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Antibacterial Activity Prediction of Plant Secondary
Metabolites Based on a Combined Approach of Graph
Clustering and Deep Neural Network
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Abstract: The plants produce numerous types of secondary
metabolites which have pharmacological importance in
drug development for different diseases. Computational
methods widely use the fingerprints of the metabolites to
understand different properties and similarities among
metabolites and for the prediction of chemical reactions
etc. In this work, we developed three different deep neural
network models (DNN) to predict the antibacterial property
of plant metabolites. We developed the first DNN model
using the fingerprint set of metabolites as features. In the
second DNN model, we searched the similarities among
fingerprints using correlation and used one representative
feature from each group of highly correlated fingerprints. In
the third model, the fingerprints of metabolites were used

to find structurally similar chemical compound clusters.
Form each cluster a representative metabolite is selected
and made part of the training dataset. The second model
reduced the number of features where the third model
achieved better classification results for test data. In both
cases, we applied the simple graph clustering method to
cluster the corresponding network. The correlation-based
DNN model reduced some features while retaining an
almost similar performance compared to the first DNN
model. The third model improves classification results for
test data by capturing wider variance within training data
using graph clustering method. This third model is some-
what novel approach and can be applied to build DNN
models for other purposes.
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1 Introduction

Plants have been widely used as the traditional medicine
source in developing countries. More than 20,000 such
medicinal plant species are used worldwide and are a good
source of new compounds/drugs.[1] Since the abundant
uses of medicines for the treatment of diseases caused by
microbiomes are increasing day by day, the resistance of
these microbiomes against the medicines has also strength-
ened over time.[2–15] This led the scientist to search for more
effective drugs against these microbes.[16–19] Recently drug
resistance bacteria which are called superbugs have
attracted much attention leading to the search for novel
antibiotics. New classes of antibiotics can address novel and
valid targets or can work according to a novel mechanism.
If we can find antibiotics within natural products those
might be less costly drugs with fewer side effects. Examples
of natural product antibiotics are Catechin and Epicatechin
extracted from Camellia sinensis or Strobilanthes crispus
which can fight against antibiotic resistant bacteria.[20–21]

Over the last few years, scientists have more focused on the
promising potential of secondary metabolites to fight
against bacteria. New compounds are discovered frequently
but the biochemical effects of many of those compounds
are still unknown.[22–23] Previous studies show the in vitro
analysis of plant metabolite for finding medicinal
properties.[24–26] The in vitro screening test is time-consum-

ing and needs large-scale experiments to analyze the
medicinal properties of plant metabolites. The Computa-
tional based approach needs only the properties, chemical
behavior of the metabolites to assess the specific proper-
ties. Computational based approaches utilize large amount
of experimental data to compare the known properties of
compounds to another compound. Several studies show
the application of computational methods on predicting
the medicinal properties of natural compounds by inves-
tigating the same properties in known drugs.[27–29]

Neural networks (NNs) are efficient machine learning
models of computational based approach which help to
predict the unknown behavior of an entity expressed in
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numerous variables. The model is trained at first using the
known behavior of those variables which can grab the inner
relationship from the input domain to the output domain.
During the propagation of training data, different parame-
ters of the model are adjusted comparing the generated
output values to actual output values. After training, the
model is used to predict the output of test data. NN models
are very popular and widely used in every aspect of
scientific research because of availability of data and easy
implementation schemes by using the computational
power of modern computers. Performance tuning and
feature optimization are important issues in NN model
design.

Plants produce three major groups of secondary metab-
olites: a) Flavonoids and allied phenolic and polyphenolic
compounds b) Terpenoids and c) Nitrogen-containing
alkaloids and sulfur-containing compounds using four
different pathways.[30–31] Also, these groups can be classified
into fourteen types such as Alkaloids; Non protein amino
acids (NPAAs); Amines; Cyanogenic glycosides; Glucosino-
lates; Alkamides; Lectins, peptides and polypeptides; Ter-
penes; Steroids and saponins; Flavonoids and Tannins;
Phenylpropanoids, lignins, coumarins, and lignans; Polyace-
tylenes, fatty acids, and waxes; Polyketides; Carbohydrates
and organic acids.[32] Lots of those compounds have
structural similarities due to being the products of the
same/similar biochemical pathways. It is assumed that
similar chemical structured compounds hold nearly identi-
cal physical and chemical characteristics. The similarity of
physicochemical properties among metabolites can be
measured using the fingerprint profile. In a study, quantita-
tive structure-property relationship (QSPR) methods were
implemented to predict six physicochemical properties
from binary molecular fingerprints on the basis of large and
structurally diverse sets of environmental chemicals.[33] The
antibacterial compound can hold diversified physicochem-
ical properties.[34–36] A deep learning-based method was
applied to find out the antibacterial property of halicin.[35]

Halicin is structurally divergent from conventional anti-
biotics and displays bactericidal activity against Mycobacte-
rium tuberculosis and carbapenem-resistant Enterobacter-
iaceae. The physicochemical properties of 147 antibacterial
compounds were investigated with a subset of 4623 non-
antibacterial compounds from the commercially available
CMC database.[36] They found that antibacterial drugs
occupy a remarkably different physicochemical property
space. The fingerprint-based analysis is popular for the
prediction of different properties, biological activities, drug
development, and reaction prediction of a chemical
compound.[37–39] Different chemical fingerprinting methods
have been developed to profile the metabolites. The
drawback of some of these fingerprint schemes is the
redundancy in their representation to some extent. There-
fore, these representations cannot perform well on analysis
of complicated chemical ring systems of alkaloids.[40–42] In
this work, we utilize the Morgan fingerprint which repre-

sents molecular structures based on information of circular
atom neighborhoods. First, we directly utilized the finger-
prints as features without any preprocessing to develop the
DNN model. Then in the second model, we discarded some
features which are highly correlated to some other features.
For that, we measured the correlation of each pair of
fingerprints and created a simple network by taking a
threshold correlation value. After applying the DPClusO[43–46]

algorithm, we extracted the simple clusters and took only
one fingerprint from each cluster as a representative
feature. These selected sets of features were used to make
the DNN model. For the third model, we created a simple
network among the metabolites and used the DPClusO
clustering algorithm to find out the structurally similar
clusters. We selected a single metabolite from each cluster
as a representative metabolite that has the highest node
degree and fixed this in training data. The non-clustered
nodes are used as the variable parts of the training data.
The combined fixed part and variable part are used to train
the DNN model.

2 Materials and Methods

KNApSAcK DB is a web accessed database developed in our
lab containing information of relations between different
species and their secondary metabolites. Some of the plant
secondary metabolites of the KNApSAcK[47–49] database have
the description of medicinal properties like antibacterial,
anticancer, and anti-inflammatory, etc.

Some metabolites have only one medicinal property
and some have multiple medicinal properties reported in
the database. We got 412 antibacterial metabolites which
we considered as positive set in this study.

We select the negative data from the metabolites
having other than antibacterial activity or no reported
medicinal property. In order to create an unbiased classifier,
we used an equal number of positive and negative data.
Metabolites of non-antibacterial activity were selected
randomly. We prepared two datasets (dataset 1 and data-
set 2) where on both datasets, 412 antibacterial metabolites
are the positive set, and two different datasets of 412 non-
antibacterial metabolites are the negative sets respectively.
The following table 1 shows the number of positive and

Table 1. Summary of two datasets.

#of Antibacteri-
al compunds
(Positive)

# of
Non-antibacterial
Copounds (Negative)

Total Dataset
Name

412 412(Randomly selected from
~50,000 metabolites \Dataset 2)

824 Dataset
1

412(Randomly selected from
~50,000 metabolites \Dataset 1)

824 Dataset
2
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negative metabolites in two datasets. The Histograms of
the molecular weights of the positive and two negative sets
are shown in Figure 1. Most of the molecular weights are

confined between 200 to 800 for positive and both
negative sets of metabolites.

For experiments, the training data set was created by
joining the 70% data from both positive and negative sets.
The remaining 30% from both sets were joined to create
the test dataset. We downloaded the SDF file of those
metabolites from PubChem and generated the 1024 bit
molecular fingerprint (The Morgan fingerprint) using the
python RDkit package (Version 2017.09.02). The Morgan
fingerprint is the implementation of the extended con-
nectivity fingerprint (ECFP) which represents molecular
structures by means of circular atom neighborhoods.[50]

Each atom in a molecule is represented as a unique
identifier and all possible paths of this molecule in the
atom are explored by considering the circular radius. The
paths are expressed in bit values by means of the identifiers
and hash function.[51–52] The Morgan fingerprint is a power-
ful variant of Extended-connectivity fingerprints (ECFPs)
which is explicitly designed to capture molecular features
relevant to molecular activity.[50][54] ECFPs is widely used in
similarity searching, clustering, and virtual screening. This
fingerprint is also well suited for predicting and gaining
insight into drug activity.[55] We use deep learning NN
models in our experiments and present our work by
following DOME[56] recommendations. Deep Learning is a
feed forward artificial neural network that uses more than
one hidden layer to capture the complex relationship
among input variables.[57–58] In order to solve the overfitting
problem,[59] this model can have white decay, sparsity, or
dropout layers. Like other neural networks, DNN uses the
weights, biases, nonlinear activation, and backpropagation
to model the function defined by the input and output sets.
Due to the multiple hidden layers in DNN, sparse multi-
variate polynomials data are exponentially easier to approx-
imate compared to shallow NN.[60] Depending on feature
selection, we utilized three different deep learning NN
models in this work.

We explain the procedure of these models using data-
set 1 and the final result shows the performance for both
datasets.

2.1 Simple Fingerprint Model (SFM)

This is a simple model without any modification of input
feature by feature reduction techniques. The model was
created with 1024 input nodes equivalent to the number of
fingerprints of individual metabolites. We consider this
model as a simple benchmark to compare the performance
of our second and third models. The training data are split
into equal size batches. Each batch contains fingerprints of
50 metabolites and their corresponding antibacterial prop-
erties.

As the number of input features is much higher than
binary output, we created the sequential neural network
with two hidden layers. The first hidden layer contains 64

Figure 1. Histograms showing the frequency of metabolites in the
context of molecular weight.
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nodes and the second hidden layer contains 8 nodes. This
requires a large number of weight variables to be tuned.
One of the challenges of a neural network is controlling
overfitting when the training dataset is insufficient compar-
ing the weight variables of the model.[61] We used two
dropout layers to reduce the overfitting. One is in between
the input layer and the first hidden layer, and another one
is in between the first hidden layer and the second hidden
layer.

Drop out is a stochastic regularization technique to
remove some nodes from DNN. Thus the contribution of
those nodes on the activation function is fully omitted on
forward pass. The weight update is not applied during the
gradient calculation on backward pass. This technique
repeats in each mini batch data on training period hence
the sampling of thin networks happens from the large
network. The optimum gradient calculation from a thin
network will be a lot easier than a large network. Thus the
weight and bias values tuned separately from a set of thin
networks can reduce overfitting. The dropout ratio is
measured by using the Bernoulli distribution. The proba-
bility p is considered as selection criteria from the node set
of the hidden layer. p=1 means no dropout and p=0
means no output from the layer. Usually, the good value for
p in a hidden layer is considered to be between 0.5 and 0.8.
In our case, we used p=0.5 as the dropout ratio for both
dropout layers.

The activation function Relu is used in each layer due to
its less computational effort and better convergence
performance.[53] The Binary Cross-Entropy loss function with
the mean reduction method is used to calculate the output
variant. If xi is input and yi is the corresponding output from
our model then cross-entropy is measured by the following
equation (Eq 1).

BCE ¼ �
1
N

XN

i¼1

yilog p yið Þð Þ þ 1 � yið Þlog 1 � p yið Þð Þ (1)

Here N is the number of input in each batch. p(yi) is the
predicted probability of the output being 1 and 1-p(yi) is
the predicted probability of the output being 0 for a input.

The next two models also follow almost the same
architecture of this model. All three NN models converged
after around 100 epochs on training dataset. We fixed the
number of epochs in every validation to 200.

2.2 Fingerprint Correlation Model (FCM)

In this model, we reduce some features based on
collinearity. In the context of clustering and classification
based on multivariate data, it is considered that highly
correlated features contain very similar and/or redundant
information. Therefore, to reduce some highly correlated
features, we generated the binary relationship between

fingerprints of all metabolites using Pearson correlation
(Eq 2).

r ¼
P
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � �xÞ2

P
ðyi � �yÞ2

p (2)

Here xi and yi are elemets of two fingerprint column
vectors and �x and �y are the mean value of these vectors. r is
the Pearson coefficient between the fingerprint columns.
We determined the correlation between each pair of
fingerprints and selected those pairs having a correlation
value greater than 0.5. Thus we got only 138 pairs of
relations comprising 116 fingerprints out of 1024 finger-
prints from the dataset 1. These relations create a simple
network where the nodes are the fingerprints. We applied
the DPClusO algorithm to this network and created 42
overlapping clusters. For each cluster, we selected a
significant node having the highest node degree within the
cluster. The remaining nodes are discarded.

It is assumed that the significant node represents the
best linear relationship in terms of Pearson coefficient to all
other nodes within its own cluster. The isolated nodes
which were not part of the cluster set were added to the
feature set separately. The equation (Eq 3) shows the
formation of the feature set using isolated nodes and
significant nodes.

STotal ¼ ðSFingerprint n SNnode Þ [ SSNode (3)

Here STotal=Set of all significant clustered nodes and
non-clustered nodes.

SSNode=Set of significant nodes from the clusters.
SFingerprint=Set of fingerprints.
SNnode=Set of fingerprints in the network.
We used two hidden layers and two dropout layers

same as to first NN model. We got total 950 features using j
SSNode j =42, jSFingerprint j =1024 and jSNnode j =116.

The workflow of this model is shown in Figure 2. The
cluster set is drawn in Figure 2(a). Figure 2(b) shows all
clusters with isolated nodes. The significant nodes are
separately shown.

In some cases, any overlapping node can be the
significant node to more than one cluster. We consider this
node as the significant node for the biggest cluster among
its corresponding clusters. For the remaining clusters, the
significant nodes are selected by the next highest node
degree basis. The procedure is followed repeatedly until a
significant node is found. Algorithm 1 explains the detailed
process of finding significant nodes. If all elements of any
small cluster are chosen to be the significant nodes by
previous iteration then the cluster is omitted. In such a
case, the number of elements in the set of the significant
node is less than the number of clusters. The matrix of the
fingerprints and metabolites is shown in Figure 2(c) after
mapping the metabolites to the significant nodes. This
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model contains 950 input nodes and the rest of the
architecture is similar to the first model.

2.3 Metabolites Cluster Model (MCM)

In this model, we generated the clusters of the metabolites
based on their features (in the present case the fingerprints
are the features) and utilized such clusters to find the

Figure 2. a) Fingerprint clusters b) Significant nodes of clusters and non-cluster nodes c) Mapping metabolites to significant nodes d) DNN.
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representative metabolites to be included in the training
data. We created a simple network where the metabolites
are the nodes and the edges represent high structural
similarity between the corresponding metabolites. Tanimo-
to coefficient was used to measure structural similarity
between two metabolites. We added an edge between a
pair of metabolites if the Tanimoto similarity between them
is more than 0.85. We applied the DPClusO algorithm to
this network and made an overlapping cluster set.

A typical cluster generated from dataset 1 is shown in
Figure 3 with their molecular formula. The cluster contains

11 metabolites where eight of them are reported in our
database with antibacterial properties.

These eight are Myricetin (C00001071), Plant: Machilus
bombycina; Robinetin (C00001092), Plant: Robinia pseudoa-
cacia; 3,5,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one
(C00004533), Plant: Nothofagus spp; Kaempferol
(C00004565), Plant: Sapium sebifenum; 3,3’,4’,7-Tetrahydrox-
yflavone (C00004579), Plant: Acacia peuce; Morin
(C00004624), Plant: Machilus bombycina; Quercetin
(C00004631), Plant: Cordia macleodii; Quercetagetin
(C00004677), Plant: Tagetes patula. Except for some cases,
each cluster contains almost similar structured metabolites.
Some of the metabolites which remain isolated due to
inadequate relation with other metabolites are considered
as single node clusters.

Let the set of the metabolites is denoted by SMetabolite=

{m1,m2,m3…….mn} and the cluster set is denoted by Scls=
{C1, C2, C3………Ck} where (k<n) and Ci � SMetabolite.

The minimum number of metabolites in a cluster is 2.
We applied the algorithm 1 to find out the significant node
in each cluster.

If the significant nodes are denoted by SSNode= {s1, s2, s3
……sl} where (l�k) then a portion of training dataset is
formed by SSNode. The set of isolated nodes or non-clustered
nodes can be denoted by following equation (Eq 4)

Snoncls ¼ SMetabolite n C1 [ C2 [ C3:::::: [ Ckf g (4)

The remaining portion of the training dataset is formed
from Snoncls set.

By intuition, we can realize that the more imbalanced
clusters i. e. where the number of antibacterial and non-
antibacterial metabolites are largely unequal are likely to
provide better representative for training data. In most
cases, it is usual to have an unequal number of antibacterial
and non-antibacterial metabolites in each cluster. In the
following theorem, we show that the probability of finding
balanced clusters is indeed less than or equal to 0.5.

Theorem 1: If a binary dataset contains an equal
number of positive and negative data then the probability
is�0.5 that a cluster formed by random selection contains
an equal number of positive and negative data.

Proof: Let the dataset contain 2n number of data with n
number of positive and n number of negative elements and
a cluster c is formed where numbers of positive and
negative elements are r and s respectively.

If the cluster c consists of odd number of elements, then
the cluster has an unequal number of positive and negative
data.

If the cluster c consists of even number of elements,
then probability that c is balanced i. e.

Figure 3. One simple cluster rendered from the cluster set of
metabolites using DPClusOST.
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In our case n=412 and the above probability for r=1,
2, 3, 4, 10 are 0.50, 0.37, 0.31, 0.27, 0.17 respectively (very
low). In fact, for a smaller increase in r and n the
denominator increases at higher rate lowering the proba-
bility (proved).

Usually, clustering is done not by random selection but
based on cohesive properties of the elements. Hence in
general it is more likely that most of the generated clusters
will be very imbalanced and thus will be more effective
features for classification.

In the present case, the bigger portion of most clusters
is formed by cohesive properties of either antibacterial or
non-antibacterial metabolites. Hence the significant node
corresponding to a cluster has more chance to represent
the bigger portion of the cluster. From Figure 3, three
metabolites (C00001062, C00001042, and C00004705) do
not have antibacterial property. These three metabolites
have a weak relationship (smaller node degree) to the other
eight antibacterial metabolites.

Due to the overlapping properties of clusters, the
number of significant nodes can be smaller than the
number of clusters. We got a total of 80 clusters comprising
226 distinct nodes by using the DPClusO algorithm from
dataset 1. The remaining 598 metabolites did not form any
cluster. After applying algorithm 1 in our cluster set, we got
79 distinct significant nodes out of 80 clusters. These 79
significant nodes are fixed in the training dataset which is
13% of total training data. The rest of the training data
(remaining 87% of total training data) is randomly selected
from 598 metabolites. The flow diagram is shown in
Figure 4. All clusters drawn by the DPClusOST graph

clustering tool are shown by descending order of their size
in Figure 4(a).[46] The overlapping nodes are indicated by
red color. As an example, the metabolite C0004631 and
C0026364 are significant nodes on the cluster no 2 and 80.
These two are shown in Figure 4(c) as a fixed part of the
training set. Figure 4(b) shows the remaining portion of the
training data formed by some of the metabolites from 598
non-clustered metabolites. Finally, the matrix is inputted
into the model. From Figure 4(d), the number of input
nodes is 1024 and the output node is 1 in the model. First
hidden layer contains 64 nodes and the second hidden
layer contains 8 nodes.

3 Results and Discussion

Each model is run multiple times by randomly creating the
training data and test data. Only for the metabolite cluster
model (MCM model), the training data are selected semi-
randomly. A SVM (Support Vector Machine) model is also
created and finally all results are compared. Figure 5(a),(c)
shows the prediction performance of the training and test
data on twenty four different runs. Table 2 shows the
performance metrics of the four models on the dataset 1
and dataset 2. The MCM approach offers the best perform-
ance (82.60%, 83.94%) on the test datasets. SFM and
reduction of fingerprint features by clustering method i.e
FCM both shows almost similar performance on test dataset
(77.58%, 76.22% for dataset 1, 73.48%, 72.91% for data-
set 2).

The maximum amount of feature reduction is obtained
in the FCM (7.2% on dataset 1, 9.5% on dataset 2). ROC
curves from Figure 5(b),(d) also show the high sensitivity on
the MCM approach. SVM approach shows the best specific-
ity on dataset 1 and MCM approach shows the best
specificity on dataset 2. From our two datasets of 824
metabolites each, half of the metabolites are antibacterial
compounds which formed a significant portion (67 clusters
on dataset 1, 65 clusters on dataset 2) of the cluster set on

Table 2. Average Performance of different models.

Methods Features Feature
Reduction (%)

Accuracy (%) ROC AUC (%) Sensitivity (%) Specificity (%)

Data set 1

MCM 1024 0 82.60�0.77 91.01�0.17 93.11�0.23 73.44�0.42
FCM 950 7.2 76.22�1.51 82.45�0.53 77.01�0.59 72.63�0.70
SFM 1024 0 77.58�1.32 83.23�0.39 77.98�0.17 76.05�0.19
SVM 1024 0 78.05�1.21 84.23�1.10 77.03�1.10 79.47�0.24

Data set 2

MCM 1024 0 83.94�0.65 90.81�0.17 89.91�0.14 78.54�1.02
FCM 926 9.5 72.91�1.09 80.15�1.01 74.18�0.59 73.17�0.61
SFM 1024 0 73.48�1.29 81.35�1.12 73.98�0.15 74.68�1.20
SVM 1024 0 75.35�1.42 82.39�0.51 75.40�1.03 77.43�0.27

� value indicates the standard deviation.
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MCM method. 13 clusters on dataset 1, 38 clusters on
dataset 2 are formed by non-antibacterial compounds

which are mostly small clusters implying the presence of
various different types of structures in the negative set.

Figure 4. a) Metabolite clusters b) Significant nodes of clusters and non-cluster nodes c) Mapping metabolites to fixed training and variable
training d) DNN.
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The diversity of the data is basically formed by the non-
cluster behavior of metabolites which is adapted by SFM
method on training. In our experiment of the MCM method,
each metabolite of diverse physicochemical properties
forms a single isolated cluster. The cluster with at least two
metabolites has similar physiochemical properties which
may have a contingent relationship to the antibacterial
properties. This model selects the training data by taking
the representative element from a group of similar types of
metabolites. The representative elements contain only a
small portion of training data and the rest large portion of
training data are taken from non-clustered metabolites.
Thus it utilizes wider variety of data during the training
period. Hence MCM method shows the best performance
on the test dataset. On the other hand, the FCM method
only reduces the redundant features which are linearly
codependent. This method emphasizes the minimization of

features on the input side without considering the relation
of features with the output. The FCM method extracts the
unique features which cover the maximum variance in the
dataset. Due to this fact, the prediction performance is
almost similar to the simple fingerprint method. MCM
method proposed in this work is a somewhat new approach
for training set development.

In the context of this approach, this can be stated that
combining similar physicochemical properties using the
graph clustering method before the machine learning
approach can be an improved technique to predict the
antibacterial activity. Using structure-based clusters pro-
vided good classification results for test data in this work
which directly implies that structure has good relation with
activities in the case of chemical compounds. A cluster
consisting of both negative and positive data contains the
points near the class boundaries. When a high degree

Figure 5. Performance of different methods on training data and test data (dataset 1 (a), dataset 2 (c) ) ROC curves (dataset 1 (b),
dataset 2 (d))
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member from such a cluster is added to training data, then
it is likely that the developed model will correctly classify
the majority of the data points near the boundary
corresponding to that cluster. If such clusters are good
samples of background data, the model developed by the
proposed method is likely to perform well also for
classifying the unknown new data. For developing a good
model, it is necessary that the selected training data contain
representative members from across the distribution of all
available data. Usually it is accomplished by random
selection of training data. Our clustering approach will
deterministically improve the diversity/variance of the train-
ing data and thus help develop a good model. Actually
because of overfitting of a model, test data points near the
class boundary are likely to be misclassified. Our approach
somehow reduces that effect by allowing majority group
near boundary to go to the correct class. It is noteworthy
that this new approach of developing training data using
clusters of entities themselves created based on important
properties can help to avoid overfitting and cover wider
variance/diversity in training data.

4 Conclusion

Antibacterial resistance and Infectious diseases are great
threats to humans and leading causes of death worldwide.
A large number of secondary metabolites from plant
domain have been discovered whose activities are still
unknown. The importance of those metabolites in agricul-
ture, ecology, and healthcare is increasing. Availability of
plant metabolomics data enables us to search for new
antibacterial metabolites by the synergistic effort of
machine learning and biochemical assays. The computa-
tional methods are less time-consuming and less costly.
Therefore, computational methods can be applied first to
short list the candidates which can then be verified by
biochemical assays. We have developed an SVM and three
DNN models to predict the antibacterial ability of metabo-
lites and compared the performance of these models. One
of the important parts of a machine learning model
development is to provide a good training data set by
capturing the maximum variance. We found that combining
machine learning with graph clustering to reshape the
training data boosts the prediction performance. Biochem-
ical experiment is the conclusive evidence to judge the
antimicrobial properties of metabolites. Our model can be a
precursor before detection of antibacterial properties of
metabolites by expensive and complex biochemical experi-
ments.
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