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Abstract: Molecular analysis of cell-free DNA (cfDNA) that circulates in plasma and other body
fluids represents a “liquid biopsy” approach for non-invasive cancer screening or monitoring. The
rapid development of sequencing technologies has made cfDNA a promising source to study cancer
development and progression. Specific genetic and epigenetic alterations have been found in plasma,
serum, and urine cfDNA and could potentially be used as diagnostic or prognostic biomarkers in
various cancer types. In this review, we will discuss the molecular characteristics of cancer cfDNA
and major bioinformatics approaches involved in the analysis of cfDNA sequencing data for detecting
genetic mutation, copy number alteration, methylation change, and nucleosome positioning variation.
We highlight specific challenges in sensitivity to detect genetic aberrations and robustness of statistical
analysis. Finally, we provide perspectives regarding the standard and continuing development of
bioinformatics analysis to move this promising screening tool into clinical practice.

Keywords: bioinformatics; copy number variation; cell-free DNA; methylation; mutation; next
generation sequencing

1. Introduction

To date, tissue biopsy samples are widely used to characterize tumors. Although tissues allow the
histological definition of the disease and can reveal details of the genetic profile of the tumor, enabling
prediction of disease progression and response to therapies, the applications are limited on tissue
availability, sampling frequency, and their genetic heterogeneity [1]. Therefore, attention is turning
to liquid biopsies, which enable the analysis of tumor components, including circulating tumor cells
(CTC) [2] and circulating tumor nucleic acids from various biological fluids, mostly blood but also
other easily accessible fluids such as urine [3]. Compared to conventional tissue biopsy from a single
tumor site, the main advantages of liquid biopsies include their non-invasive characteristics, multiple
sampling capability, and comprehensive coverage to address issues of tumor heterogeneity [4,5].

Circulating cell-free DNA (cfDNA) is defined as extracellular DNA occurring in blood or other
body fluids. It is usually released as small fragments (150–200 bp in length [6]) from normal or
tumor cells by apoptosis and necrosis [7], or shed from viable cells [8]. Levels of cfDNA are higher in
diseased than healthy individuals [9]. cfDNA can track the evolutionary dynamics and heterogeneity
of tumors and detect the early emergence of therapy resistance, residual disease, and recurrence [10–12].
Therefore, analysis of cfDNA has been considered as a potential screening approach for tumor diagnosis
and prognosis by detecting tumor-associated aberrations in peripheral blood [13,14].

Next generation sequencing (NGS) has emerged as a powerful tool for cfDNA analysis, which
allows the detection of cancer-related genetic and epigenetic alterations such as mutations, copy number
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variations (CNVs), and DNA methylation changes across wider genomic regions in many cancer
types [15,16]. However, detection of cancer with high specificity and sensitivity is still challenging,
especially in early-stage cancers, as there exist many barriers to the utilization of cfDNA in clinical
applications, including lack of well-accepted sample collection protocol and sensitive detection
approaches. Furthermore, analysis of cfDNA sequencing data requires specialized bioinformatics tools
to identify robust biomarkers for clinical practice. In this review, we will discuss specific challenges in
sensitivity to detect genetic aberrations and provide information on cfDNA bioinformatics approaches.
We conclude with a perspective regarding future development in this rapidly evolving area. A
simplified workflow of blood-based liquid biopsy is shown in Figure 1.
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2. Characteristics of Circulating Tumor DNA (ctDNA)

The ctDNA is released from tumor cells only. The ctDNA can be derived from primary or
metastatic tumors [17]. Most circulating ctDNA are 160–180 base pair fragments, roughly the size
of a mononucleosomal unit [18,19]. However, recent studies have shown that ctDNA tends to be
shorter than cfDNA from normal cells [20,21]. Therefore, ctDNA may be enriched by excising smaller
DNA fragments from cfDNA on polyacrylamide gels [22]. Currently, cfDNA fragmentation patterns
and their applications in liquid biopsy are an emerging research field. Although ctDNA can be used
to detect the presence of cancer-related genetic and epigenetic changes, such changes usually vary
from case to case, which makes the development of sensitive and generalizable approaches extremely
challenging. One major challenge is low ctDNA fraction. In most cases, ctDNA accounts for a small
fraction of total cfDNA since most cfDNA is derived from non-cancer cells, especially blood cells. In
early-stage cancer patients, ctDNA fraction could be lower than 0.1%. To detect such a rare event with
high specificity and sensitivity, a variety of approaches have been developed, which include droplet
digital PCR (ddPCR) and molecular index-based next generation sequencing technologies [23,24].

3. Detection and Analysis of Somatic Mutations

Somatic mutations are involved in cancer development and progression. The presence or absence
of a single genetic alteration in tumor DNA is currently employed to guide clinical decision making for
a number of targeted agents [25–28]. Ever-increasing numbers of genomic alterations are being tested
as putative predictive biomarkers in clinical trials of novel anticancer therapies [29]. To detect the
cancer-associated alleles in the blood, real-time PCR (RT-PCR) and ddPCR “targeted” methods have
been extensively adopted in most clinical trials [30]. Till now, clinical utility has been demonstrated for
two FDA-approved cfDNA-based tests: the cobas epidermal growth factor receptor (EGFR) mutation
test V2 (Roche Molecular Diagnostics), which detects EGFR mutation in plasma cfDNA from patients
with lung cancer [31,32], and Epi proColon (Epigenomics AG), which reports on the methylation
status of the Septin 9 promoter in plasma cfDNA from patients undergoing screening for colorectal
cancer [33]. ddPCR is particularly useful to sensitively detect well-characterized mutations. The
system can partition cfDNA into 20,000 nanoliter-sized droplets, where PCR amplification is carried
out simultaneously. It is reported that the sensitivity of ddPCR can reach a limit of detection of 0.0005%
BRAF V600E and V600K [34]. Another study reported that ddPCR can reliably detect AR-V7 expression
from one spiked cell into 4000 lymphocytes (0.025%) [35]. Compared to the traditional NGS method,
ddPCR is easier to use, has lower cost, and provides higher sensitivity and specificity. Although
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molecular barcoding technology has significantly increased the sensitivity and specificity of NGS, the
low cost and easy-to-use features will make ddPCR widely accepted in clinical practice.

Although PCR-based assays can detect known mutations, the assay requires previous knowledge
of target genes. In addition, the assay does not cover whole spectrum mutations in specific genes.
Restriction of multiplexing capacity limits the simultaneous analysis of a large number of gene
targets. Therefore, it may fail to identify less common but clinically relevant mutations. On the other
hand, NGS, based on massive parallel sequencing of millions of different DNA molecules, allows
the detection of multiple mutations in multiple genes. By using focused gene panels on clinically
relevant targets, each nucleotide of interest can be sequenced thousands of times, ensuring a high
degree of sensitivity. However, the requirement for such a high degree of sensitivity can easily lead
to false positive results due to potential errors of PCR amplification and sequencing. To address
this challenge, new data analysis approaches have been developed, among which is a new unique
molecular identifier (UMI) strategy [36]. Another challenge related to mutation detection in cfDNA is
to differentiate tumor mutations from background somatic mutations. Somatic mutations are common
in healthy individuals with a rate between 2–6 mutations per 1 Mb [37]. Given the fact that the
majority of cfDNA is from blood cells and ctDNA fraction in cancer patients is generally low, it is likely
that most of the mutations identified in cfDNA could be irrelevant to cancer development, thereby
impeding their clinical application [38–40]. This challenge points to the need for a large experiment to
systematically investigate the mutation spectrum from both cfDNA and white blood cells in healthy
and cancer patients.

4. Unique Molecular Identifier (UMI)-Based Target Sequencing

Target enrichment is a critical component of targeted deep sequencing for cost-effective, accurate,
and sensitive detection of mutations, CNVs, and methylations in cfDNA. Common bioinformatics
workflows allow sensitive and specific variant identification down to 2–5% allele frequency. This
provides a sound methodology for identifying somatic mutations from solid tumor biopsies [41].
However, low ctDNA content in the blood and sequencing artifacts currently limit analytical sensitivity.
In analyzing cfDNA from healthy controls, background errors are increasingly evident below allele
fractions of ~0.2%. It is reported that under an allele fraction of 0.02%, >50% of sequenced genomic
positions had artifacts [42]. In addition, common NGS assays involve multiple steps, including end
repair, ligation, PCR, and sequencing. These steps often introduce technical biases, limiting accurate
quantification and, therefore, hindering the robust and clinically valid detection of biomarkers [43].
Furthermore, PCR-based target enrichment cannot distinguish PCR duplicates from copies of unique
fragments generated by a pair of PCR primers.

To overcome these limitations, UMIs (also known as molecular barcodes) have been added into
the adaptors to tag individual DNA molecules [44–47]. Such barcodes enable the precise tracking
of individual molecules. UMIs can accurately distinguish PCR duplicates from copies of unique
fragments generated by PCR amplification [36]. Moreover, UMIs can reduce quantitative bias during
experimental processes to detect true ultra-rare variants by distinguishing authentic somatic mutations
arising in vivo from artifacts introduced ex vivo. This is largely due to the fact that errors arising
from artifacts during library construction and sequencing runs could be eliminated by comparing the
sequences of PCR duplicates identified with a UMI sequence [42,48]. Figure 2 illustrates the basic
principle of UMI application in the detection of true somatic mutations. Dedicated bioinformatics
software packages (Table 1) have been developed for the UMI-tagged targeted resequencing data to
improve ultra-rare variant calling by removing errors arising from the first cycle PCR [49,50].

Incorporation of molecular barcoding into a bioinformatics algorithm has significantly increased
sensitivity of mutation detection in NGS data. The detection sensitivity can be down to 0.01% [57].
However, recent advances in statistical modeling has also increased sensitivity of variant detection
without molecular barcoding. A method ERAS-Seq (Elimination of Recurrent Artifacts and Stochastic
Errors) that utilizes technical replicates in conjunction with background error modelling has shown an



Cancers 2019, 11, 805 4 of 15

increased sensitivity of variant detection between 0.05% and 1% allele frequency [58]. By physically
extracting and individually amplifying the DNA clones of erroneous reads, another barcoding-free
method is reported to distinguish true variants of frequency >0.003% from the systematic NGS error.
This method uses 10 times less sequencing reads compared to those from previous studies and achieved
a PCR-induced error rate of 2.5 × 10−6 per base per doubling event [59].Cancers 2019, 11, x 4 of 14 
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5. Detection of DNA Copy Number Alterations

Currently, most cfDNA applications in cancer screening have focused on somatic point
mutations [23,24]. However, methods that interrogate other genomic aberrations should be incorporated
to improve detection and characterization of early-stage cancers. One of such genomic abnormalities is
CNVs that contribute significantly to genome instability [60,61]. Large-scale cancer genome studies
have identified CNVs across various types of cancer and a majority of the CNVs are shared among
several cancer types [62,63]. Recently, several lines of investigation have demonstrated the potential of
CNVs from cfDNA as sensitive cancer biomarkers [64–66]. Both targeted and whole genome sequencing
(WGS) have been employed to identify specific CNVs or genome-wide DNA copy number patterns in
cancer patients. Extension of statistical and bioinformatics methods developed from microarray-based
comparative genomic hybridization (aCGH) array or NGS are suitable for the detection of CNVs
from cfDNA.

For the WGS-based CNV analysis, depth of coverage (DOC) methods (Table 1) are the most used
techniques to estimate copy number from the sequence depth in the genome [51–54]. Other methods
such as assembly-based, split-read, and read-pair methods [67] can be used to infer copy number
changes and chromosomal rearrangement. However, these methods may require high sequence
coverage or specific molecular size and thus may not be practical in diagnostic application. The
DOC methods can be divided into two major categories depending on whether a reference signal
is required. In general, the pseudo-autosomal region on the Y chromosome and genomic regions
with low mappability should be removed before the sequencing alignment procedure. This step is
especially critical for reference free methods to ensure that the short reads can be mapped to a unique
genomic location instead of multiple possible locations. The GEM (GEnome Multitool) mappability
algorithm [68] is an efficient program that provides mappability information for multiple genomes.
In addition, it is important to filter genomic regions that tend to show artificially high signal (i.e.,
excessive unstructured anomalous reads mapping). These blacklisted regions in the human genome
are often found in highly variable regions (e.g., alternative haplotypes overrepresented on chromosome
19) or at specific types of problematic repeats such as centromeres, telomeres, and satellite repeats.
The ENCODE and modENCODE consortia have identified these regions and made them available
online [69] at https://sites.google.com/site/anshulkundaje/projects/blacklists. However, empirical data
analysis indicates that the ENCODE blacklist may not be sufficient to remove all problematic regions.
As such, the QDNAseq algorithm [51] provides a data-driven approach to identify additional regions
that should be removed before downstream analysis.

Due to the high cost of WGS assay, current cfDNA-based approaches to CNVs detection normally
have low-sequence coverage (e.g., 0.1×~0.5× coverage depth) [64,70,71]. As such, the binning procedure
is generally required to aggregate reads mapped to a genomic window. After removing the low
mappability reads and blacklisted regions, reads in different genomic windows are counted and
normalized by the total number of reads. Depending on the read depth, a fixed bin size is normally
chosen such that sufficient detection resolution can be achieved while excessive variation of read
counts between adjacent windows can be reduced, thereby enhancing the detection sensitivity for
CNVs. Although simple, using a fixed bin size may lead to high variability of read counts among bins
with a substantially different number of mappable positions. To overcome this problem, the BIC-seq2
algorithm [53] normalizes read counts at a nucleotide level rather than at the bin level. It calculates
the expected number of mapped reads for every position in the mappability map. The ratio of the
observed read number and expected number of mappable reads is thus used to infer copy number for
a specific genomic region. The normalized read counts can be further subject to GC content correction
using smoothing techniques such as LOWESS [72]. The GC-corrected read counts are then normalized
to the GC-corrected read counts of cfDNA from a group of reference samples (e.g., healthy controls or
patient’s own germline DNA) and expressed as log2 ratio values. For reference-free methods, median
normalization can be used to obtain log2 ratio values.

https://sites.google.com/site/anshulkundaje/projects/blacklists
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Segmentation on the log2 ratio values is generally performed to identify the genomic areas with
potential CNVs. The purpose of segmentation is to merge adjacent data points with the same copy
number into one segment and divide regions with different copy numbers into different segments.
Several statistical techniques and tools have been developed. Two of the most popular methods are
circular binary segmentation (CBS) [73,74] and the hidden Markov model (HMM) [75,76]. Thorough
review and systematic evaluation of CNV detection methods and software resources have been
documented previously [52,77–79]. Researchers may use the information therein to choose appropriate
algorithms for their projects. After the segmentation, aberration calling will be made to infer DNA
regions with abnormal copy number (e.g., >2 or <2 DNA copies for gain or loss). A commonly used
method for determining CNVs from the cfDNA of cancer patients using high throughput sequencing
is the Z-score based approach [64,80–82]. These methods identify CNV segments by determining
regions in the cfDNA that are significantly different from the reference panel (e.g., Z-score distribution
from normal control). Other methods that make formal statistical inference for copy number are
available [83,84]. For example, CGHcall [83] uses a two-level hierarchical mixture model to infer
for each segment the likelihood of being one of six states of copy number: double deletion, single
deletion, normal, gain, double gain, and amplification. This method uses log2 ratio data to estimate
the proportion of different copy number states at the chromosome arm level. Therefore, it may require
a large number of samples for robust inference, especially for chromosomes in which abnormal DNA
copy numbers are rare. A summary of the bioinformatics procedure for WGS-based CNV analysis in
cfDNA is shown in Figure 3.
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One of the challenges to infer CNVs from the cfDNA sequencing data is attributable to the ctDNA
content and tumor heterogeneity. In a large portion of cfDNA samples with low ctDNA content (i.e.,
<2%), especially in the early stages of cancer, sequencing reads are dominated by the DNA from
non-cancer cells. Therefore, the signals of CNVs from cancer cells are almost entirely masked, leading
to very little statistical power for any segmentation algorithms to detect CNVs, especially for focal
amplifications or deletions. In addition, multiple clones of cancer cells could coexist in a cfDNA
sample. This will make it even more difficult to detect CNVs due to genetic heterogeneity. To overcome
this obstacle, Kirkizar et al. [85] developed a method that employs single-nucleotide polymorphism
(SNP)-targeted massively multiplexed PCR (mmPCR) followed by NGS (mmPCR-NGS). Haplotype
information is then obtained from the experiment to identify both single nucleotide variants (SNVs)
and CNVs with high sensitivity and an average allelic imbalance as low as 0.5%. This method can also
detect both clonal and subclonal CNVs in ctDNA.

6. Identification of DNA Methylation Changes from cfDNA

DNA methylation is essential for normal development and plays an important role in epigenetic
control of gene activity. Changes in DNA methylation have been recognized as one of the most
common molecular alterations in tumorigenesis [86,87]. It is well known that each tissue possesses
unique methylation signatures and a genome-wide methylation pattern is distinguished between
cancer and normal cells [16,88,89]. Therefore, whole genome methylation profiling from cfDNA could
be a potentially powerful tool to detect the presence of specific cancer. Lehmann-Werman et al. [90]
first demonstrated the feasibility to identify tissue origin using cfDNA. By leveraging whole genome
methylation data sets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
repositories, they identified individual CpG dinucleotides that were unmethylated in the tissue of
interest but methylated in other tissues. By comparing genome-wide methylation data from 35 human
tissues generated using the Illumina Infinium HumanMethylation450k BeadChip, tissue-specific DNA
methylation markers were selected. Subsequently, Moss et al. [91] generated a reference methylation
atlas of 25 human tissues including major organs and cells involved in common diseases. For each
tissue or cell type, both uniquely hypermethylated and uniquely hypomethylated CpG sites were
identified. Additional CpG sites were further identified to differentiate any two cell types that were
found to be most similar in the atlas.

With the data for tissue-specific and cancer methylation signatures, deconvolution algorithms [92],
a commonly used algorithm to recover the original signal from a mixture of signal sources, can be used
to map tumor tissue of origin from cfDNA. Sun et al. [93] used optimization programming to calculate
the methylation densities of 5820 methylation markers in cfDNA from bisulfite sequencing data for
14 human tissues. To improve the selection of informative methylation markers, Guo et al. [94] identified
147,888 blocks of tightly coupled CpG sites, called methylation haplotype blocks, after a comprehensive
analysis of a large amount of whole-genome bisulfite sequencing data, reduced-representation bisulfite
sequencing data, and methylation array data. The deconvolution algorithm was then applied for
tissue-specific methylation analysis at the block level. This method was successfully applied to estimate
ctDNA content and differentiate among clinical plasma samples from normal individuals and patients
of lung cancer and colorectal cancer.

Recently, probabilistic models have been formulated to identify specific cancer types from cfDNA.
Kang et al. developed a method, termed CancerLocator [55], to simultaneously infer the proportion
and tissue of origin of ctDNA using whole-genome DNA methylation data. By using TCGA Infinium
HumanMethylation450 microarray data from both normal and tumor samples, CancerLocator identified
as feature input a large number of CpG clusters that have high inter-individual methylation variation
across all normal and cancer types. Since cfDNA from the peripheral blood is a mixture of normal
and tumor DNA if a cancer cell is present, the methylation level for each CpG cluster, one for normal
and the other one for a cancer type, can be estimated and the ctDNA fraction and the likelihood of
the presence of a specific cancer type can be inferred based on the methylation data of informative
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CpG clusters. CancerLocator demonstrated a superior prediction performance over popular machine
learning algorithms (i.e., random forest and support vector machine) on low-coverage sequencing
data, especially for samples with low to moderate ctDNA fraction. However, a challenge facing this
method is that the classification accuracy depends substantially on the estimated ctDNA fraction of a
specific tumor type.

A variation of CancerLocator was developed later by Li et al. [56]. This method, called
CancerDetector, differs slightly from CancerLocator in genomic marker selection and estimation.
To identify sensitive genomic markers, CpG clusters were identified such that the level of methylation
in a specific cancer tissue differs from matched normal tissue as well as normal plasma samples. This
procedure ensures that selected markers are not tissue specific and the methylation signal can be
detected in the blood. With selected CpG clusters, a similar probabilistic model to CancerLocator was
implemented to predict cancer types and ctDNA fraction. To improve the estimation of ctDNA fraction,
an iteration procedure was developed to remove outlier markers whose estimated ctDNA fraction are
far from the estimated ctDNA fraction when all markers were used. CancerDetector demonstrated
substantial improvement over CancerLocator with high sensitivity and specificity in detecting tumor
cfDNAs on real plasma data. Figure 4 illustrates the major principle of the bioinformatics approach for
tumor tissue-specific methylation analysis.
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7. Association of Nucleosome and Fragmentation Pattern with Tissue of Origin in cfDNA

In addition to DNA methylation, cfDNA fragmentation and/or nucleosome occupancy patterns
are another epigenetic feature to trace gene activity and tissue origin [95]. Compaction of nucleosomal
structures creates a barrier for DNA-binding transcription factors to access their cognate cis-regulatory
elements. Usually, active promoters lack nucleosomes, while inactive promoters have densely packed
nucleosomes. Nucleosome positioning through genome-wide mapping is shown to be associated
with gene activation and expression in a development-dependent and tissue-specific manner [95,96].
Therefore, investigation of nucleosome positioning in a patient’s cfDNA may reveal the existence of a
specific cancer type.

As cfDNA is preferentially released from apoptotic cells, the size distribution of cfDNA fragments
(160–180 bp) can resemble the size of mononucleosome-protected DNA. Specifically, peak sizes
correspond to nucleosomes (~147 bp) and chromatosomes (nucleosome + linker histone; ~167 bp),
suggesting they could bear the information of the cell type of origin [97]. Based on the expectation that
fragment endpoints should cluster next to nucleosome boundaries and should be depleted at sites of
nucleosome occupancy, Snyder et al. showed that nucleosome spacing patterns can inform the cell
type of origin from cfDNA [98]. The study showed that nucleosome spacing inferred from cfDNA
in healthy individuals correlated strongly with epigenetic features of lymphoid and myeloid cells,
consistent with hematopoietic cell death as a major source of cfDNA, while the patterns of nucleosome
spacing in late-stage cancer patients match the anatomical origin of the patient’s cancer. Therefore,
different nucleosome footprints between the tumor and the normal source of cfDNA may enable the
noninvasive monitoring of a much broader set of clinical conditions than currently possible [98].
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8. Conclusions and Future Direction

cfDNA molecules have emerged as promising biomarkers for cancer detection and monitoring
due to the easy access to clinical samples from blood or urine. The advent of NGS technology
provides an unprecedented opportunity to systematically examine the characteristics of cfDNA for
tumor-specific changes. However, the massive amount of sequencing data requires sophisticated
bioinformatics analysis to accurately identify genomic abnormalities in cancer. This review discussed
major bioinformatics applications of cfDNA in oncological research to identify point mutations, copy
number abnormalities, DNA methylation changes, and nucleosome positioning patterns. Using
sophisticated bioinformatics analysis, advances have been made to better understand the property of
cfDNA through fragmentation and nucleosome spacing patterns. Analysis by leveraging large-scale
cancer genomic databases in conjunction with state-of-the-art statistical algorithms demonstrates the
great potential of using methylation biomarkers for identification of cancer cell origin. Moreover,
patterns of CNV through the WGS analysis can further reveal the extent of tumor heterogeneity.
Nevertheless, to move cfDNA into routine clinical practices for better patient management, future
studies will need to address several issues. First, studies need to focus more on detection sensitivity
in early-stage cancer because there are many barriers to utilizing cfDNA for such applications. For
example, most studies that demonstrated the feasibility of cfDNA in cancer detection used samples
form late-stage cancer patients. However, the fraction of ctDNA in the plasma from early-stage
cancer patients is generally very low. Although a range of NGS-based approaches have been used
to characterize tumor genomes in detail and new bioinformatics techniques and analysis tools are
rapidly evolving, current technologies and bioinformatics algorithms are not sensitive enough to
detect such low level of genetic or epigenetic abnormalities. How to develop advanced technologies
to detect mutations, CNVs, and epigenetic changes at the low ctDNA level is likely to be one of
the most challenging issues to resolve. Another issue is related to cfDNA contaminations by the
lysed blood cells and significant variation into cfDNA due to DNA isolation protocols and choice of
instrument. Therefore, a standard protocol for quality control and bioinformatics analysis procedures
need to be developed before these technologies can be successfully and reliably used in clinical practice
and regulatory decision -making. A joint effort from the scientific community for the MicroArray
Quality Control (MAQC) project [99] is an excellent example to follow to attain this goal. Finally,
other biomarkers should be further explored for liquid biopsy in addition to genetic and epigenetic
markers and nucleosome spacing patterns discussed in this review. For example, recent studies
have shown that circulating cell-fee RNA (cfRNA), which encompasses miRNAs, lncRNAs, and
mRNAs, could also serve as valuable biomarkers for liquid biopsy [100,101]. Given the finding that
transcriptome profiling alone from tissue biopsies can robustly determine cancerous status and tissue
origin [102], the multiparameter analyses incorporating the molecular profiles at cfDNA, cfRNA,
and protein will result in an improved understanding of molecular aberrations and their functional
roles across tumor types, as well as facilitate the identification of novel tumor subtypes [103]. As
most of the cfDNA interrogations to date are proof-of-principle studies, large-scale, multi-site cohort
studies that systematically investigate all these aspects of molecular profiles are needed to evaluate
the complementary nature of their screening power so that liquid biopsy signatures can be refined,
validated, and utilized in clinical practice. Eventually, these efforts will lead to the identification of
new oncological biomarkers for early detection and outcome prediction, which is a prerequisite for
realizing the promise of precision medicine.
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