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Abstract—Infectious diseases are a major global pub-
lic health concern. Precise modeling and prediction meth-
ods are essential to develop effective strategies for dis-
ease control. However, data imbalance and the presence of
noise and intensity inhomogeneity make disease detection
more challenging. Goal: In this article, a novel infectious
disease pattern prediction system is proposed by integrat-
ing deterministic and stochastic model benefits with the
benefits of the deep learning model. Results: The combined
benefits yield improvement in the performance of solution
prediction. Moreover, the objective is also to investigate the
influence of time delay on infection rates and rates associ-
ated with vaccination. Conclusions: In this proposed frame-
work, at first, the global stability at disease free equilibrium
is effectively analysed using Routh-Haurwitz criteria and
Lyapunov method, and the endemic equilibrium is analysed
using non-linear Volterra integral equations in the infec-
tious disease model. Unlike the existing model, emphasis is
given to suggesting a model that is capable of investigating
stability while considering the effect of vaccination and
migration rate. Next, the influence of vaccination on the rate
of infection is effectively predicted using an efficient deep
learning model by employing the long-term dependencies
in sequential data. Thus making the prediction more accu-
rate.

Index Terms—Migration, vaccination, stochastic pertur-
bation, Lyapunov stability, volterra integral equation, long
short term memory (LSTM), time delay.

Impact Statement—An infectious disease pattern predic-
tion system is developed using deterministic, stochastic,
deep learning, and time delay models to investigate the
impact of vaccination and population mobility on infectious
disease.
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I. INTRODUCTION

PANDEMIC simulation is a widely recognized essential
tool for disease scenario analysis. Throughout history, there

have been several epidemics that have had a significant impact
on the evolution of society. In the past five decades, several
viruses have emerged and impacted various countries and re-
gions. Nonetheless, Covid-19 has spread remarkably around
the world due to its high contagiousness and rapidity [1],
[2]. Various methods are employed for this purpose, including
classical ordinary differential models such as the SIR model,
agent-based models, and internet-based models. The SIR model
is a fundamental computational method for studying the dy-
namics of pandemics. The SIR model, put out by Kermack and
McKendrick [3] in 1927, was one of the earliest epidemic models
to be developed. Adamu et al. [4] made modifications to the SIR
model by incorporating realistic assumptions to achieve a rapid
decline in the infectious curve while simultaneously increasing
the recovery curve. Hollingsworth [5] discussed the spread of
severe acute respiratory syndrome (SARS) epidemic in 2003,
which was successfully contained within a span of a year and
the domain of pandemic influenza preparation, wherein mathe-
matical models have been widely employed. Diekman et al. [6]
provide a comprehensive discussion on the methodology em-
ployed to construct the next generation matrix (NGM) in order
to estimate the basic reproduction number for a compartmental
model. Enatsu et al. [7] established the global stability of the
endemic equilibrium in an SIR model by employing a Lyapunov
functional. Additionally, they demonstrated the asymptotic sta-
bility of the disease-free equilibrium. Dai et al. [8] discussed
an efficient method to solve the nonlinear Volterra integral
equations. Suryasa et al. [9] provided a review on Covid-19
and suggested adhering to WHO guidelines for reducing the
transmission of the Covid-19 virus. These measures include
maintaining a minimum distance of one meter from others,
wearing a properly fitted mask, ensuring adequate ventilation
by opening windows, avoiding crowded or poorly ventilated
areas, practising good hand hygiene, coughing and sneezing
into the elbow or disposable tissue, and receiving vaccination
when eligible. In [10], [11], [12], [13], [14], the author has
shown a great deal of interest in discussing various models
and approaches for studying the Covid-19 epidemic in different
nations. Martcheva et al. [17] proposed a mathematical model for
Covid-19 pandemic to examine the effects of social distancing
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on disease control and economic development. They concluded
that social distancing measures can eradicate the disease, but
the economy falls short of meeting the necessary social health
standards. It is more probable that a combination of both social
distance and health derivative is necessary. Since only a robust
economy has the potential to eradicate the disease with increased
social isolation.

The aforementioned approches are predominantly about de-
terministic mathematical models pertaining to SIR (Susceptible-
Infectious-Recovered), SEIR (Susceptible-Exposed-Infectious-
Recovered), or Covid-19, wherein the infection rate is regarded
as a constant. There is no stochastic variation in the equations.
Nevertheless, it is imperative to acknowledge that in the majority
of plausible scenarios, the transmission rate of the infection
is subject to stochasticity. Stochastic differential equations can
provide variations of this nature. It finds applications in various
fields, such as economics, there has been relatively less focus
on SIR simulations. Henceforth, it is imperative to integrate
the stochasticity inherent in the transmission rate within the
mathematical framework. Maki and Hirose [18] presented a
stochastic differential equation model as an adaptation of the SIR
simulation model for the analysis of the 2003 SARS outbreak
in Hong Kong. Cai et al. [19] expanded upon a traditional SIRS
epidemic model by including the effects of intervention tech-
niques on infectious forces. This was achieved by transitioning
from a deterministic model to a stochastic differential equation
model, which introduced random fluctuations into the system.
Ríos-Gutiérrez et al. [20] focused on the study of SIR, SIS,
and SEIR epidemic models employing stochastic differential
equations, with a particular emphasis on stability analysis. Yang
et al. [21] studied a stochastic model to explore the impact of
environmental variability and Wolbachia-infected mosquitoes
on dengue disease outcomes, investigating positive solutions,
ergodic behaviour, and population replacement thresholds, em-
phasizing the influence of infected-to-uninfected mosquito ratio
and environmental noise on disease control. Yu et al. [22] ex-
amined the stability of the endemic equilibrium in a model with
random perturbation and found it asymptotically stable despite
the stochastic perturbation. The stability condition is derived
through the formulation of a Lyapunov function, and numerical
simulations are subsequently presented. Gordillo et al. [23] ex-
amined a stochastic differential model that incorporates a unique
reproductive term. This term combines a factor that represents
the concept of an attenuated Allee effect, which has been recently
proposed, with a capacity factor that regulates the size of the
process.

Identification of patterns in infectious disease epidemics is
crucial. It allows for a better understanding of the transmis-
sion dynamics of the disease. Early detection of disease pat-
terns or early disease diagnosis is critical to save lives [24],
[25], [26], [27]. The implementation of intervention strategies
aimed at eliminating infectious diseases is contingent upon
the utilization of appropriate methodologies for assessing the
occurrence of outbreaks. Outbreaks in countries or provinces
typically manifest at varying degrees of intensity throughout
time, often influenced by factors such as seasonal fluctuations
and the virus’s evolutionary adaptations. The observed patterns

in these settings typically have non-linear characteristics, which
serves as a motivation for us to develop a system capable
of capturing and modeling these non-linear dynamic changes.
The utilization of non-linear systems enables us to effectively
elucidate the dynamics of transmission pertaining to infectious
diseases. Kim and Ahn [28] proposed SVM, SSL, and DNN
models to demonstrate an effective predictive ability and forecast
disease occurrences in specific countries using Medisys accumu-
lated media data. Shahid et al. [29] evaluated various forecast
models, including autoregressive integrated moving average
(ARIMA), long short-term memory (LSTM), bidirectional long
short-term memory (Bi-LSTM) and support vector regression
(SVR). These models are examined for their effectiveness in
predicting time series data related to confirmed cases, deaths, and
recoveries in ten significant countries impacted by the Covid-
19 pandemic. Chimmula and Zhang [30] introduced the Long
short-term memory (LSTM) as a deep learning methodology
for predicting future Covid-19 instances and it is anticipated
that the termination of the outbreak may occur approximately in
June 2020.

In an infectious disease paradigm, temporal delay is a com-
mon and normal occurrence resulting from various processes,
including incubation, latency, recuperation, waning immunity,
gestation, and related causes. Delay differential equations have
been widely applied in numerous systems within natural sci-
ence. In the field of disease modeling, several mathematical
models have been developed and extensively explored over
the past two decades, with a particular focus on including
different types of delays. Delay differential equations are the
clear and appropriate choice for modeling and incorporating
these variables into a mathematical model. Delay differential
equations provide a mathematical difficulty because of their
intricate nature in mathematical analysis. However, they are
very intriguing to mathematical modellers due to their ability to
provide a more realistic depiction of dynamical systems. Das and
Srivastava [31] introduced a SIR model incorporating time delay
and demonstrated that the endemic equilibrium is conditionally
stable under specific circumstances, whereas unstable with the
presence of Hopf bifurcation. Song and Xiao [32] developed a
delay differential model to investigate the influence of media
on the transmission dynamics of infectious diseases with a
response time of individuals to infection. Also, they examined
the global bifurcation by considering the delay as a parame-
ter to investigate Hopf bifurcations. Shayak and Sharma [33]
introduce an adaptable infectious disease model using delay
differential equations to effectively describe Covid-19 patterns
and strategies that separate public health interventions, immune
responses, and infection traits. All parameters are directly tied to
the disease, enhancing prediction accuracy. Cheng and Zoa [34]
have proposed a comprehensive SIRS model with a delay to
thoroughly examine the dynamics of the disease. Their primary
focus concerns the local bifurcation resulting from the delay
parameter. They have successfully confirmed mathematically
and numerically the occurrence of Hopf bifurcations. Salman
et al. [35] studied a mathematical model for the Covid-19
pandemic with the effect of delay parameters on the vaccination
rate.
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Even though there are several machine learning, deep learning
and mathematical models available for disease detection or
growth prediction, there is still a need to develop a more robust
infectious disease detection framework that can do both disease
detection and growth prediction more accurately. It motivates us
to develop a more efficient infectious disease prediction system.

A. The Contributions of the Proposed Model:

1) This study proposes a novel approach for predicting
patterns of infectious diseases by combining the positive
aspects of deterministic and stochastic models with those
of deep learning models. Therefore, the collective advan-
tages result in enhanced performance in the prediction of
solutions.

2) The analysis of global stability at the disease free equilib-
rium is done effectively by the use of the Routh-Hurwitz
criterion and the Lyapunov technique. On the other hand,
the analysis of the endemic equilibrium in the infectious
disease model is carried out using non-linear Volterra
integral equations. Also, the impact of time delay on
infection rates and vaccination rates is examined.

3) In contrast with existing models, this study places focus
on proposing a model that is capable of examining sta-
bility while taking into account the impact of vaccination
and migration rates.

4) The impact of vaccination on infection rates is thor-
oughly estimated through the utilization of an efficient
deep-learning model that effectively captures long-term
dependencies in sequential data.

Hence, this article presents a mathematical model for infec-
tious disease that incorporates a combination of deterministic,
stochastic, and delay differential equations. The model is dis-
cussed in sections 2, 3, and 5, where threshold requirements
for the population are derived, and the steady-state behaviour
of the system is examined for both harmless and contagious
environments. In the fourth section, we discuss an artificial
intelligence (AI) methodology for forecasting the number of
infected individuals in the population, taking into account their
vaccination status. This is achieved by utilizing the outcomes of
both deterministic and stochastic models. Subsequently, the nu-
merical results are presented to support the outcomes discussed
in the preceding sections. Finally, the conclusion of the article
is derived.

II. THE DETERMINISTIC SYSTEM

In this section, we will proceed to construct a mathematical
model for an infectious disease epidemic within a population.
A well-mixed population of size N at time t is assumed to be
evenly distributed over four categories: susceptible(S), infec-
tious without symptoms or asymptomatic(A), infectious with
symptoms(I) and vaccinated(V ) individuals. We assume each
category of individuals has at least one individual initially. The
individuals in category S come into physical contact with those
in category A or I , causing them to become infectious whether
or not they exhibit symptoms and move into category A or I ,
respectively. As long as the individuals remain in category V ,

TABLE I
PARAMETER DESCRIPTION

we regard them are protected and immunized. The decline in
vaccine efficacy renders them susceptible again. Also, we define
the migrating individual to and fro in the total population N as
constant positive rates. The deterministic system is depicted as
follows:

Ṡ = (1− δ)Λ +MIS − dS − λ1S − βS(I + pA) + γAA

+ γII + λ2V −MOS,

Ȧ =MIA+ pβSA− dA− μA− γAA−MOA,

İ =MII + βSI + μA− dI − γII −MOI,

V̇ = δΛ +MIV + λ1S − dV − λ2V −MOV, (1)

where Ẋj represent dXj

dt , and the positive constant rates are
defined in Table I.

It is assumed that the sum of the migration out rate and natural
death rate is always greater than the migration in rate, let ψ =
d+MO −MI , i.e. ψ > 0. From the system (1), it follows that
the total population N(t) can be defined as

N(t) = S(t) +A(t) + I(t) + V (t), (2)

implies

dN

dt
= Λ− ψN, (3)

then

N(t) =
Λ

ψ
. (4)

From (4), we get N(t) is bounded, and all the categories of
individuals are bounded as well, as they are all non-negative
and sum up to N . Then the global attractor for the system (1) is
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given as

Γ1 =

{
(S,A, I, V ) ∈ R4

+ : S +A+ I + V =
Λ

ψ

}
. (5)

It is easy to verify that ‘Γ1’ is positively invariant. A system
reaches equilibrium when the disease either completely erad-
icates itself from the population or continues to exist there at
a steady level. On setting the derivatives of all compartments
to zero, the equilibria are determined by solving the obtained
system of equations for S, A, I , and V using (2) and (3). We
now discuss the possible equilibria for the system (1) in two
subsections.

In the following subsection, we examine the disease free
equilibrium of the system (1), the threshold parameter known
as the basic reproduction number and how its value affects the
stability of disease free equilibrium, which aids in infection
control strategies.

A. The Harmless Environment

In this section, we first obtain the disease free equilibrium
of the system (1), then we discuss the derivation of basic re-
production number, and the local as well as global stability of
disease free equilibrium in two subsubsections. The disease free
equilibrium is one of two possible equilibria of the system (1),
and it is obtained as

ED = (SD, AD, ID, VD) , (6)

with

SD =
Λ(ψ(1− δ) + λ2)

ψ (ψ + λ1 + λ2)
, AD = 0,

ID = 0, VD =
Λ(ψδ + λ1)

ψ (ψ + λ1 + λ2)
.

Further, we utilize the disease free equilibrium (6) stated above
to derive the basic reproduction number.

The basic reproduction number(R 0) is the standard definition
of secondary infection in epidemiology, and it represents the
average number of new cases caused by the introduction of a
single infectious individual(with or without symptoms) into a
community of susceptible individuals. For the system (1), we
use the approach described in Van den Driessche [36], which
involves calculating R 0 from the next generation matrix(FV−1).
The matrix ‘F’ and matrix ‘V’ represents the Jacobian of the
collection of rates involving infectious transmission(Fk) and the
collection of other transmissions between compartments(Vk) at
disease free equilibrium (1), respectively. The collections Fk and
Vk are obtained by recasting the system (1) as

dXk

dt
= Fk − Vk, k = 1, 2, (7)

where ‘X1’ denote the categoryA, and ‘X2’ denote the category
I . Hence, the matrix F, V and FV−1 are obtained as

F =

[
pf1 0

0 f1

]
, with f1 as

βΛ (ψ(1− δ) + λ2)

ψ (ψ + λ1 + λ2)
, (8)

V =

[
ψ + μ+ γA 0

−μ ψ + γI

]
, (9)

and

FV−1 =

[
m11 m12

m21 m22

]
, (10)

with

m11 =
βΛp (ψ(1− δ) + λ2)

ψ (ψ + λ1 + λ2) (ψ + μ+ γA)
, m12 = 0,

m21 =
βΛ (ψ(1− δ) + λ2)μ

ψ (ψ + λ1 + λ2) (ψ + μ+ γA) (ψ + γI)
,

m22 =
βΛ (ψ(1− δ) + λ2)

ψ (ψ + λ1 + λ2) (ψ + γI)
.

Therefore, on deriving the spectral radius of FV−1 in (10), we
get R 0 as

R 0 =
Λβp (ψ(1− δ) + λ2)

ψ (ψ + λ1 + λ2) (ψ + μ+ γA)
. (11)

The following subsection is established to prove the local sta-
bility of disease free equilibrium (6).

1) Local Stability of Disease Free Equilibrium: This sub-
section contains the result to prove the local stability of disease
free equilibrium (6) of the system (1) using Routh-Hurwitz
criteria. It is a mathematical technique through an algebraic
approach to check whether the roots of the polynomials are in the
left half plane. This technique is frequently used to determine
the stability of the system. Also, without directly calculating
roots, the coefficients of characteristic equations are analysed.
The following lemma states the necessity of parameters for the
stability of disease free equilibrium (6) of the system (1).

Lemma 1: Assume that the system (1) satisfies the following
conditions:

βp(1 + Λψδ + λ1) >
ψ(ψ + μ+ γA)

ψ + λ1 + λ2
,

ψ + μ+ μβp

ψ + λ1 + γI
=
ψ + λ2 + μβ

ψ + λ1 + λ2
= ψ + μ+ γA, (12)

then the disease free equilibrium (6) of the system (1) is locally
asymptotically stable if R 0 < 1, and unstable if R 0 > 1.

Proof: Proof is provided in Supplementary Materials VII-
A. �

The next subsubsection is established to prove the results of
global stability of disease free equilibrium (6) of the system (1).

2) Global Stability of Disease Free Equilibrium: In this
subsubsection, we follow the Lyapunov method to prove the
global stability of disease free equilibrium (6) of the system (1)
through the lemma stated below. For simplicity, here we consider
the following notions:
α1 = ψ, α2 = Λβp(α1(1− δ) + λ2), α3 = α1 + λ1 + λ2,

α4 = α1 + μ+ γA and α5 = α1 + γI .
Lemma 2: If R 0 < 1, the disease free equilibrium (6) of

system (1) is globally asymptotically stable with assumption,
α2 > α1α3(pβS + α4).
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Proof: Proof is provided in Supplementary Materials
VII-B. �

In the next subsection, we focus on another equilibrium of the
system (1), known as endemic equilibrium and its stability.

B. The Contagious Environment

In this subsection, we present the existence of endemic equi-
librium of the system (1) and to examine the local stability of
endemic equilibrium [37]. The endemic equilibrium will have
a positive count of individuals in infectious categories. The
system (1) has disease free equilibrium (6) as discussed in the
previous subsection. Also, the system (1) allows for the endemic
equilibrium, if the following conditions are met:

ψ + μ+ γA
ψ + γI

< p <
(ψ + λ1 + λ2)ψ(γA + ψ + μ)

(λ2 + (1− δ)ψ)β

and R 0 > 1. The endemic equilibrium of system (1) is
obtained as

EE = (SE , AE , IE , VE) , (13)

with

SE =
ψ + μ+ γA

βp
,

IE =
pμAE

p (ψ + γI)− (ψ + μ+ γA)
,

VE =
Λδβp+ λ1(ψ + μ+ γA)

βp (ψ + λ2)
,

AE =

(
α3(γA + ψ + μ)

βp(λ2 + ψ)R0

)
(α3ψ(γA + ψ + μ)(R0 − 1)

+βp(λ2 + (1− δ)ψ) ,

where α3 = ψ + λ1 + λ2. Consequently, it is noticeable that
R 0 must be greater than one for the existence of endemic
equilibrium (13). To study the stability of endemic equilibrium
(13) of the system (1), if the disease free equilibrium (6) is
unstable for some coditions as in lemma (1) and lemma (2), we
transform the system (1) into Volterra Integral Equation in the
following subsubsection.

1) Nonlinear Integral Equation for Deterministic System:
Here, we establish the results that prove the local stability of the
endemic equilibrium (13) of the system (1) by changing the
system (1) into integral equations and transforming the endemic
equilibrium (13) of the system (1) to the origin (0,0,0) of Volterra
Integral Equation. The system (1) is suitable for short-term
forecast and analysis, since it prioritizes the current state over the
past input history. Volterra integral equations are very suitable
for the representation of systems that exhibit memory effects,
wherein the present state is influenced not only by the current
input but also by previous inputs. Volterra integral equations
have the inherent capability to effectively address nonlinear
systems, rendering them suitable for modeling systems exhibit-
ing nonlinear behaviour. The transformation of system (1) into
integral equations is as follows:

First, let us look at the categories A, I , and V . Then, we use
them to obtain the category S. Consider the following:

x(t− s) = e−(ψ+μ+γA)(t−s), y(t− s) = e−(ψ+γI)(t−s),

and z(t− s) = e−(ψ+λ2)(t−s).
Using x(t− s), y(t− s) and z(t− s), one can easily derive

the equivalent form of the system (1) into following integral
equations :

A(t) = A(0)e−(ψ+μ+γA)t

+ p

∫ t

0

x(t− s)β1(s)(S(s) + θV (s))ds, (14)

I(t) = I(0)e−(ψ+γI)t +

∫ t

0

y(t− s)β2(s)(S(s) + θV (s))ds

+ μ

∫ t

0

y(t− s)A(s)ds, (15)

V (t) = V (0)e−(ψ+λ2)t +
δΛ

ψ + λ2

(
1− e−(ψ+γI)t

)

+ λ1

∫ t

0

z(t− s)S(s)ds. (16)

The endemic equilibrium (13) of system (1) is transfered to the
origin (0,0,0) of the (14)–(16) by setting

S(t) = S̃(t) + SE , A(t) = Ã(t) +AE ,

I(t) = Ĩ(t) + IE and V (t) = Ṽ (t) + VE .

Also, using the (2) and (4) the individuals in category S can be
obtained as

S(t) =
Λ

ψ
−A(t)− I(t)− V (t)

=
Λ

ψ
− Ã(t)− Ĩ(t)− Ṽ (t)−AE − IE − VE

= SE − Ã(t)− Ĩ(t)− Ṽ (t).

Further for simplicity, the signs S̃(t), Ã(t), Ĩ(t) and Ṽ (t) are
considered as S(t), A(t), I(t) and V (t), respectively. Then the
integral (14)–(16) becomes

A(t) = −AE +A(0)e−(ψ+μ+γA)t + pβ

∫ t

0

x(t− s)SEAEds

+ pβ

∫ t

0

x(t− s) (A(s) (SE −A(s)− I(s)− V (s))

−AE(A(s) + I(s) + V (s))) ds, (17)

I(t) = − IE + I(0)e−(ψ+γI)t + μ

∫ t

0

y(t− s)AEds

+ β

∫ t

0

y(t− s)IESEds+ β

∫ t

0

(I(s) (SE −A(s)

−I(s)− V (s)− IE(A(s) + I(s) + V (s))) ds

+ μ

∫ t

0

y(t− s)A(s)ds+ β

∫ t

0

y(t− s)ds, (18)
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V (t) = − VE +
δΛ + λ1SE
ψ + λ2

+

(
V (0)− (δΛ + λ1SE)

ψ + λ2

)

× e−(ψ+λ2)t − λ1

∫ t

0

z(t−s)(A(s)+I(s)+V (s))ds.

(19)

Since AE , IE and VE holds true for

AE = βp

∫ −t

−∞
AESEx(−τ1)dτ1,

IE =

∫ −t

−∞
(βIESE + μAE) y(−τ1)dτ1,

VE =
δΛ + λ1SE
ψ + λ2

,

the integral (17)–(19) can be changed to a nonlinear Volterra
integral equation as follows:

Y (t) = U(t) +

∫ t

0

V (t− s)W (Y (s))ds, (20)

where Y (t) =

⎡
⎢⎣AI
V

⎤
⎥⎦, U(t) =

⎡
⎢⎣u1(t)u2(t)

u3(t)

⎤
⎥⎦, V (t) =

⎡
⎢⎣x(t) 0 0

0 y(t) 0

0 0 z(t)

⎤
⎥⎦ and W (s) =

⎡
⎢⎣W1(s)

W2(s)

W3(s)

⎤
⎥⎦ ,with

u1(t) = A(0)e−(ψ+μ+γA)t − βp

∫ −t

−∞
AESEx(−τ1)dτ1,

u2(t) = I(0)e−(ψ+γI)t −
∫ −t

−∞
(βIESE + μAE) y(−τ1)dτ1,

u3(t) =

(
V (0)− (δΛ + λ1SE)

ψ + λ2

)
e−(ψ+λ2)t,

and

W1(Y (s)) = βpA(s) (SE −A(s)− I(s)− V (s))

− βpAE(A(s) + I(s) + V (s)),

W2(Y (s)) = βI(s) (SE −A(s)− I(s)− V (s))

− βIE(A(s) + I(s) + V (s)) + μA(s),

W3(Y (s)) = − λ1(A(s) + I(s) + V (s)).

The following subsubsection discusses the asymptotic stability
of (0,0,0) of the non-linear Volterra integral (20).

2) Asymptotic Stability of Endemic Equilibrium: In this
subsubsection, our focus is on examining the asymptotic stability
of the endemic equilibrium (13) of the system (1). This analysis
relies upon the asymptotic stability of the origin (0,0,0) in the
non-linear Volterra integral (20). We now established a result
to prove the asymptotic stability of (0,0,0) of the non-linear
Volterra integral (20).

Theorem 1: If the solutions of the non-linear Volterra integral
(20) are bounded and lies on [0,∞),U(t) ∈ C[0,∞),U(t) → 0
as t→ ∞, V (t) ∈ Ll[0,∞),W (X) ∈ C1(R2),W (0) = 0, the

Jacobian matrix of W at (0,0,0) is nonsingular, and the charac-
teristic polynomial with Im as identity is

∣∣∣∣Im −
∫ ∞

0

e−λtV (t)JW

∣∣∣∣ = 0, (21)

then (0,0,0) is locally asymptotically stable for the non linear
Volterra integral (20).

Proof: Proof is provided in Supplementary Materials
VII-C. �

Remark: The results and discussion from subsection (2.1)–
(2.2), summarize that the disease-free equilibrium (6) of system
(1) is stable with R 0 < 1 and the endemic equilibrium (13) of
system (1) is stable with R 0 > 1.

In the subsequent section, a perturbation term is incorporated
into the system (1) to establish a stochastic system.

III. STOCHASTIC SYSTEM

This section examines the stochastic system, a variant of
the deterministic system (1). It is essential to study associated
stochastic systems in order to comprehend the dynamics of
the system (1), as the infectious rate changes over time in
reality. Stochastic systems account for the inherent randomness
and uncertainty in disease transmission. By simulating multi-
ple possible outcomes, stochastic systems can provide a more
accurate picture of how a disease might spread and evolve.
However, stochastic systems are also more complex and com-
putationally intensive than the associated deterministic systems.
Despite these challenges, stochastic systems have become an
increasingly important tool in research, helping policymakers to
make informed decisions about disease control and prevention
strategies. An associated stochastic system is formed by the
introduction of a perturbation parameter that affects the infection
rate of the S, A, and I categories in the system (1), and is given
as

dS = ((1− δ)Λ +MIS − dS − λ1S − βS(I + pA) + γAA

+γII + λ2V −MOS) dt− σS(I + pA)dW (t),

dA = (MIA+ pβSA− dA− μA− γAA−MOA)dt

+ pσSAdW (t),

dI = (MII+βSI+μA− dI − γII −MOI)dt+σSIdW (t),

dV = (δΛ +MIV + λ1S − dV − λ2V −MOV )dt, (22)

with ‘σ’ as the perturbation parameter related to the infectious
rate, ‘W (t)’ is a Weinear process, and all the positive constants
are the same as in the system (1). When the parameter ‘σ’ equals
zero, then the stochastic system simplifies to a deterministic
system. Hence, the analysis performed for the deterministic
system will be applied since it is no longer a stochastic system.
Since most of the real-world scenarios are stochastic in nature,
we assume a positive value for ‘σ’.

Next, we discuss the stability of disease free equilibrium (6)
for the stochastic system (22).
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Theorem 2: Let R 0 and disease free equilibrium be same as
in system (1), if

R 0 <
1

(ψ + μ+ γA)A
,

βS

ψ + γI
< 1 <

pβS

ψ + μ+ γA
,

and βSI > Aμ+ (ψ + γI)I,

then disease free equilibrium (6) is asymptotically stable for
system (22) with appropriately small σ > 0.

Proof: Proof is provided in Supplementary Materials VII-
D. �

In the subsequent subsection, our exclusive attention is di-
rected towards examining the relation between the solutions of
category I and category V with the intent of training through
the neural network.

IV. DEEP LEARNING BASED PREDICTION

In this section, an efficient framework is proposed to improve
the prediction performance by integrating mathematical models
and neural networks. The deterministic system (1) and stochas-
tic system (22) demonstrate favourable performance, but there
remains potential for further enhancements. The advancement of
deep learning motivates us to leverage the advantages offered by
deep learning models, specifically employing Long Short-Term
Memory (LSTM) networks on the obtained solution from the
proposed mathematical model. We now focus on solutions of
the system (1) and (22) for category I and category V ; we
use LSTM to forecast the number of individuals in category
I based on the number of individuals in category V . Since
LSTM networks have proven to be highly effective in capturing
long-term dependencies in sequential data. Understanding the
mathematical principles underlying LSTM networks enables us
to exploit their capabilities for tasks involving time series data,
thereby facilitating improved performance [39].

The LSTM architecture is composed of interconnected mem-
ory cells that enable the storage and retrieval of information over
extended periods. Its main components consist of the input gate,
forget gate, output gate, and memory cell [40]. The input gate
determines the importance of new input in relation to the current
state of the LSTM cell, controlling the information flow and cell
state update. The activation of the input gate is calculated as
follows:

it = σ(Wi ∗ [ht−1, xt] + bi), (23)

where it represents the input gate activation at time t, σ denotes
the sigmoid activation function, Wi corresponds to the weight
matrix of the input gate, ht−1 refers to the previous hidden state,
xt represents the current input, and bi is the bias term for the
input gate.

The forget gate determines the extent to which previously
stored information should be disregarded, governing the re-
tention or removal of information from the memory cell. The
activation of the forget gate is computed as follows:

ft = σ(Wf ∗ [ht−1, xt] + bf ), (24)

where ft denotes the forget gate activation at time t, Wf rep-
resents the weight matrix for the forget gate, ht−1 denotes the

previous hidden state, xt represents the current input, and bf
corresponds to the bias term for the forget gate.

The memory cell stores the acquired information from the
input sequence and updates the cell state at each time step.
By combining the input gate and forget gate information, the
memory cell state is updated as follows:

Ct = ft ∗ Ct−1 + it ∗ tanh(WC ∗ [ht−1, xt] + bC), (25)

where Ct represents the updated memory cell state at time t,
Ct−1 represents the previous memory cell state,WC denotes the
weight matrix for the memory cell, tanh refers to the hyperbolic
tangent activation function, and bC corresponds to the bias term
for the memory cell.

The output gate determines the relevance of the current mem-
ory cell state to the hidden state and generates the output for
the current time step. It controls the information flow from the
memory cell to the output. The activation of the output gate is
calculated as follows:

ot = σ(Wo ∗ [ht−1, xt] + bo), (26)

where ot denotes the output gate activation at time t, Wo

represents the weight matrix for the output gate, ht−1 denotes
the previous hidden state, xt represents the current input, and
bo corresponds to the bias term for the output gate. We next
move on to discuss the mathematical system with the time delay
parameter associated to the system (1).

V. THE DELAYED SYSTEM

In this section, we present the time delay systems associated
with the system (1). Adding delays to epidemic models has
assisted researchers in better comprehending the complexities
involved in illustrating the dynamics of infectious diseases.
Latent period inclusion is the primary focus on delayed sys-
tems in epidemic models. This assumes that the total number
of infections in earlier times determines the current infectious
rate. Since time delays can alter the qualitative characteristics
of the system, such as destabilizing an equilibrium and so
leading to periodic solutions via Hopf bifurcation, epidemic
models with time delays require considerable attention. The time
delay systems associated with the system (1) are formulated
by dividing into two distinct time delay systems, one with a
time delay in infectious rate and another with a time delay
in vaccination-related rates. Both the time delay systems are
discussed in two subsections.

A. Time Delay System With Delay in Infectious Rate

Here, we introduce a time delay parameter associated with
the infectious rate, and we focus on the S, A, and I categories.
The time delay is indicated by the parameter ‘τ > 0’. Below
is a description of the time delay system that includes a delay
parameter associated with the infectious rate in the S, A, and I
categories.

dS

dt
= (1− δ)Λ +MIS − dS − λ1S − βS(I(t− τ)

+ pA(t− τ)) + λ2V −MOS,
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dA

dt
=MIA+ pβSA(t− τ)− dA− μA−MOA,

dI

dt
=MII + βSI(t− τ) + μA− dI −MOI, (27)

where the positive constants are the same as in system (1). It is
crucial to define the value of the solution prior to t = 0 with an
initial condition. In this case, the initial conditions are S0(θ) =
φ1(θ) > 0, A0(θ) = φ2(θ) > 0, I0(θ) = φ3(θ) > 0, with θ ∈
[−τ, 0], where φi ∈ C([−τ, 0] → R+), (i = 1, 2, 3) are given
functions. Similar to the global attractor (5) of the system (1),
the biologically feasible region for the delayed system (27) is
obtained as

Γ2 =
{
(S,A, I) ∈ R3

+ : S,A, I ≥ 0
}
, (28)

and also, following the discussion related to the global attractor
(5) of the system (1), ‘Γ2’ is positively invariant. The two
required equilibria of system (27) are defined as disease free
equilibrium (ED∗ = (SD∗, AD∗, ID∗)) and endemic equilib-
rium (EE∗ = (SE∗, AE∗, IE∗)).

Now, the following theorem is established to prove the
asymptotic stability of disease free equilibrium (ED∗ =
(SD∗, AD∗, ID∗)) of the system (27).

Theorem 3: The disease free equilibrium (ED∗ =
(SD∗, AD∗, ID∗)) of the system (27) is linearly asymptotically
stable for τ ≥ 0 with some constants Ki > 0, i = 1, 2, 3.

Proof: Proof is provided in Supplementary Materials VII-
E. �

In the following section, we provide a brief discussion
about the bifurcation of the endemic equilibrium (EE∗ =
(SE∗, AE∗, IE∗)) of the system (27).

1) Hopf Bifuraction: We now discuss the stability and
the Hopf bifurcation of the endemic equilibrium (EE∗ =
(SE∗, AE∗, IE∗)) of the system (27). Hopf bifurcation is a
significant type of bifurcation observed in the study of dynamical
systems, it signifies a fundamental shift in the behaviour of a
system. At a specific critical value of the time delay parameter,
the stability of the equilibrium point undergoes a transition
from stability to instability. Here we consider the delay ‘τ ∗’
to be the critical time delay at which bifurcation occurs and the
Theorem (3) holds true for the endemic equilibrium (EE∗ =
(SE∗, AE∗, IE∗)) of the system (27). Contrary assuming that
the characteristic polynomial (49) does not satisfy the Routh-
Hurwitz criteria withK3 < 0, the characteristic polynomial (49)
has one positive root and a pair of imaginary roots. Then, from
this endemic equilibrium (EE∗ = (SE∗, AE∗, IE∗)) of the sys-
tem (27), periodic solutions bifurcate as ‘τ ’ passes through the
critical value. The critical time delay ‘τ ∗’ is obtained by solving
the transcendental (50)–(51) as

τ ∗ =
1

2z
arccos

[
D1z

2
(
ω∗2 − U2

)
+D2

(
z2B1 −B3

)
z2B2

1 +B2
2

]

+
2nπ

z
, n = 0, 1, 2, · · · (29)

At x = iz, τ = τ ∗ with 2z2(B3 −B1z
2) > 0, it is seen that[

d(Re(x))

dτ

]
> 0. (30)

From the (29)–(30), we conclude that the endemic equilibrium
(EE∗ = (SE∗, AE∗, IE∗)) of the system (27) is stable for τ ∈
[0, τ ∗) and unstable for τ > τ ∗ [41]. Next, we establish the fol-
lowing subsection to discuss another time delay system in which
the time delay parameter is associated with vaccination-related
rates.

B. Time Delay System With Delay in
Vaccination-Related Rates

We now introduce a time delay parameter associated with the
vaccination rate and the failure of the vaccination rate to obtain
precise results on S and V categories. Here, the time delay is
indicated by the parameter ‘τ1 > 0’. Below is a description of
the time delay system that includes a delay parameter associated
with the vaccination rate and the failure of the vaccination rate
in the S and V categories.

dS

dt
= (1− q)Λ +MIS − pS(t− τ1)− λ1S

+ λ2V (t− τ1)−MOS,

dV

dt
= qΛ +MIV + λ1S(t− τ1)− pV

− λ2V (t− τ1)−MOV, (31)

where the positive constants are the same as in system (1).
It is crucial to define the value of the solution prior to t = 0
with an initial condition. In this case, the initial conditions
are S0(θ) = φ1(θ) > 0, V0(θ) = φ2(θ) > 0, with θ ∈ [−τ, 0],
where φi ∈ C([−τ, 0] → R+), i = 1, 2, are given functions.
Similar to the global attractor (5) of the system (1), the feasible
region for the delayed system (31) is obtained as

Γ3 =
{
(S, V ) ∈ R2

+ : S, V ≥ 0
}
, (32)

and also, following the discussion related to the global attractor
(5) of the system (1), ‘Γ3’ is positively invariant. The positive
equilibrium of (31) is defined as E∗ = (S∗, V∗). Now, the fol-
lowing theorem is established to prove the asymptotic stability
of equilibrium (E∗ = (S∗, V∗)) of the system (31).

Theorem 4: The equilibrium (E∗ = (S∗, V∗)) of the system
(31) is linearly asymptotically stable for τ1 ≥ 0.

Proof: Proof is provided in Supplementary Materials VII-F.�
Remark: The critical time ‘τ ∗1 ’ by solving the transcendental

(55)–(56), similar to previous subsection as

τ ∗1 =
1

z∗
arccos

[
(V2W2 − V2z

∗2 + V1W1z
∗2)

W 2
1 z

∗2 +B2
2

]
. (33)

The Hopf bifurcation occurs at τ ∗1 . Hence, the equilibrium
(E∗(S∗, V∗)) of the system (31) is stable for τ1 ∈ [0, τ ∗1 )
and unstable for τ1 > τ ∗1 . Now, we proceed with numeri-
cal examples to better understand the proposed mathematical
systems.

VI. NUMERICAL SIMULATIONS

This section focuses on the numerical simulation of the math-
ematical systems discussed in the sections that followed. The
objective is to analyze the impact of two major control strategies
of an epidemic, that is, vaccination and migration, on individuals
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Fig. 1. Total individuals in categories A and I of the system (1)–(22). Fig. 1(a)–(b) are with R0 < 1, Λ = 100, M1 = 0.5, M2 = 0.6, δ = 0.05, β =
0.006 & 0.004, λ1 = 0.6, μ = 0.0001, γA = 0.004, γI = 0.005, λ2 = 0.0006, d = 0.0001 and σ = 1.03093× 10−5. Fig. 1(c) and (d) are with R0 > 1,
Λ = 100, M1 = 1 & 0.6, M2 = 1.2 & 0.7, δ = 0.05, β = 0.005 & 0.004, λ1 = 0.6, μ = 0.002, γA = 0.001, γI = 0.001, λ2 = 0.0006, d = 0.0001 and
σ = 1.03093× 10−5.

categorized as A and I . Additionally, we observe that the value
of R 0 has an impact on the trajectory of the infectious curve
obtained from the system (1) and (22), either amplifying or
attenuating its growth. We investigate the impact of the time
delay parameter on the number of individuals in category I
derived from system (27) and the role of time delay associated
with vaccination rate and failure of vaccination rate derived from
system (31). To identify the optimal parameters, it is essential
to use historical data and statistical methods for their accurate
estimation. We fix the total population with 1000 individuals.
Initially, we consider the number of individuals in categories S,
A, I , and V is 970, 15, 10, and 5, respectively.

Fig. (1) depicts the influence of R 0 on the populations affected
by the infectious disease, both in categoryA and category I . It is
evident from Fig. 1(a) and (c) that when R 0 is less than one, the
number of individuals in both categoryA and category I tend to
converge towards the disease free equilibrium (6). Furthermore,
the maximum number of individuals in both categories does
not exceed twenty-six. Conversely, when R 0 exceeds one, the
number of infected individuals in both category A and category
I surpasses twenty-six very fast and converges to endemic equi-
librium(13). Additionally, the stability analysis reveals that the
disease free equilibrium is stable for values of R 0 less than one,

while an endemic equilibrium state exists and remains stable for
values of R 0 greater than one. Hence, for lower values of R 0,
the number of individuals in category A or I diminishes within
a short timeframe, while for higher values of R 0, the number
of individuals in category A or I persists indefinitely without
reaching zero after a certain period. In Fig. 1(b) and (d), the
number of individuals in category A and category I , under the
influence of minor random fluctuations, are shown. It is seen that
when R 0 < 1 and R 0 > 1, the stochastic system (22) fluctuates
around the deterministic system (1), indicating random variation
without significant outbreaks. These results highlight the signif-
icance of integrating deterministic and stochastic approaches to
disease dynamics, as they provide insight into both short and
long-term behaviours and the impact of random fluctuations on
disease outbreaks.

Figs. 2–3 illustrates the changes in the number of individuals
in category I and category V over time in system (1)–(22),
considering different rates of vaccination success and failure.
In Fig. 2(a), the vaccination rate exhibits variation while main-
taining fixed values for the vaccine failure rate. Conversely, in
Fig. 2(b), the vaccine failure rate demonstrates variation while
keeping the vaccination rate constant. The results show that as
the vaccination rate increases, there is a corresponding decrease
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Fig. 2. Effect of λ1 and λ2 on category I and V of the system (1) with Λ = 100, M1 = 1.1, M2 = 1.2, δ = 0.8, β = 0.02, μ = 0.8, γA = 0.3,
γI = 0.7 and d = 0.1.

Fig. 3. Effect of λ1 and λ2 on category I and V of the system (22) with Λ = 100, M1 = 1.1, M2 = 1.2, δ = 0.8, β = 0.001, μ = 0.8, γA = 0.0001,
γI = 0.0001, d = 0.1 and σ = 5.15464× 10−5.

in the number of individuals in category I . Therefore, in order to
effectively prevent infections within the population, it is crucial
to maintain a high vaccination rate and minimize the rate of vac-
cination failures. The following Fig. 4(a)–(b), depict the LSTM
model that has been trained using data representing solutions
from both deterministic and stochastic systems (1)–(22). Here,
the primary emphasis is only on the number of individuals in
categories I and V in the systems (1)–(22). Our objective is
to use the number of individuals in categories I and V to make
predictions specifically for the number of individuals in category
I while considering a range of different values for the number of
individuals in category V . The LSTM model is configured with
a total of 100 hidden layers. The model underwent training using
the Adam optimizer, employing the mean absolute error (MAE)
loss function over a span of 1000 epochs, divided into 72 batches.
The root mean squared error (RMSE) for Fig. 4(a) is 1.432,
whereas Fig. 4(b) has a slightly higher RMSE of 2.376. This
discrepancy may be attributed to the fluctuation in input values
seen at each time step of Fig. 4(b). The projected values have

the highest degree of similarity with the input data. Hence, by
integrating the solutions of the deterministic and stochastic sys-
tems (1)–(22) with the benefits of LSTM, demonstrate superior
predictive performance for category I with respect to categoryV
in minimum error. Fig. (5) illustrates the influence of migration
on the variability of individuals within category I of system
(1). In Fig. 5(a), the migration rate of individuals towards the
population demonstrates variability while the migration out rate
remains constant. In contrast, Fig. 5(b) illustrates the presence
of variation in the migration out parameter while maintaining
a constant rate for migration toward the population. It has
been observed that an increase in rate of migration towards the
population correlates with an upward trend in the number of
individuals in category I . On the other hand, a higher rate of
migration out leads to a reduction in the number of individuals
in category I . Therefore, the movement of the population has
implications for the control of such infectious diseases. An il-
lustration of the impact of vaccination and population migration
limitations on infectious disease is provided in Supplementary
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Fig. 4. LSTM applied to categories I and V of system (1) and (22).

Fig. 5. Effect of MI and MO on category I of system (1) with Λ = 100, δ = 0.05, β = 0.005, λ1 = 0.6, μ = 0.002, γA = 0.001, γI = 0.001,
λ2 = 0.0006 and d = 0.0001.

Materials VII-G. To investigate the behaviour of the infectious
population in the system (27), Fig. (6) is presented, considering
the influence of delay parameters. Here, we consider the number
of individuals initially in categories S, A, I , and V as 980, 9,
9 and 2, respectively. Interestingly, three distinct patterns are
observed for the infectious population in each figure. In Fig. 6(a),
the number of individuals in category I exhibits a rapid increase
in fluctuations around 50 days, reaching a fluctuation range of
−1000 to 1500 cases after 150 days. Notably, these fluctuations
occur without a specific periodic pattern. Fig. 6(b) corresponds
to a time delay parameter (τ ) very close to the one considered
in Fig. 6(a). Here, the infectious curve begins to fluctuate at
around 45 days and maintains a range between 0 and 1000
cases for approximately 225 days. Subsequently, the fluctuation
range expands by 200 cases, both above and below the mean.
Fig. 6(c) demonstrates a fluctuation range spanning from−2000
to 2000 cases at 50 days. However, beyond 250 days, the wide
range of fluctuations diminishes, indicating that the population
has reached the endemic equilibrium. It is worth noting that the

fluctuation or bifurcation of the infectious curve does not appear
to be solely dependent on the time delay parameter. Instead, it
is the periodic values of the time delay parameter (τ ) that lead
to a higher range of fluctuations, as observed in system (27).

In the analysis of the population dynamics, Fig. 7(a) demon-
strates that as the vaccinated population increases, the suscep-
tible population decreases. Higher vaccination rates, coupled
with lower vaccination failure rates, result in a rapid transi-
tion of the population from the susceptible compartment to
the vaccinated compartment, stabilizing at a certain level. The
impact of the time delay parameter (τ ) is observed as a slight
bifurcation in both the susceptible and vaccinated populations
before reaching equilibrium. However, the populations of sus-
ceptible and vaccinated remain nonzero at equilibrium due to
the positive vaccination rate and the possibility of vaccination
failure. Moving to Fig. 7(b), higher values of the time delay
parameter (τ ) are examined, revealing that an increase in the
vaccinated population corresponds to a decrease in the sus-
ceptible population. With an elevated time delay parameter,
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Fig. 6. Total individuals in category I of the system (27) with Λ = 100, M1 = 0.06, M2 = 0.05, δ = 0.8, β = 0.02, λ1 = 0.8, μ = 0.8, γA = 0.6,
γI = 0.7, λ2 = 0.1 and d = 0.1.

Fig. 7. Total individuals in categories S and V of the system (31) with Λ = 100, M1 = 0.06, M2 = 0.05, δ = 0.8, β = 0.02, λ1 = 0.8, μ = 0.8,
γA = 0.6, γI = 0.7, λ2 = 0.1 and d = 0.1.

periodic solutions emerge with a reduced range of fluctuations,
eventually converging to equilibrium. Conversely, Fig. 7(c) ex-
plores the behaviour of solutions in the system (31) near the
critical time delay. As the time delay parameter surpasses the
critical value, periodic solutions bifurcate from the equilibrium,
exhibiting an increasing amplitude over time with a constant
wavelength. These fluctuations signify that the system does not
reach equilibrium and becomes unstable. Overall, the analysis
highlights the importance of considering vaccination rates, vac-
cination failure, and the impact of time delay on the popula-
tion dynamics, revealing stability near equilibrium under spe-
cific conditions while indicating instability beyond critical time
delays.

VII. CONCLUSION

In this work, a novel disease modeling by incorporating
the migration in the population and vaccination is proposed
and the stability of the model is examined by using Lyapunov
method and the Volterra integral equation. In addition, a minor
perturbation in the infection rate is incorporated into the system
to introduce stochasticity and the stability of the system is
analyzed by constructing the Lyapunov function. Furthermore,
the LSTM model is used to train the solution of deterministic and
stochastic systems in order to predict the decline in the number
of infectious individuals as the number of vaccinated individuals
increases. The delayed system is comprised of two distinct

subsystems, one characterized by delay in relation to infection
and the other characterized by delay in relation to vaccination.
In both systems, it is observable that the endemic equilibrium
exhibits unstable due to the occurrence of Hopf bifurcation at
certain values of the time delay parameter. The analytical results
are shown numerically. Our study provides the influence of a
vaccinated population and migrating in and out of the population
on the dynamics of a pandemic, contributing to the development
of informed strategies and interventions for managing such a
pandemic. The assumption of constant parameters may affect
the performance of the models. Future research could examine
a mathematical model of infectious diseases with parameters
that change over time in order to adapt the model to actual data
precisely.

SUPPLEMENTARY MATERIALS

In Supplementary Materials, we provide the necessary proofs
for all of the lemmas and theorems mentioned in the manuscript.
Furthermore, an illustration of an infectious disease affected
by vaccination and migratory restrictions in the population is
discussed.
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