 × 10−12 for DCC, Table 1). Given the emerging evi-
dence supporting the notion that vital genetic markers for
psychiatric disorders are normally associated with the dis-
ease across different ethnic populations65 (e.g., psychiatric
risk loci in ZNF804A, FADS1, and VRK2 show significant
associations in both Europeans and East Asians66–71), we
then examined whether LRFN5 and DCC were also asso-
ciated with depression in Han Chinese subjects through
MAGMA gene-level analyses using a published Han Chi-
nese GWAS dataset (5303 cases and 5337 controls)24.
Notably, DCC was associated with depression as well in

Li et al. Translational Psychiatry           (2020) 10:98 Page 5 of 15



Han Chinese despite the lower level of statistical sig-
nificance compared with that in Europeans (PMAGMA=
3.21 × 10−4, Table 1), but LRFN5 was not associated with
depression in Han Chinese (PMAGMA= 0.406, Table 1). A
detailed examination found that none of the SNPs spanning
LRFN5 were significantly associated with depression Han
Chinese (all p > 0.01, Fig. S1).

Identification of SNPs in DCC showing significant
associations with depression in both populations
It is generally acknowledged that potential causal var-

iants usually exhibit consistent associations with the ill-
nesses across populations, whereas the associations for

other linked variants may be significantly affected by the
different LD structures between populations72,73. To fur-
ther explore the genetic architecture of complex illnesses,
cross-population replication analysis is usually necessary.
In this study, our detailed examinations found that
although multiple SNPs spanning DCC showed genome-
wide significant associations with depression in Eur-
opeans, their associations with the illness in Han Chinese
were distinct possibly due to variations in LD (Fig. 2). For
example, rs7227069 showed genome-wide significant
association with depression in 170,756 European cases
and 329,443 matching controls collected by UK Biobank
and PGC2 (rs7227069, Pdepression= 4.64 × 10−9, odds ratio

Fig. 1 Multi-SNP-based SMR analyses through integrating different DLPFC eQTL datasets (BrainSeq Phase 2, CommonMind, and
PsychENCODE), and iRIGS analyses of the risk SNPs form European depression GWAS. Ten genes of PSMR-multi less than 5.00 × 10−4 in all three
eQTL datasets and sixteen genes of posterior probability more than 0.8 in iRIGS were marked in red.
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(OR)= 1.026 for A-allele, Fig. 2), and when the 23andMe
GWAS dataset was also added, the association between
rs7227069 and depression was strengthened in the
new sample pool of 246,363 cases and 561,190 controls
(Pdepression= 1.50 × 10−11, OR= 1.024 for A-allele)4. The
risk association was further confirmed in an independent
cohort of 414,055 cases and 892,299 controls (Pdepression=
8.89 × 10−19, OR= 1.025 for A-allele)4. While in Han
Chinese subjects, rs7227069 was only marginally asso-
ciated with depression (Pdepression= 0.071, OR= 1.127 for
A-allele in 5303 cases and 5337 controls, Fig. 2)24. By
comparing the allele distributions of rs7227069 in Eur-
opeans and Chinese, we found that the frequency of A-
allele at rs7227069 was 0.425 in Europeans, but it is not a
common SNP in Han Chinese (frequency of A-allele is
0.038), which likely contributed to the different levels of
association significance of this SNP with depression
between populations.
Notably, we found another SNP rs1367635 in DCC,

which was genome-wide significantly associated with
depression in Europeans (Pdepression= 4.35 × 10−9,
OR= 1.026 for C-allele in 170,756 cases and 329,443
controls, Fig. 2), was also highly associated with this
illness in Han Chinese (Pdepression= 1.21 × 10−5, OR=
1.173 for C-allele in 5303 cases and 5337 controls,
Fig. 2). Rs1367635 and rs7227069 lie more than 129.0-
kb apart in different introns of the DCC gene. They are
in moderate LD in Europeans (r2= 0.61), while low LD
in Han Chinese (r2= 0.14), highlighting the genetic
heterogeneity in this locus between populations.
Rs1367635 is a common SNP in both Europeans and
Han Chinese despite different allelic frequencies
between populations (C-allele, 0.501 in Europeans ver-
sus 0.183 in Han Chinese), and rs1367635 exhibited a
stronger association signal with depression in Han
Chinese than rs7227069 probably due to its higher
minor allele frequency (MAF) in this population.
Although the relatively smaller sample size of the cur-
rent depression GWAS of Han Chinese (5303 cases and
5337 controls)24 has limited the level of statistical sig-
nificance of the association signal of rs1367635 with
depression, the effect size of rs1367635 on the risk of
depression is comparable to other risk loci identified in
genome-wide analyses3. We also performed a power
analysis of rs1367635 according to its effect size on the
risk of depression in Han Chinese and its allelic fre-
quency in this population. This analysis estimated that
at least 39,628 cases and controls in total were needed to
reach the 80% power of detecting genome-wide sig-
nificant association. Further analyses of the association
between rs1367635 and depression in a large enough
cohort will likely reveal a genome-wide level significant
association.
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The depression risk alleles indicated higher DCC mRNA
level in DLPFC
We examined whether the depression risk SNPs (e.g.,

rs7227069 and rs1367635) spanning DCC were also
associated with DCC mRNA expression in DLPFC.
Rs7227069 showed significant association with mRNA
expression of DCC in BrainSeq Phase 2 eQTL dataset,
which included the RiboZero RNA-seq results of DLPFC
tissues from 397 individuals (PeQTL= 5.36 × 10−5, Fig. 3);
in the CommonMind polyA+ RNA-seq eQTL dataset of
467 individuals, rs7227069 again exhibited significant

association with DCC mRNA levels (PeQTL= 4.41 × 10−6,
Fig. 3); while rs7227069 was not covered in the Psy-
chENCODE dataset of 1,387 subjects, its complete LD
SNP rs8086812 (r2= 1.000 in Europeans) was significantly
associated with DCC mRNA expression (PeQTL= 7.05 ×
10−15, eQTL plot in PsychENCODE dataset was not
available since we do not have access to individual-level
genotype and expression data).
Rs1367635 also showed significant association with

mRNA expression of DCC in BrainSeq Phase 2 and Psy-
chENCODE eQTL datasets (PeQTL= 5.86 × 10−6 in

Fig. 2 Genetic associations of SNPs spanning DCC region with depression in Europeans and Han Chinese populations. A physical map of the
region is given and depicts known genes within the region, and the LD is defined based on the SNP rs1367635. The LD between rs7227069 and
rs1367635 in both populations are also shown.
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BrainSeq Phase 2, PeQTL= 1.76 × 10−8 in PsychENCODE;
Fig. 3). In the CommonMind eQTL dataset, rs1367635
was not genotyped or imputed, and we therefore used its
high LD SNP rs4940252 as a proxy readout (r2= 0.880 in
Europeans). Again, rs4940252 was significantly associated
with DCC mRNA expression in the CommonMind
dataset (PeQTL= 6.82 × 10−3, Fig. 3). Therefore, the
depression risk alleles at rs7227069 and rs1367635 con-
sistently indicated higher DCC expression in the three
selected eQTL datasets. This result is consistent with the
published diagnostic analyses of DCC mRNA level in
humans and rodent models62,63, suggesting that increased
expression of DCC in the brain likely serves as a risk
factor of depression.
We also explored the expression pattern of DCC in

diverse human tissues using GTEx (Genotype-Tissue
Expression project; https://www.gtexportal.org/) data-
set74, and found that DCC was preferably expressed in
frontal cortex, caudate, nucleus accumbens, putamen and
hippocampus compared with most other peripheral tis-
sues (only except testis) (Fig. S2). Further spatio-temporal
expression pattern analyses using data of the developing

prefrontal cortex from the BrainCloud dataset (http://
braincloud.jhmi.edu/)75 showed that the mRNA expres-
sion levels of DCC were higher at early developmental
stages (i.e., fetal stages) compared with the later childhood
and adulthood stages (Fig. S3). We then performed the
same analyses in data of multiple human brain tissues
(e.g., dorsolateral prefrontal cortex, hippocampus, cere-
bellar cortex) from the BrainSpan dataset (http://www.
brainspan.org/static/home)76. Again, we observed that the
mRNA levels of DCC were higher in prenatal brain tissues
than in postnatal brain tissues. Notably, the expression of
DCC was the highest during early or mid prenatal stages
(9–13 post-conceptional weeks (pcw)) (Fig. S4), at which
the developing brain starts to undergo striking changes
such as the formation of gyri and sulci77. This result
supports the putative molecular origins of psychiatric
disorders arise from the early developmental events78,79.
Given the high expression levels of DCC in prenatal
brains, using eQTL datasets including samples from only
postnatal donors (e.g., CMC samples > 17 years old;
BrainSeq2 samples > 13 years old) may not fully reveal
eQTL association signals involved in psychiatric
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Fig. 3 Expression quantitative trait loci (eQTL) analyses of rs7227069 and rs1367635/rs4940252 with DCC mRNA expression in BrainSeq
Phase 2 and CommonMind datasets. In the CommonMind eQTL dataset, rs1367635 was not directly genotyped or imputed, and we therefore
used its high LD SNP rs4940252 as a proxy readout (r2= 0.880 between rs1367635-T/C and rs4940252-A/G in Europeans).
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disorders. We therefore also explored the eQTL associa-
tions of risk SNPs with DCC mRNA expression in fetal
brains using recently published data in European popu-
lations80,81. Briefly, data of 120 prenatal human brain
samples (second trimester of gestation) included in the
Human Developmental Biology Resource (http://www.
hdbr.org)80 was retrieved and analyzed. The risk A-allele
at rs7227069 again predicted higher DCC expression (p=
0.01) (Table S2). There were 427 additional SNPs sig-
nificantly associated with the expression of DCC (p <
0.05), and many of these SNPs also showed genome-wide
significant associations with depression (Table S2).
However, rs1367635 was not associated with DCC
expression in this dataset. In another 201 prenatal human
brain samples (mid-gestational human brains) from the
UCLA Gene and Cell Therapy core81, neither rs7227069
nor rs1367635 showed significant association with DCC
expression, but there were other SNPs significantly asso-
ciated with both DCC expression and risk of depression
(Table S3). Overall, these results support the hypothesis
that certain genetic variations influencing DCC expres-
sion in human brains also affect risk of depression.

DCC was associated with well-being spectrum, cognitive
function, and putamen structure
Given that several biological and psychological pheno-

types such as mood instability, depressive symptoms and
aberrant cognitive functions have been common observed
in depression patients38,82, we hypothesized that these
phenotypes were also associated with the depression risk
alleles at DCC. We utilized the published GWAS
resources and found that DCC SNPs showed significant
associations with depressive symptoms (rs7227069, p=
6.18 × 10−16; rs1367635, p= 8.57 × 10−15), and were also
highly associated with neuroticism (rs7227069, p= 4.73 ×
10−16; rs1367635, p= 8.23 × 10−15), well-being spectrum
(rs7227069, p= 2.12 × 10−16; rs1367635, p= 8.58 ×
10−15), life satisfaction (rs7227069, p= 4.92 × 10−11;
rs1367635, p= 1.91 × 10−11) and positive affect
(rs7227069, p= 4.36 × 10−15; rs1367635, p= 5.25 ×
10−13)39, among which the depression risk allele carriers
tended to show increased vulnerable personality traits
compared with the protective allele carriers. We also
found that rs7227069 and rs1367635 showed strong
associations with cognitive performance (rs7227069, p=
2.15 × 10−6; rs1367635, p= 1.48 × 10−6)40, educational
attainment (rs7227069, p= 5.95 × 10−13; rs1367635, p=
1.10 × 10−9)40, and intelligence (rs7227069, p= 1.34 ×
10−6; rs1367635, p= 2.58 × 10−8)43, while carriers of the
depression risk alleles tended to exhibit worse cognitive
abilities compared with the non-risk allele carriers.
We then took one step further to delve into potential

neural mechanisms underlying this risk gene. In a phewas
analysis including GWAS of 3999 UK Biobank brain

imaging phenotypes and other traits (http://big.stats.ox.
ac.uk/), rs7227069 and rs1367635 were again primarily
associated with depression related traits (such as mood
swings and frequency of depressed mood in last 2 weeks,
Fig. S5)44, further highlighting the involvement of DCC in
this illness. More intriguingly, in this explorative analysis,
we found that DCC was suggestively genome-wide sig-
nificantly associated with putamen volume in the UK
Biobank dataset (N= 8428 individuals; rs7227069, p=
9.90 × 10−7; rs1367635, p= 8.90 × 10−6; Fig. S5)44. We
then tried to replicate this observation in an independent
GWAS of brain imaging phenotypes from ENIGMA
consortium45, and again observed suggestive genome-
wide association between DCC and putamen volume in
the same direction of allelic effects (N= 13,145 subjects;
rs7227069, p= 3.32 × 10−7; rs1367635, p= 6.64 × 10−7)45.
The imaging samples from UK Biobank and ENIGMA
were totally independent. More intriguingly, in a latest
meta-analysis of imaging data from CHARGE, ENIGMA
and UK Biobank (N= 38,851), both SNPs showed
genome-wide significant associations with putamen
volume (rs7227069, p= 4.64 × 10−10; rs1367635, p=
8.72 × 10−10)46.

DCC participated in the pathways and biological processes
relevant to depression pathogenesis
Previous neurological studies using cellular and mole-

cular technologies have suggested that DCC might be
involved in the regulation of synaptic plasticity and rele-
vant brain functions58,59,83,84. Given the importance of
these biological processes in cognition and emotion, we
sought to further explore the possibility that DCC parti-
cipates in depression via affecting these processes using
population-level expression data. We hypothesized that
genes significantly correlated with the mRNA expression
of DCC should belong to the molecular pathways and
biological processes in which DCC was involved. To test
this hypothesis, the global mRNA expression data in three
independent human brain RNA-seq datasets (i.e.,
BrainGVEX, CommonMind, and LIBD)27,29 was retrieved
and the Pearson analysis was conducted. We ranked the
top 800 genes (~top 5% among all protein-coding genes)
in each dataset according to the corresponding sig-
nificance levels of correlations between their expression
and DCC mRNA levels. These top 800 genes from all
three datasets then underwent an overlapping analysis,
which yielded 145 genes consistently showing high cor-
relations with DCC expression. There genes were sig-
nificantly enriched in the pathways and biological
processes related to synaptic plasticity, axon guidance,
circadian entrainment, learning, and long-term potentia-
tion (Fig. 4). Therefore, our analyses using population-
level expression data also supports the putative roles of
DCC in synapses and brain functions, providing hints for
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the molecular mechanisms explaining the participation of
DCC in depression pathogenesis.

Discussion
Great efforts have been spent to elucidate genetic and

biological basis of depression in the past few decades85,86,
however, the high prevalence, great phenotypic hetero-
geneity, and limited penetrance of known genetic risk
markers of this illness have together significantly ham-
pered success in this field. Nevertheless, multiple break-
throughs have been made through genetic studies of
depression since the application of recent large GWAS,
and integration of the massive data to dissect mechanisms
underlying depression pathogenesis has been widely called
on. In the present study, we utilize data of depression
GWAS, and conduct the genome-wide integrative analyses
through combining multiple brain eQTL and Hi-C data-
sets, followed by independent replications across popula-
tions and explorative analyses of relevant biological

phenotypes. Through this stepwise analysis, we find that
the gene DCC confers risk of depression in both Eur-
opeans and Han Chinese. Besides, the risk alleles predict
higher DCC mRNA expression in the DLPFC, which is
also proven to affect depression-relevant personality traits,
cognitive function and putamen volumes in independent
samples. The current study reveals that the depression risk
alleles indicate larger putamen volume. Putamen is a brain
region known to influence motor behaviors and learning
abilities, and has also been reported to involve in the “hate
circuit”87 that was lately proven vital in depression88.
Although previous studies did not identify significant
putamen volume differences between depression patients
and healthy controls89, its involvement in this illness is
appealing for further analyses with larger samples of dif-
ferent ethnic backgrounds to gain insights into the
sophisticated mechanisms of depression.
Notably, a recent meta-analysis of 232,964 cases and

494,162 controls across eight psychiatric illnesses
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(anorexia nervosa, attention-deficit/hyperactivity dis-
order, autism spectrum disorder, bipolar disorder, major
depression, obsessive-compulsive disorder, schizophrenia,
and Tourette syndrome) detected 109 loci associated with
at least two of them. Intriguingly, the DCC genomic
region featured the most pleiotropic association (Pmeta=
4.26 × 10−12) in this meta-analysis, exhibited significant
associations with all eight diseases90. Additionally, pre-
vious studies have also highlighted DCC in mood
instability and the risk of depression57,91–93 as well as
schizophrenia94, and multiple in vitro and murine ana-
lyses have proven its potential impact on synaptic func-
tion. For example, the protein netrin-1 and its receptor
(encoded by Dcc) are widely expressed in cortical neurons
during synapse formation, with significant enrichment at
synapses83. Another study showing enrichment of Dcc in
dendritic spines of pyramidal neurons further supports its
involvement in synaptic physiology, and selective deletion
of Dcc leads to loss of LTP, intact LTD, reduced spine
length, and impaired spatial and recognition memory in
mice58,95. The Dcc deficient/haploinsufficient mice study
found that alterations in dcc expression resulted in
selective alternations in dopaminergic function (e.g.,
exaggerated mPFC dopamine concentrations), differences
in dopaminergic related behaviors during adulthood, and
blunted behavioral responses to amphetamine96–100.
From the neurodevelopmental perspective, Dcc likely
controls the growth of dopamine axon targeting in ado-
lescence, and thereby affects the development and func-
tion of prefrontal cortex84,101,102, resulting in aberrant
cognitive processes found in depression. In agreement
with this hypothesis, a previous study found that the DCC
haploinsufficient adult Quebecers showed similar phe-
notypic features with adult Dcc haploinsufficient mice103.
Earlier studies using postmortem brain tissues have

revealed neuronal loss, reduced synapse density and
abnormal expression of synaptic markers in the DLPFC of
depression patients14,15, and in vitro and in vivo studies
also found that risk factors of depression (e.g., stress and
genetic effects) usually result in disruption of synaptic
morphology and function as well as brain circuits that are
essential for mood regulation and cognition104,105, and
thereby eventually lead to the onset of depression.
Moreover, both established antidepressants used in clin-
ical settings (e.g., serotonin-reuptake inhibitors) and
molecules recently found to alleviate depressive symp-
toms (e.g., ketamine) confer protective effects on synaptic
deficits related to depression18,19. Therefore, it is widely
accepted that synaptic dysfunctions play determinant
roles in the pathogenesis of depression16,19. Recent
depression GWAS have also supported this contention, as
genes involved in synaptic structure and neurotransmis-
sion related pathways have been repeatedly highlighted4.
DCC is also an example of such genes, and further

functional studies are urgently needed to gain mechanistic
insights into whether and how it affects synaptic func-
tions, brain circuits and behaviors in a disease-specific
manner. Whether this gene or its proximate signaling
pathway might serve as potential therapeutic targets
should also be analyzed.
From the Fig. 2, we can see that sequence variations

spanning TCF4 gene were also genome-wide significantly
associated with depression in European populations4, and
the magnitude is even stronger than those spanning DCC.
However, TCF4 was not associated with depression in
Han Chinese, and the current study therefore did not
include this gene in the subsequent analyses. Never-
theless, the potential importance of this gene in depres-
sion or other relevant illnesses/phenotypes should not be
denied. In fact, TCF4 has gained considerable attention
from researchers due to its significant associations with
depression, schizophrenia, cognitive processing106, and
Pitt-Hopkins Syndrome107. In a recent schizophrenia
GWAS108, numerous SNPs spanning TCF4 showed
genome-wide significance, and the involvement of this
gene in synaptic plasticity109,110, CNS development111 and
neuronal activity regulatory network112,113 has been
defined by functional analyses. We also sought to identify
whether the association of DCC with depression in Eur-
opeans were a reflection of its potential LD with TCF4,
and examined the distance and LD among SNPs spanning
the two genes. We found that DCC and TCF4 were
~2.0Mb away from each other on the genome, the risk
signals of these two genes were independent in Europeans
according to the LD structure (Fig. 2). Therefore, SNPs in
DCC are likely genetic risk markers of depression inde-
pendent of those in TCF4.
Despite the above implications brought by this study,

there are limitations to be interpreted. First, our study
mainly focuses on variants affecting expression of particular
genes, but a number of the genome-wide risk alleles for
depression were not associated with expression of any genes
in our analyses. While the principal purpose of our study is
to prioritize high-confidence risk genes through integrative
stepwise analyses, the possibility that the variants not
highlighted in eQTL analyses also contribute to the pro-
gression of depression should not be denied. In fact, the
characteristics of the eQTL datasets utilized in the current
study might have “twisted our perceptions” of these var-
iants. For example, the eQTL data we utilized was obtained
from DLPFC homogenates rather than from specific types
of cells, in the event that some variants and genes exert
function in particular types of cells, the current datasets
would be inappropriate for detecting such signals. Besides,
the individuals in the eQTL datasets were postnatal in a
wide range of different ages, making it an ideal source for
exploring genes functioning throughout the lifespan but not
those participate in depression in a spatio-temporal specific
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manner. In fact, previous studies have shown that the some
psychiatric risk eQTLs are detectable only in a specific stage
of life81,114. Further comprehensive functional annotations
of other depression risk alleles are necessary to gain a better
knowledge of the genetic risk architecture of depression. In
addition, despite we found that multiple risk SNPs were
significantly associated with mRNA expression of DCC, all
of them were in the intron regions. Although we attempted
to make functional predictions of the risk SNPs using
HaploReg v4.1115 and GWAVA116 through assessing whe-
ther they reside in the binding regions of H3K4me1,
H3K4me3, H3K9ac, H3K27ac, or transcription factors, we
were unable to identify any SNPs showing potential reg-
ulatory functions. Therefore, a more complicated regulatory
mechanism might underlie the association between the risk
SNPs and DCCmRNA expression. One possibility might be
that the risk SNPs reflect a causal structural variation
beyond the detection scope of the current GWAS approach.
While the importance of DCC in depression should be
acknowledged, further studies revealing the causal variant in
this genomic region are needed.

Acknowledgements
This work was supported by grants from the National Natural Science
Foundation of China (81722019 to M.L., 81871067 to H.C., 81771439 to L.H.);
Hubei Province health and family planning scientific research project
(WJ2015Q033 to N.Q.); Population and Family Planning Commission of Wuhan
(WX14B34 to N.Q.). X.X. was supported by the Chinese Academy of Sciences
Western Light Program, and Youth Innovation Promotion Association, CAS.
M.L. was supported by CAS Pioneer Hundred Talents Program and the 1000
Young Talents Program. Data were generated as part of the PsychENCODE
Consortium, supported by: U01MH103392, U01MH103365, U01MH103346,
U01MH103340, U01MH103339, R21MH109956, R21MH105881, R21MH105853,
R21MH103877, R21MH102791, R01MH111721, R01MH110928, R01MH110927,
R01MH110926, R01MH110921, R01MH110920, R01MH110905, R01MH109715,
R01MH109677, R01MH105898, R01MH105898, R01MH094714, P50MH106934,
U01MH116488, U01MH116487, U01MH116492, U01MH116489, U01MH116438,
U01MH116441, U01MH116442, R01MH114911, R01MH114899, R01MH114901,
R01MH117293, R01MH117291, and R01MH117292 awarded to: Schahram
Akbarian (Icahn School of Medicine at Mount Sinai), Gregory Crawford (Duke
University), Stella Dracheva (Icahn School of Medicine at Mount Sinai), Peggy
Farnham (University of Southern California), Mark Gerstein (Yale University),
Daniel Geschwind (University of California, Los Angeles), Fernando Goes (Johns
Hopkins University), Thomas M. Hyde (Lieber Institute for Brain Development),
Andrew Jaffe (Lieber Institute for Brain Development), James A. Knowles
(University of Southern California), Chunyu Liu (SUNY Upstate Medical
University), Dalila Pinto (Icahn School of Medicine at Mount Sinai), Panos
Roussos (Icahn School of Medicine at Mount Sinai), Stephan Sanders
(University of California, San Francisco), Nenad Sestan (Yale University), Pamela
Sklar (Icahn School of Medicine at Mount Sinai), Matthew State (University of
California, San Francisco), Patrick Sullivan (University of North Carolina), Flora
Vaccarino (Yale University), Daniel Weinberger (Lieber Institute for Brain
Development), Sherman Weissman (Yale University), Kevin White (University of
Chicago), Jeremy Willsey (University of California, San Francisco), and Peter
Zandi (Johns Hopkins University). Data were generated as part of the
CommonMind Consortium supported by funding from Takeda
Pharmaceuticals Company Limited, F. Hoffman-La Roche Ltd and NIH grants
R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276,
RO1-MH-075916, P50M096891, P50MH084053S1, R37MH057881 and
R37MH057881S1, HHSN271201300031C, AG02219, AG05138, and MH06692.
Brain tissue for the study was obtained from the following brain bank
collections: the Mount Sinai NIH Brain and Tissue Repository, the University of
Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh
NeuroBioBank and Brain and Tissue Repositories and the NIMH Human Brain

Collection Core. CMC Leadership: Pamela Sklar, Joseph Buxbaum (Icahn School
of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of
Pittsburgh), Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Keisuke
Hirai, Hiroyoshi Toyoshiba (Takeda Pharmaceuticals Company Limited), Enrico
Domenici, Laurent Essioux (F. Hoffman-La Roche Ltd), Lara Mangravite, Mette
Peters (Sage Bionetworks), Thomas Lehner, Barbara Lipska (NIMH).

Author details
1Key Laboratory of Animal Models and Human Disease Mechanisms of the
Chinese Academy of Sciences and Yunnan Province, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. 2Kunming
College of Life Science, University of Chinese Academy of Sciences, Kunming,
Yunnan, China. 3Affiliated Wuhan Mental Health Center, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei,
China. 4Research Center for Psychological and Health Sciences, China
University of Geosciences, Wuhan, Hubei, China. 5Suzhou Guangji Hospital, The
Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China.
6Department of Blood Transfusion, The Second Affiliated Hospital of Kunming
Medical University, Kunming, Yunnan, China

Author contributions
X.X., Y.L., and M.L. designed the study and interpreted the results. H.J.L., N.Q.,
and L.H. conducted the primary analysis. X.C., C.Y.Z., B.L.Z., S.F.Z., J.C., B.X., W.L.,
L.W., Q.F.J., and H.C. contributed to literature search and assistance in analysis.
H.L., X.X., and M.L. drafted the manuscript, and all authors contributed to the
final version of the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-0777-y).

Received: 26 November 2019 Revised: 21 February 2020 Accepted: 3 March
2020

References
1. Kupfer, D. J., Frank, E. & Phillips, M. L. Major depressive disorder: new clinical,

neurobiological, and treatment perspectives. Lancet 379, 1045–1055 (2012).
2. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major

depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562
(2000).

3. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants
and refine the genetic architecture of major depression. Nat. Genet. 50,
668–681 (2018).

4. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102
independent variants and highlights the importance of the prefrontal brain
regions. Nat. Neurosci. 22, 343–352 (2019).

5. Wendland, J. R. & Ehlers, M. D. Translating neurogenomics into new medi-
cines. Biol. Psychiatry 79, 650–656 (2016).

6. Gandal, M. J., Leppa, V., Won, H., Parikshak, N. N. & Geschwind, D. H. The road
to precision psychiatry: translating genetics into disease mechanisms. Nat.
Neurosci. 19, 1397–1407 (2016).

7. Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs:
illuminating the dark road from association to function. Am. J. Hum. Genet.
93, 779–797 (2013).

8. Li, M. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk
factors in the 10q24.32 schizophrenia-associated locus. Nat. Med. 22,
649–656 (2016).

9. Liu, W. et al. The depression GWAS risk allele predicts smaller cerebellar gray
matter volume and reduced SIRT1 mRNA expression in Chinese population.
Transl. Psychiatry 9, 333 (2019).

Li et al. Translational Psychiatry           (2020) 10:98 Page 13 of 15

https://doi.org/10.1038/s41398-020-0777-y
https://doi.org/10.1038/s41398-020-0777-y


10. Yang, Z. et al. Identification of a functional 339-bp Alu polymorphism in the
schizophrenia-associated locus at 10q24.32. Zool. Res. 41, 84–89 (2020).

11. Wu, Y. et al. Identification of the primate-specific gene BTN3A2 as an addi-
tional schizophrenia risk gene in the MHC loci. EBioMedicine 44, 530–541
(2019).

12. Yang, C. P. et al. Comprehensive integrative analyses identify GLT8D1 and
CSNK2B as schizophrenia risk genes. Nat. Commun. 9, 838 (2018).

13. Yang, Z. et al. The genome-wide risk alleles for psychiatric disorders at
3p21.1 show convergent effects on mRNA expression, cognitive function
and mushroom dendritic spine. Mol. Psychiatry 25, 48–66 (2020).

14. Kang, H. J. et al. Decreased expression of synapse-related genes and
loss of synapses in major depressive disorder. Nat. Med. 18, 1413–1417
(2012).

15. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E. & Woolfrey, K. M.
Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14,
285–293 (2011).

16. Forrest, M. P., Parnell, E. & Penzes, P. Dendritic structural plasticity and neu-
ropsychiatric disease. Nat. Rev. Neurosci. 19, 215–234 (2018).

17. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat.
Rev. Neurosci. 14, 609–625 (2013).

18. Duman, R. S., Aghajanian, G. K., Sanacora, G. & Krystal, J. H. Synaptic plasticity
and depression: new insights from stress and rapid-acting antidepressants.
Nat. Med. 22, 238–249 (2016).

19. Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential
therapeutic targets. Science 338, 68–72 (2012).

20. Niculescu, A. B. & Le-Niculescu, H. Convergent functional genomics: what we
have learned and can learn about genes, pathways, and mechanisms.
Neuropsychopharmacology 35, 355–356 (2010).

21. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

22. Wu, Y. et al. Integrative analysis of omics summary data reveals putative
mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).

23. Wang, Q. et al. A Bayesian framework that integrates multi-omics data and
gene networks predicts risk genes from schizophrenia GWAS data. Nat.
Neurosci. 22, 691–699 (2019).

24. Converge consortium. Sparse whole-genome sequencing identifies two loci
for major depressive disorder. Nature 523, 588–591 (2015).

25. Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epide-
miology contribute to understanding environmental determinants of dis-
ease? Int. J. Epidemiol. 32, 1–22 (2003).

26. Collado-Torres, L. et al. Regional heterogeneity in gene expression, regula-
tion, and coherence in the frontal cortex and hippocampus across devel-
opment and Schizophrenia. Neuron 103, 203–216 (2019).

27. Fromer, M. et al. Gene expression elucidates functional impact of polygenic
risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

28. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD,
schizophrenia, and bipolar disorder. Science 362, 6420 (2018).

29. PsychEncode Consortium et al. The PsychENCODE project. Nat. Neurosci. 18,
1707–1712 (2015).

30. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with
high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

31. Won, H. et al. Chromosome conformation elucidates regulatory relationships
in developing human brain. Nature 538, 523–527 (2016).

32. Andersson, R. et al. An atlas of active enhancers across human cell types and
tissues. Nature 507, 455–461 (2014).

33. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized
gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

34. Genomes Project Consortium. et al. A global reference for human genetic
variation. Nature 526, 68–74 (2015).

35. Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization
of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

36. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide asso-
ciation scan results. Bioinformatics 26, 2336–2337 (2010).

37. Lahey, B. B. Public health significance of neuroticism. Am. Psychol. 64,
241–256 (2009).

38. Kendler, K. S., Gatz, M., Gardner, C. O. & Pedersen, N. L. Personality and major
depression: a Swedish longitudinal, population-based twin study. Arch. Gen.
Psychiatry 63, 1113–1120 (2006).

39. Baselmans, B. M. L. et al. Multivariate genome-wide analyses of the well-
being spectrum. Nat. Genet. 51, 445–451 (2019).

40. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide
association study of educational attainment in 1.1 million individuals. Nat.
Genet. 50, 1112–1121 (2018).

41. Trampush, J. W. et al. GWAS meta-analysis reveals novel loci and genetic
correlates for general cognitive function: a report from the COGENT con-
sortium. Mol. Psychiatry 22, 336–345 (2017).

42. Davies, G. et al. Study of 300,486 individuals identifies 148 independent
genetic loci influencing general cognitive function. Nat. Commun. 9, 2098
(2018).

43. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 indi-
viduals identifies new genetic and functional links to intelligence. Nat. Genet.
50, 912–919 (2018).

44. Elliott, L. T. et al. Genome-wide association studies of brain imaging phe-
notypes in UK Biobank. Nature 562, 210–216 (2018).

45. Hibar, D. P. et al. Common genetic variants influence human subcortical
brain structures. Nature 520, 224–229 (2015).

46. Satizabal, C. L. et al. Genetic architecture of subcortical brain structures in
38,851 individuals. Nat. Genet. 51, 1624–1636 (2019).

47. Li, H. et al. Integrative analyses of major histocompatibility complex loci in
the genome-wide association studies of major depressive disorder. Neu-
ropsychopharmacology 44, 1552–1561 (2019).

48. Li, H. et al. Interactome analyses implicated CAMK2A in the genetic predis-
position and pharmacological mechanism of bipolar disorder. J. Psychiatr.
Res. 115, 165–175 (2019).

49. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics
30, 923–930 (2014).

50. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284–287
(2012).

51. Yu, G. et al. GOSemSim: an R package for measuring semantic similarity
among GO terms and gene products. Bioinformatics 26, 976–978 (2010).

52. Lin, Z., Liu, J., Ding, H., Xu, F. & Liu, H. Structural basis of SALM5-induced
PTPdelta dimerization for synaptic differentiation. Nat. Commun. 9, 268
(2018).

53. Mah, W. et al. Selected SALM (synaptic adhesion-like molecule) family pro-
teins regulate synapse formation. J. Neurosci. 30, 5559–5568 (2010).

54. Zhu, Y. et al. Neuron-specific SALM5 limits inflammation in the CNS via its
interaction with HVEM. Sci. Adv. 2, e1500637 (2016).

55. Goto-Ito, S. et al. Structural basis of trans-synaptic interactions between
PTPdelta and SALMs for inducing synapse formation. Nat. Commun. 9, 269
(2018).

56. Choi, Y. et al. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-
dependent manner to regulate synapse development. Sci. Rep. 6, 26676
(2016).

57. Vosberg, D. E., Leyton, M. & Flores, C. The Netrin-1/DCC guidance system:
dopamine pathway maturation and psychiatric disorders emerging in ado-
lescence. Mol. Psychiatry 25, 297–307 (2020).

58. Horn, K. E. et al. DCC expression by neurons regulates synaptic plasticity in
the adult brain. Cell Rep. 3, 173–185 (2013).

59. Keino-Masu, K. et al. Deleted in colorectal cancer (DCC) encodes a netrin
receptor. Cell 87, 175–185 (1996).

60. Brankatschk, M. & Dickson, B. J. Netrins guide Drosophila commissural axons
at short range. Nat. Neurosci. 9, 188–194 (2006).

61. Ly, A. et al. DSCAM is a netrin receptor that collaborates with DCC in
mediating turning responses to netrin-1. Cell 133, 1241–1254 (2008).

62. Manitt, C. et al. dcc orchestrates the development of the prefrontal cortex
during adolescence and is altered in psychiatric patients. Transl. Psychiatry 3,
e338 (2013).

63. Torres-Berrio, A. et al. DCC confers susceptibility to d epression-like behaviors
in humans and mice and is regulated by miR-218. Biol. Psychiatry 81,
306–315 (2017).

64. Leday, G. G. R. et al. Replicable and coupled changes in innate and adaptive
immune gene expression in two case-control studies of blood microarrays in
major depressive disorder. Biol. Psychiatry 83, 70–80 (2018).

65. Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility
loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017).

66. Chang, H., Xiao, X. & Li, M. The schizophrenia risk gene ZNF804A: clinical
associations, biological mechanisms and neuronal functions. Mol. Psychiatry
22, 944–953 (2017).

Li et al. Translational Psychiatry           (2020) 10:98 Page 14 of 15



67. Li, M. & Yue, W. VRK2, a candidate gene for psychiatric and neurological
disorders. Mol. Neuropsychiatry 4, 119–133 (2018).

68. Wang, L. et al. Further evidence of an association between NCAN rs1064395
and bipolar disorder. Mol. Neuropsychiatry 4, 30–34 (2018).

69. Ikeda, M. et al. A genome-wide association study identifies two novel sus-
ceptibility loci and trans population polygenicity associated with bipolar
disorder. Mol. Psychiatry 23, 639–647 (2018).

70. Zhao, L. et al. Replicated associations of FADS1, MAD1L1, and a rare variant at
10q26.13 with bipolar disorder in Chinese population. Transl. Psychiatry 8, 270
(2018).

71. Xiao, X. et al. The Gene Encoding Protocadherin 9 (PCDH9), a novel risk factor
for major depressive disorder. Neuropsychopharmacology 43, 1128–1137
(2018).

72. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-
ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

73. Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies:
advantages and challenges of mapping in diverse populations. Genome Med.
6, 91 (2014).

74. GTEx Consortium. et al. Genetic effects on gene expression across human
tissues. Nature 550, 204–213 (2017).

75. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription
in the human prefrontal cortex. Nature 478, 519–523 (2011).

76. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain.
Nature 508, 199–206 (2014).

77. Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev.
20, 327–348 (2010).

78. Birnbaum, R. et al. Investigation of the prenatal expression patterns of 108
schizophrenia-associated genetic loci. Biol. Psychiatry 77, e43–e51 (2015).

79. Birnbaum, R., Jaffe, A. E., Hyde, T. M., Kleinman, J. E. & Weinberger, D. R.
Prenatal expression patterns of genes associated with neuropsychiatric dis-
orders. Am. J. Psychiatry 171, 758–767 (2014).

80. O’Brien, H. E. et al. Expression quantitative trait loci in the developing human
brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19,
194 (2018).

81. Walker, R. L. et al. Genetic control of expression and splicing in developing
human brain informs disease mechanisms. Cell 179, 750–771 e722 (2019).

82. Hinkelmann, K. et al. Cognitive impairment in major depression: association
with salivary cortisol. Biol. Psychiatry 66, 879–885 (2009).

83. Goldman, J. S. et al. Netrin-1 promotes excitatory synaptogenesis between
cortical neurons by initiating synapse assembly. J. Neurosci. 33, 17278–17289
(2013).

84. Reynolds, L. M. et al. DCC receptors drive prefrontal cortex maturation by
determining dopamine axon targeting in adolescence. Biol. Psychiatry 83,
181–192 (2018).

85. Cai, N. et al. Molecular signatures of major depression. Curr. Biol. 25,
1146–1156 (2015).

86. Bigdeli, T. B. et al. Genetic effects influencing risk for major depressive dis-
order in China and Europe. Transl. Psychiatry 7, e1074 (2017).

87. Zeki, S. & Romaya, J. P. Neural correlates of hate. PLoS ONE 3, e3556 (2008).
88. Tao, H. et al. Depression uncouples brain hate circuit. Mol. Psychiatry 18,

101–111 (2013).
89. Schmaal, L. et al. Subcortical brain alterations in major depressive disorder:

findings from the ENIGMA Major Depressive Disorder working group. Mol.
Psychiatry 21, 806–812 (2016).

90. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic
relationships, novel loci, and pleiotropic mechanisms across eight psychiatric
disorders. Cell 179, 1469–1482 (2019).

91. Zeng, Y. et al. A combined pathway and regional heritability analysis indi-
cates NETRIN1 pathway is associated with major depressive disorder. Biol.
Psychiatry 81, 336–346 (2017).

92. Arnau-Soler, A. et al. Genome-wide by environment interaction studies of
depressive symptoms and psychosocial stress in UK Biobank and Generation
Scotland. Transl. Psychiatry 9, 14 (2019).

93. Ward, J. et al. Genome-wide analysis in UK Biobank identifies four loci
associated with mood instability and genetic correlation with major

depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 7,
1264 (2017).

94. Grant, A., Fathalli, F., Rouleau, G., Joober, R. & Flores, C. Association between
schizophrenia and genetic variation in DCC: a case-control study. Schizophr.
Res 137, 26–31 (2012).

95. Manitt, C. et al. The netrin receptor DCC is required in the pubertal orga-
nization of mesocortical dopamine circuitry. J. Neurosci. 31, 8381–8394
(2011).

96. Flores, C. et al. Netrin receptor deficient mice exhibit functional reorganiza-
tion of dopaminergic systems and do not sensitize to amphetamine. Mol.
Psychiatry 10, 606–612 (2005).

97. Pokinko, M., Moquin, L., Torres-Berrio, A., Gratton, A. & Flores, C. Resilience to
amphetamine in mouse models of netrin-1 haploinsufficiency: role of
mesocortical dopamine. Psychopharmacology 232, 3719–3729 (2015).

98. Kim, J. H. et al. Netrin-1 receptor-deficient mice show age-specific impair-
ment in drug-induced locomotor hyperactivity but still self-administer
methamphetamine. Psychopharmacology 230, 607–616 (2013).

99. Reynolds, L. M., Gifuni, A. J., McCrea, E. T., Shizgal, P. & Flores, C. dcc Hap-
loinsufficiency results in blunted sensitivity to cocaine enhancement of
reward seeking. Behav. Brain Res. 298, 27–31 (2016).

100. Grant, A. et al. Netrin-1 receptor-deficient mice show enhanced mesocortical
dopamine transmission and blunted behavioural responses to ampheta-
mine. Eur. J. Neurosci. 26, 3215–3228 (2007).

101. Flores, C. Role of netrin-1 in the organization and function of the meso-
corticolimbic dopamine system. J. Psychiatry Neurosci. 36, 296–310 (2011).

102. Hoops, D. & Flores, C. Making dopamine connections in adolescence. Trends
Neurosci. 40, 709–719 (2017).

103. Vosberg, D. E. et al. Mesocorticolimbic connectivity and volumetric alterations
in DCC mutation carriers. J. Neurosci. 38, 4655–4665 (2018).

104. Ota, K. T. et al. REDD1 is essential for stress-induced synaptic loss and
depressive behavior. Nat. Med. 20, 531–535 (2014).

105. Duric, V. et al. A negative regulator of MAP kinase causes depressive behavior.
Nat. Med. 16, 1328–1332 (2010).

106. Zhu, X. et al. Associations between TCF4 gene polymorphism and cognitive
functions in schizophrenia patients and healthy controls. Neuropsycho-
pharmacology 38, 683–689 (2013).

107. Blake, D. J. et al. TCF4, schizophrenia, and Pitt-Hopkins Syndrome. Schizophr.
Bull. 36, 443–447 (2010).

108. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-
intolerant genes and in regions under strong background selection. Nat.
Genet. 50, 381–389 (2018).

109. Kennedy, A. J. et al. Tcf4 regulates synaptic plasticity, DNA methylation, and
memory function. Cell Rep. 16, 2666–2685 (2016).

110. Rannals, M. D. et al. Psychiatric risk gene transcription factor 4 regulates
intrinsic excitability of prefrontal neurons via repression of SCN10a and
KCNQ1. Neuron 90, 43–55 (2016).

111. Li, H. et al. Disruption of TCF4 regulatory networks leads to abnormal
cortical development and mental disabilities. Mol. Psychiatry 24,
1235–1246 (2019).

112. Forrest, M. P. et al. The psychiatric risk gene transcription factor 4
(TCF4) regulates neurodevelopmental pathways associated with
schizophrenia, autism, and intellectual disability. Schizophr. Bull. 44,
1100–1110 (2018).

113. Wittmann, M. T. & Haberle, B. M. Linking the neuropsychiatric disease gene
TCF4 to neuronal activity-dependent regulatory networks. J. Neurosci. 38,
2653–2655 (2018).

114. Tao, R. et al. Expression of ZNF804A in human brain and alterations in
schizophrenia, bipolar disorder, and major depressive disorder: a novel
transcript fetally regulated by the psychosis risk variant rs1344706. JAMA
Psychiatry 71, 1112–1120 (2014).

115. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically linked
variants. Nucleic Acids Res. 40, D930–D934 (2012).

116. Ritchie, G. R., Dunham, I., Zeggini, E. & Flicek, P. Functional annotation of
noncoding sequence variants. Nat. Methods 11, 294–296 (2014).

Li et al. Translational Psychiatry           (2020) 10:98 Page 15 of 15


	Further confirmation of netrin 1 receptor (DCC) as�a�depression risk gene via integrations of�multi-�omics data
	Introduction
	Methods and materials
	Depression GWAS data
	European GWAS data
	Chinese GWAS data

	SMR integrative analyses
	Integrative risk gene selector (iRIGS) analyses
	Gene-wise MAGMA analyses
	LD analyses
	GWAS of depressive symptoms, neuroticism, life satisfaction, positive affect, and well-being spectrum
	GWAS of cognitive performance and intelligence
	GWAS of brain imaging phenotypes
	RNA-seq, mRNA correlation, and pathway analyses in human brains

	Results
	Integrative analyses of multi-omics data identified high-confidence risk genes for depression in Europeans
	Independent replications across populations further confirmed the association of DCC with depression
	Identification of SNPs in DCC showing significant associations with depression in both populations
	The depression risk alleles indicated higher DCC mRNA level in DLPFC
	DCC was associated with well-being spectrum, cognitive function, and putamen structure
	DCC participated in the pathways and biological processes relevant to depression pathogenesis

	Discussion
	Acknowledgements




