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Abstract: Lactiplantibacillus plantarum CCFM8724 is a probiotic with the potential to prevent dental
caries in vitro and in vivo. To explore the effects of this probiotic at inhibiting Streptococcus mu-
tans-Candida albicans mixed-species biofilm and preventing dental caries, multi-omics, including
metabolomics and transcriptomics, was used to investigate the regulation of small-molecule metabolism
during biofilm formation and the gene expression in the mixed-species biofilm. Metabolomic analysis
revealed that some carbohydrates related to biofilm formation, such as sucrose, was detected at
lower levels due to the treatment with the L. plantarum supernatant. Some sugar alcohols, such as
xylitol and sorbitol, were detected at higher levels, which may have inhibited the growth of S. mutans.
In transcriptomic analysis, the expression of the virulence genes of C. albicans, such as those that
code agglutinin-like sequence (Als) proteins, was affected. In addition, metabolomics coupled with
a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and RNA-seq revealed
that the L. plantarum supernatant had an active role in sugar metabolism during the formation of
the S. mutans-C. albicans mixed-species biofilm, and the L. plantarum supernatant was also related
to carbohydrate utilization, glucan biosynthesis, and mycelium formation. Hence, L. plantarum
CCFM8724 decreased the mixed-species biofilm mass from the perspective of gene expression and
metabolic reprogramming. Our results provide a rationale for evaluating L. plantarum CCFM8724
as a potential oral probiotic for inhibiting cariogenic pathogen biofilm formation and improving
dental caries.

Keywords: Streptococcus mutans; Candida albicans; transcriptomics; metabolomics; biofilm; dental
caries; Lactiplantibacillus plantarum

1. Introduction

Dental caries, which is one of the most prevalent oral bacterial infectious diseases,
represent a significant public health problem, not only in adults, but also in children [1].
Streptococcus mutans and Candida albicans have been detected in large amounts in oral plaque
biofilms in children with early childhood caries (ECC), being considered to be directly
related to ECC [2]. S. mutans is a key contributor to pathogenic dental biofilms, which
can convert dietary sucrose into dextrans and acid [3]. C. albicans can robustly interact
with S. mutans and has a significant impact on the virulence of dental plaque biofilms [4].
Common mechanical measures, such as tooth-brushing and mouth-washing, are effective
in removing dental plaque biofilms; however, many children are not willing to brush their
teeth. Probiotics and probiotic products, such as Lactobacillus salivarius [5] and L. paracasei
NTU 101 fermented skim soy milk [6], can be used to remove biofilms in children. A major
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concern regarding the use of probiotics is the difficulty in maintaining their viability during
shelf life. It seems that using the cell-free supernatants of probiotics can solve this problem.

At present, there is experimental evidence of the inhibition of dental plaque biofilms by
Lactobacillus spp. L. salivarius inhibits S. mutans and C. albicans double-species caries biofilms
by decreasing the amount of caries pathogenic species and reducing the biofilm mass
in vitro [5]. Another study indicated that after taking a probiotic drink containing L. casei
strain Shirota for 28 days, the abundance of Veillonella and Kingella increased significantly,
while the abundance of some other bacteria related to caries was decreased in the oral cavity
of young adults, as shown by the 16S rRNA sequencing results [7]. Different probiotic
strains may prevent caries via different mechanisms, including the inhibition of cariogenic
bacteria growth [8] and pathogenesis, exopolysaccharide (EPS) production reduction [9],
quorum sensing inhibition [10], and reduction of the expression of key metabolic and
virulence genes [11]. In our previous studies [12,13], we evaluated the anti-biofilm effects
of L. plantarum CCFM8724 by reducing the dual-species biofilm mass and decreasing the
caries score in dental caries rat models. However, how the L. plantarum CCFM8724 cell-
free supernatant affects this cariogenic S. mutans and C. albicans mixed-species biofilm
environment and how it affects the biofilm metabolome and transcriptome remains unclear.

To explore the mechanism of extracellular probiotic metabolites of L. plantarum
CCFM8724 inhibiting dual-species biofilms, we employed a combination strategy using
untargeted metabolomics and transcriptomics, revealing the distinct metabolism and gene
expression characteristics that are important for S. mutans and C. albicans mixed-species
biofilm formation. This work reveals the mechanism of microbe–microbe interaction and
provides promising baseline information for the potential use of this probiotic.

2. Materials and Methods
2.1. Chemicals and Materials

Methanol (high-performance liquid chromatography (HPLC) grade) and acetoni-
trile (HPLC grade) used for metabolite extraction were purchased from Merck KGaA
(Darmstadt, Germany). Pyridine, N-methyl-N-(tri-methylsilyl) trifluoroacetamide with
1% trimethylchlorosilane (MSTFA + 1% TMCS) and methoxyamine hydrochloride (MeOX)
used for metabolite derivatization were obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Bacterial Strains and Growth Conditions

L. plantarum CCFM8724 was cultured in MRS broth (DifcoTM, Detroit, MI, USA) under
anaerobic conditions at 37 ◦C for 24 h. The supernatant was collected by centrifugation at
6000× g at 4 ◦C for 10 min and filtered through a 0.22 µm sterile membrane, then stored
at 4 ◦C before use. S. mutans ATCC 25175 and C. albicans ATCC18804 were purchased
from the China General Microbiological Culture Collection Center (CGMCC, Beijing,
China). S. mutans was inoculated in tryptic soy broth (TSB, DifcoTM, Detroit, MI, USA)
and C. albicans was cultured by yeast extract peptone dextrose medium (YPD, DifcoTM,
Detroit, MI, USA) under aerobic conditions at 37 ◦C. When generating the dual-species
biofilm, 5% sucrose was added to the medium.

2.3. Sample Preparation for Metabolomics and Transcriptomics Analysis

For each replicate, 75 µL of S. mutans culture suspension and equal C. albicans culture
suspension were added into each well of a 96-well microtiter plate. The number of S. mutans
and C. albicans per well was 107 and 106 CFU mL−1, respectively. A total of 50 µL of
Lactobacillus supernatant was added at the same time. The same volume of MRS broth
instead of supernatant was used as control. Biofilms were formed in a 96-well microtiter
plate for 24 h at 37 ◦C. Then, the contents of each well were removed and washed twice
with phosphate buffer saline (PBS) to remove the planktonic cells. Next, the biofilm was
scraped by using 200 µL non-enzyme pipette tips and finally pooled together to collect
approximately 50 mg of biofilm mass for metabolite extraction and RNA-seq analysis [14].
After quick freezing in liquid nitrogen, the frozen cells were stored at −80 ◦C for further



Microorganisms 2021, 9, 2368 3 of 14

use. Metabolomics samples from each group had 6 replicates. Transcriptomics samples
from each group had 2 replicates.

2.4. Untargeted Metabolomics by Gas Chromatography–Mass Spectrometry

The frozen sample was added with 0.4 mL ice-cold extraction solvent (acetonitrile:
methanol:water) = 2:2:1(v/v/v). A total of 20µL of ethyl undecanoate (C21:0) (0.3µmol/sample)
and 100 µL of magnetic beads were added into each sample before extraction. The C21:0
was used as an internal standard. The mixture was homogenized in a ball mill for 45 sec
at 65 Hz and stopped for 15 s [15]. The homogenisation cycle was performed ten times.
The mixture was then centrifuged at 12,000× g for 15 min at 4 ◦C. The supernatant of the
extracts was dried in a vacuum centrifuge (RC1022, Thermos, Waltham, MA, USA) and
resuspended in MeOX-pyridine and MSTFA with 1% TMCS for derivatization. For each
group, six parallel experiments were completed [16].

GC–MS (Gas chromatography–mass spectrometry) analysis was performed on a
Thermo trace 1310 gas chromatograph coupled to an Thermo TSQ8000_evo quadrupole
mass selective detector equipped with an RTX-5MS capillary column (0.25 mm diameter,
0.25 µm film thickness). The detection and metabolite identification using metabolomics
were performed as the methods described by Lu [16]. Briefly, the derivatized extract (1 µL)
was injected into the GC–MS system in split mode (split ratio 10). The initial GC oven
temperature rose from 50 ◦C to 230 ◦C at 5 ◦C/min, then to 320 ◦C at a rate of 90 ◦C/min
and held for 5 min. The MS was operated in a scan range of 33 to 600 m/z. The transfer line
and ion source temperatures were 280 ◦C and 300 ◦C, respectively. The electron impact
mode was operated at 70 eV.

The obtained data of GC–MS were analysed as followed. ABF converter 4.0 was
used to convert “raw” format files into “abf” format. The MSDIAL3.48 equipped with the
FiehnLib database was used for raw peaks exaction, retention time adjustment, peak align-
ment, deconvolution analysis, and peak identification as reported in a previous study [17].
Statistical analysis and pathway enrichment analysis were performed using MetaboAnalyst
5.0 online software (https://www.metaboanalyst.ca/, accessed on 13 October 2021).

2.5. RNA Extraction and Illumine Sequencing

Total RNAs were isolated from frozen biofilms using TRIzol (Thermo Fisher Scientific,
Shanghai, China) and the DNA-free kit (Ambion (Thermo Fisher Scientific), Shanghai,
China). Purity and concentration of RNAs were checked using the NanoPhotometer®

spectrophotometer (IMPLEN, Westlake Village, CA, USA), and Qubit® RNA assay kit in
Qubit® 2.0 Flurometer (Life Technologies, Carlsbad, CA, USA). Library preparation for
strand-specific transcriptome sequencing and RNA-seq were performed by Novogene
(Tianjin, China). Briefly, the library of each sample was generated by 1 µg of RNA and
then sequenced using the Illumina Hiseq platform (125 bp/150 bp paired-end reads). Raw
data were processed by custom Perl scripts to obtain the clean data. The clean reads
were mapped to the S. mutans reference genome (https://www.ncbi.nlm.nih.gov/genome/
?term=ATCC+25175 accessed on 13 October 2021) and C. albicans reference genome (ac-
cessed on 13 October 2021, https://www.ncbi.nlm.nih.gov/genome/?term=Candida+
albicans) using the Hisat2 software program with default parameters. On the basis of
the clean data, the edgeR package was adopted to identify differentially expressed genes
(DEGs) using the following criteria: adjusted p value < 0.05 and log2FC > 1. DEGs were
subjected to a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis [18].
Each group had 2 replicates.

2.6. DNA Extraction and RT-qPCR

DNA was extracted from the biofilm according to the protocol in FastDNA SPIN Kit
for Soil 50T (MP Biomedicals, California, USA). Quantitative real-time PCR (qPCR) was
performed according to the protocol provided by iTaq™ Universal SYBR®Green Supermix
(Bio-Rad Laboratories, Inc., Shanghai, China), in a CFX ConnectTM real-time system (Bio-
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https://www.ncbi.nlm.nih.gov/genome/?term=ATCC+25175
https://www.ncbi.nlm.nih.gov/genome/?term=ATCC+25175
https://www.ncbi.nlm.nih.gov/genome/?term=Candida+albicans
https://www.ncbi.nlm.nih.gov/genome/?term=Candida+albicans


Microorganisms 2021, 9, 2368 4 of 14

Rad Laboratories, Inc.). From the real-time PCR data, Cq values were obtained to calculate
each organism abundances. RT-qPCR primers are listed in Table S1.

2.7. Comparative Genomics and Enzyme Analysis

The OrthoMCL software program was used for the homologous gene analysis. Open
reading frames in the genome were predicted to obtain the amino acid sequence of enzymes
based on the Clusters of Orthologous Groups of protein (COGs) and KEGG databases. The
HMMER3.1 software program was used to predict from amino acid sequences aligned to
the Carbohydrate active enzymes database (CAZy).

2.8. MultiStatistical Analysis and Visualization

R studio 4.0.1 with the R-packages ggplot2 and ggsci was used to visualize the results.
The differences in this research between groups were determined by a t-test. In the
metabonomic analysis, a p value < 0.05 indicated statistical significance. In pathway
enrichment, a false discovery rate (FDR) analysis was performed to adjust the p value to
q value. A q value < 0.05 indicated statistical significance.

3. Results
3.1. Analysis of Untargeted Metabolomic PCA and PLS-DA Data

Untargeted metabolomics is an omics method in systems biology, via which the
changes in all small-molecule metabolites between groups, which can reflect the different
biological processes in cells, are analysed [14]. Metabolites with high-quality peak signals
were collected to obtain reliable metabolome data (Table S2). Mixed-species biofilms were
treated with L. plantarum supernatant or MRS broth and were subjected to untargeted
metabolomics to determine the effect of small molecules in L. plantarum in the biofilm
formation. We first used principal component analysis (PCA) to visualize the metabolomic
similarities of the samples in a group and the differences in samples between groups.
PCA can project complex GC–MS data into a lower dimensional space, and the biofilm
samples marked with different colours were projected onto a two-dimensional space
(principal components 1 and 2 (PC1 and PC2)), and clustered separately. PC1 and PC2 were
responsible for 61.8% and 13% of the variation, respectively, indicating that the two groups
could be distinguished based on their metabolic compounds (Figure 1A).
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Figure 1. The metabolites in treated group compared to those in control group. (A) Principal
component analysis (PCA) score plot of metabolite profiles from the treated and control groups.
(B) Partial least squares discriminant analysis (PLS-DA) score plot of metabolite profiles from the
treated and control groups. Each point represents an independent biological replicate. The red dots
indicate the control group, the blue dots indicate the treated group.

Similar to PCA, partial least squares discriminant analysis (PLS-DA) is a supervised
extension of PCA that can clearly separate different groups of data [14]. The score plot
(Figure 1B) that resulted from the PLS-DA overview of the biofilm metabolome data
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revealed that intracellular small-molecule metabolism was significantly changed by the
treatment with L. plantarum.

3.2. Differential Metabolites via Biofilm Profiling Analysis

Collectively, the data analysis of the biofilm metabolites yielded 216 metabolites. In
the PLS-DA models, metabolites with a variable importance for the projection (VIP) value
greater than 1 made a significant contribution to the separation between the control and
treatment groups [19]. The VIP plots (Figure 2A) demonstrated that some of the identified
metabolites contributed to class separation.
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metabolites. (C) Heatmap of top 20 significantly changed metabolites. Cluster 1 and cluster 2 represent the two clusters of
control and treated group, respectively. The six columns for each cluster represent independent metabolomics replicates.
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The DEseq statistical method was used to identify the significant differences between
groups. Overall, 45 metabolites were identified (p < 0.05, log2(fold change (FC)) > 1). As
shown in Figure 2B, 14 metabolites were downregulated (blue dots, p < 0.05, log2FC ≤ −1),
31 metabolites were upregulated (red dots, p < 0.05, log2FC ≥ 1), and the others were non-
differentially expressed (grey dots, p > 0.05 or −1 < log2FC < 1). To display the differences in
the metabolite content and the similarities in mixed-species biofilms, only the significantly
changed metabolites (top 20) were selected to construct a heatmap (Figure 2C). Some
sugars, such as sucrose, mannose-6-phosphate, and 1-kestose are potential metabolites
resulting from the formation of S. mutans-C. albicans mixed-species biofilm. Some organic
acids, such as 3-phenyllactic acid and p-hydroxylphenyllactic acid, were upregulated.

3.3. Metabolic Pathways

To further explore the detailed metabolic pathways in which a dual-species biofilm
is affected by the L. plantarum supernatant, a KEGG pathway impact analysis was per-
formed based on the differential metabolites. The KEGG results, including the pathway
enrichment analysis (PEA) and pathway topology analysis (PTA) results, were analysed
(Tables S3 and S4). The PTA results from the KEGG are shown on the x-axis. The larger the
circle size, the higher the centrality of the metabolite involved in the corresponding path-
way is. The enrichment analysis (PEA) KEGG results are presented on the y-axis. The closer
the circle gets to red, the more significant the change in the compound is [20]. Five major
KEGG pathways significantly impacted were detected in C. albicans, which were amino
sugar and nucleotide sugar metabolism, galactose metabolism, fructose and mannose
metabolism, pentose and glucuronate interconversions, and starch and sucrose metabolism,
as shown in Figure 3A. In addition, four major metabolic pathways were affected in S.
mutans: inositol phosphate metabolism, fructose and mannose metabolism, starch and
sucrose metabolism, and amino sugar and nucleotide sugar metabolism (Figure 3B).
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3.4. Global Changes at the Transcriptome Level

To investigate how the L. plantarum supernatant affects the cell metabolism of S. mutans
and C. albicans, the mRNA profiles of the treatment and control groups were analysed
using RNA-seq. A total of 32.98 Gb of data were acquired, including 223,211,718 raw
reads and 219,913,474 clean reads. The error rate of single-base location sequencing in all
four samples was 0.03%. The Q20 and Q30 percentages were higher than 97% and 93%,
respectively, indicating the high quality of the data. However, S. mutans did not reach a
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high sequencing depth (Table 1), probably because of the inhibition of probiotics. Therefore,
only the transcriptome data of C. albicans were analysed.

Table 1. RNA-seq in mixed-species biofilms.

Sample Name C1 C2 T1 T2

Total reads (C. albicans) 5,5819,264 54,481,928 56,579,976 53,032,306
Total mapped (C. albicans) 36,144,061 (64.75%) 35,817,034 (65.74%) 48,178,839 (85.15%) 44,747,300 (84.38%)

Total reads (S. mutans) 55,506,496 54,041,988 56,174,376 52,584,766
Total mapped (S. mutans) 13,877,006 (25%) 12,460,931 (23.06%) 18,215 (0.03%) 45,311 (0.08%)

To verify the reliability of the RNA-seq data, absolute quantitative RT-PCR was
applied to detect the abundance of S. mutans and C. albicans in mixed-species biofilms in
the treatment and control groups. Standard curves were obtained for S. mutans and C.
albicans and are shown in Figure S1A,B. The number of colonies of S. mutans treated with
the L. plantarum supernatant was reduced by more than 3 logs, while the number of C.
albicans colonies was in a similar range compared with that of the control (Table 2), and
this result was similar to the results obtained using RNA-seq.

Table 2. The number of organisms detected by quantitative real-time PCR (qPCR).

Organisms Cq Cells
C T C T

S. mutans 15.18 a 24.36 b 109 a 106 b

C. albicans 16.15 a 16.22 a 1010 a 1010 a

Note: The equations of linear regressions of DNA copies vs. cycle quantification are characterized by their slope,
y-axis intersection and the R2 values in Figures S1 and S2. Cells numbers were theoretical values based on the
copies of DNA. a and b represent the difference in the cells in each row.

3.5. Differentially Expressed Genes (DEGs) between the Biofilms of the Treated and Control Groups

RNA sequencing technology was used to reveal the inhibitory mechanism of the
L. plantarum supernatant on the biofilms consisting of S. mutans and C. albicans. The vol-
canic maps show the overall distribution of the differentially expressed genes between the
two groups. A total of 1459 important DEGs, 613 downregulated genes, and 846 upregu-
lated genes were identified in the experimental group (Figure 4A and Table S5). Next, we
performed KEGG signalling pathway enrichment analyses. Compared with the control
group, 1459 DEGs were enriched in 97 pathways in C. albicans after treatment with the
L. plantarum supernatant. The 20 most abundant pathways are shown in Figure 4B. The
size of the dots represents the number of genes. The closer the q value is to 0, the greater
the extent of enrichment.

As shown in Figure 3A, the carbohydrate metabolism pathways, including starch and
sucrose metabolism, galactose metabolism, amino sugar and nucleotide sugar metabolism,
and fructose and mannose metabolism, were related to some genes. Therefore, we rear-
ranged the 13 DEGs of the carbohydrate metabolism pathway in C. albicans (Figure 5A).
The expression of some genes related to carbohydrate metabolism changed significantly
with the addition of L. plantarum. In addition, the gene expression of hyphae in C. albicans
is closely related to virulence [21]. Therefore, we rearranged another 13 DEGs related with
hyphae formation in Figure 5B. The expression of genes associated with the filamentous
growth of fungi, such as some genes of the Als gene family, was downregulated.
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3.6. Integrated Metabolome and Transcriptome Analysis

To clearly reveal the bacterial–fungal interactions in the dual-species biofilm, we
combined transcriptomics and metabolomics. We performed a Pearson’s correlation coeffi-
cient analysis based on the metabolome and transcriptome profiles. Based on a Pearson
correlation coefficient > 0.9, the screening results showed that some metabolites were
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significantly correlated with the DEGs, as shown in Figure 6. The important DEGs related
to the metabolites of C. albicans in the mixed-species biofilm are listed in Table 3. Most of
the DEGs related to sugar metabolites in C. albicans showed a negative correlation, while
most of the DEGs related to sugar alcohol and organic acid showed a positive correlation.
Mannose-6-phosphate and kestose were related to 131 and 158 DEGs, respectively.
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Table 3. Some representative metabolites and significantly correlated differentially expressed genes
(DEGs) of C. albicans between groups.

Compounds Correlated DEGs

Mannose-6-phosphate 131
Kestose 158
Lysine 127

Adenosine-5-monophosphate 140

3.7. Genomics Analysis of L. plantarum CCFM8724

To reveal at the molecular level why L. plantarum CCFM8724 can inhibit double-species
biofilm and change the metabolic and transcriptomic level, we performed a genomics analysis
of L. plantarum CCFM8724, taking L. plantarum CCFM361 as the control strain, from the
same subspecies, without the effect on inhibiting double-species biofilm [13]. Through a
homologous gene analysis with the reported complete Lactobacillus genome, L. plantarum
CCFM8724 and CCFM361 shared 2126 core genes. L. plantarum CCFM8724 had 207 unique
core genes, and CCFM361 had 164 unique core genes (Figure 7A). The gene function was
annotated using the COG and KEGG databases (Figure 7B–D). Genes related to carbohydrate
metabolism showed the greatest count difference between the two strains (Figure 7B–D). Thus,
enzymes involved in carbohydrate utilization were further analysed. Putative protein-coding
sequences were predicted and annotated using the CAZy database. L. plantarum CCFM8724
had more genes encoding carbohydrate binding modules (CBMs) and polysaccharide lyases
(PLs), but fewer genes encoding carbohydrate esterases (CEs), glycoside hydrolases (GHs),
auxiliary activity (AA), and glycosyltransferases (GTs) (Figure 7E,F). The number of genes
encoding the enzymes involved in carbohydrate utilization is shown in Figure 7G.
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Figure 7. Comparative genome analysis of L. plantarum CCFM8724 and CCFM361. (A) Venn plot of shared and unique
core genes distribution among L. plantarum strains. (B) The level I of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis. (C) The level II of KEGG pathway enrichment analysis. (D) Enrichment analysis of
Clusters of Orthologous Groups of protein (COGs) functional categories. (E) Genome-wide comparative distribution of
carbohydrate-active enzymes (CAZy) in L. plantarum CCFM8724. (F) Genome-wide comparative distribution of CAZy
in L. plantarum CCFM361. (G) Identification and quantification of gene count coding for different CAZy families of two
strains. AA, auxiliary activity; CBM, carbohydrate-binding module; CE, carbohydrate esterase; GH, glycoside hydrolase;
GT, glycosyltransferase; PL, polysaccharides.
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4. Discussion

In our previous studies [12,13], the inhibition of S. mutans-C. albicans mixed-species
biofilms was observed when the L. plantarum supernatant was added. In this study, we
employed multi-omics to reveal the distinct metabolic reprogramming and gene expres-
sion during S. mutans-C. albicans dual-species biofilm formation with the addition of the
L. plantarum supernatant.

Metabolic data revealed that most of the impacted metabolites were involved in
the carbohydrate metabolism (Figure 2A). Sucrose, a positively changed metabolite, was
shown to be the most cariogenic of all carbohydrates [22]. After L. plantarum supernatant
treatment, the intracellular remaining sucrose increased. Sucrose can be utilized to generate
extracellular polymeric substances (EPS) to help cells form biofilms [23]. A diet rich in
sucrose enhances the levels of S. mutans in dental biofilms, especially in the presence of
C. albicans in a caries rat model [24]. Sucrose degradation products can also be easily used
by C. albicans, thus promoting its growth [25]. Importantly, S. mutans has multiple pathways
that use sucrose, such as cutting the α-1,2-linked bond of sucrose to generate organic acids
and converting sucrose into extracellular polymer glucan via several glycosyltransferase
enzymes (Gtfs) [26]. The biofilm is partly composed of extracellular polymer glucan.
The mannose-related compound phosphorylated mannose-6-phosphate was detected at
a higher level in the control group (Figure 2C). Mannose-6-phosphate was related to
131 DEGs (Table 3). Similar to sucrose, mannose is also associated with EPS formation,
and one of the components of EPS, called Pel, governs biofilm formation and is composed
of mannose [27].

In contrast, the xylitol and sorbitol levels were higher in the treatment group than
in the control group (Figure 2C). Burt et al. [28] reported that xylitol-sweetened gum
was not only noncariogenic, but also had an anticariogenic effect. Chi [29] also found
that xylitol-sweetened milk significantly decreased the S. mutans abundance compared to
sucrose-sweetened milk. Moreover, it is clear that sorbitol can reduce the acid production
of S. mutans in vitro, inhibit acid production in dental plaque in vivo, and prevent dental
caries [30]. These results also indicate that the xylitol and sorbitol produced by L. plantarum
may be the antimicrobial material basis, which requires further studies.

The mixed-species biofilms cultured in MRS broth were able to generate organic
acids, such as 5-aminovaleric acid (Figure 2C). The organic acids produced by S. mutans
can quickly lower the environmental pH, while S. mutans is also tolerant to low pH [31].
Cornejo et al. [32] performed population genetic analyses on the core genome of S. mutans
and identified 73 unique core genes, most of which are related to carbohydrate metabolism
and acid resistance. However, some organic acids, such as 3-phenyllactic acid and p-
hydroxylphenyllactic acid, were detected at higher levels in the treated group (Figure 2C).
In addition, lactic acid had the highest contribution for distinguishing the control and
treatment groups (Figure 2A). It has been reported that the organic acids and fatty acids
produced by Lactobacillus, such as lactic acid, acetic acid, and capric acid, have good
bacteriostatic effects on Escherichia coli [33]. We found that 3-phenyllactic acid and p-
hydroxylphenyllactic acid can be generated from L. plantarum [34]; therefore, the organic
acids produced by L. plantarum may inhibit the growth of S. mutans. Coincidently, the reads
corresponding to S. mutans were not detected in the RNA-seq analysis, indicating that S.
mutans was inhibited in the mixed-species biofilm after the treatment with the L. plantarum
supernatant. To confirm this inhibition, absolute quantitative RT-PCR was used to detect
the number of colonies of S. mutans and C. albicans in the mixed-species biofilm (Table 3).
The number of C. albicans colonies was in a similar range as that of the control group, while
the number of S. mutans colonies was decreased significantly, and this result was similar to
the RNA-seq results.

The combination of transcriptomics and metabolomics can clearly reveal the bacterial–
fungal interactions in mixed-species biofilms. The DEGs in the treatment and control
groups resulting from the transcriptomic analysis of C. albicans are shown in Figure 4A.
A large number of unigenes in C. albicans were classified into various KEGG metabolic
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pathways (Figure 4B). The KEGG pathways “TCA cycle”, “carbon metabolism,” and
“pyruvate metabolism” were significantly enriched, compared to untargeted metabolomics.
As shown in Figure 5A, we found 13 DEGs of the carbohydrate metabolism pathway.
Among these genes, Pfk1 participated in both fructose and mannose metabolism and
galactose metabolism, and its expression levels were significantly reduced compared to
those in the control group. Meanwhile, some of the gene expression levels were increased,
suggesting that C. albicans requires a more vigorous carbohydrate metabolism to meet its
growth needs without the crossbreeding with S. mutans [25]. In addition, the genes Exg2
and Tpl1 were not only associated with the carbohydrate metabolism pathway, but also
with the cell wall components, such as mannosan and glucan, which were downregulated.

Contrarily, we observed that the genes related to the filamentous growth of fungi,
including Als1, Als2, Als4, and Als9, were downregulated, as expected. Our findings were
in agreement with those of James et al., who reported a similar gene expression trend in
C. albicans under the treatment with a combination of L. plantarum, L. helveticus, and Strepto-
coccus salivariuin [35]. A family of cell surface proteins called agglutinin-like sequence (Als)
proteins is associated with cell adhesion and biofilm formation [36]. The results showed
that the L. plantarum supernatant inhibited the adhesion ability of C. albicans. Furthermore,
the genes associated with the cell wall components (Csp2 and Atc1) were downregulated.

Apart from the genes mentioned above, other important genes related to the metabo-
lites of C. albicans in mixed-species biofilms are listed in Figure 6 and Table 3. Adenosine-
5-monophosphate was detected at a low level after the treatment with the L. plantarum
supernatant and was related to 140 DEGs. Adenosine-5-monophosphate, an organic
compound consisting of adenine, ribose, and phosphoric acid, is a component of the ex-
tracellular DNA (eDNA). eDNA is an important biofilm component that was recently
discovered. A study by Lucio [37] indicated that eDNA can be found in some species
present in biofilms, such as Pseudomonas aeruginosa, S. intermedius, and S. mutans.

Finally, we demonstrated that the ability of carbohydrate utilization is the major ge-
nomic difference between two L. plantarum strains (L. plantarum CCFM8724 and CCFM361)
in Figure 7B–D. This helps to explain why intracellular carbohydrate metabolism of dual-
species biofilm (Figure 2) in the treated group is the most variable. As shown in Figure 7E, F,
the GH family, the highest proportion of the two strains, is a critical enzyme group account-
ing for the bacterial adaptation capacity to the host’s environment, through hydrolysing
the dietary and host-produced carbohydrates [38]. In addition, L. plantarum CCFM8724 has
a higher CBM level, which can combine with GH family to degrade chitin or peptidoglycan
to inhibit the pathogen growth, especially the CBM50 (Figure 7G). It can be inferred from
the results of the genomic analysis that L. plantarum CCFM8724 had unique carbohydrate
utilization ability to yield some bioactive compounds, and in turn, to yield its beneficial
effect in the oral environment through either inhibiting the biofilm formation or interact-
ing with oral microbes. However, we also acknowledge the limitation that the specific
compounds remain unclear, which deserves further study.

5. Conclusions

In conclusion, the multi-omics analyses provide new insights, showing the inhibition
of the L. plantarum CCFM 8724 supernatant; in the metabolomics analysis, because the
carbohydrate metabolism was deeply influenced, the crossbreeding of C. albicans and
S. mutans was changed. In the transcriptomic analysis, the expression of virulence genes,
such as those that code Als (agglutinin-like sequence) proteins, was affected. Our results
strongly confirm that L. plantarum CCFM8724 can decrease the biofilm mass, regardless of
the gene expression or metabolic reprogramming; therefore, it has the potential to act as a
therapeutic agent for the prevention and treatment of caries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9112368/s1, Figure S1: Standard curve of S. mutans by RT-Q-PCR, Figure S2:
Standard curve of C. albicans by RT-qPCR, Table S1: Oligonucleotide primer pairs used for qPCR, Table
S2: Differentially expressed metabolites between treat group and control group. Table S3: KEGG
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pathway impact analysis of differentially expressed metabolites in S. mutans. Table S4: KEGG
pathway impact analysis of differentially expressed metabolites in C. albicans. Table S5: Differentially
expressed genes of C. albicans between control group and treated group.
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