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Abstract: Microalgae are alternatives and sustainable sources of omega-3 long chain-polyunsaturated
fatty acids (LC-PUFA). However, the eco-friendly extraction of these bioactives remains unexplored.
In this work, the use of enzyme-based methods in combination with ultrasounds was evaluated
as green approaches to extract the omega-3 lipids from Nannochloropsis gaditana. Three commercial
enzymatic solutions (Viscozyme® L, Celluclast® 1.5 L, and Saczyme®) were investigated, and results
were compared with the traditional Folch method. A promising extraction approach was developed
by using Saczyme®, achieving a lipid yield of 25.7% ± 0.5, comparable to the traditional method
(27.3%± 0.7) (p > 0.05). Similar omega-3 content was found by GC–MS analysis for both lipid extracts
(30.2% ± 2.4 and 29.3% ± 0.8 for the green and the traditional method, respectively), showing that
the green approaches did not affect the fatty acid profile. Moreover, the cytotoxic activity of produced
lipids was assessed by comparing human colon cancer cells (HCT-116) and epithelial nontumorigenic
immortalized cells (HCEC-1CT). Results suggest that the lipid extracts have a selective effect, reducing
the viability of the colon carcinoma cells but not the nontumorigenic cells. Thus, this study provides
new eco-innovative approaches for extracting the omega-3 LC-PUFA from microalgae with promising
biological properties.

Keywords: microalgae; omega-3 fatty acids; lipid recovery; eco-friendly approaches; cytotoxicity;
bioactive compounds; biological activity

1. Introduction

In recent years, the demand for novel bioactive compounds with potential health
benefits has experienced an outstanding increase. Today’s consumers have become more
environmentally conscious, preferring natural products and considering the impact of food
choices on our planet. These concerns have turned the scientific community to explore the
use of naturally occurring species, including microalgae, for sustainable and eco-friendly
sources of food ingredients and products [1,2].

Microalgae are unicellular photosynthetic microorganisms that convert sunlight, wa-
ter, and carbon dioxide to algal biomass. Along with the prokaryotic cyanobacteria, often
called blue-green microalgae, they provide a wide range of high-valuable compounds,
such as carotenoids, phenolic compounds, peptides, sulfated polysaccharides, and valuable
lipids. [3,4]. Moreover, microalgae are the primary producers of the omega-3 long-chain
polyunsaturated fatty acids (LC-PUFA), namely eicosapentaenoic (EPA) and docosahex-
aenoic (DHA) acids. EPA and DHA are well accepted as essential components for human
health, having beneficial effects on brain development and mitigating different pathological
conditions [5]. Compared to terrestrial crop plants, microalgae present advantages as
omega-3 LC-PUFA sources, such as higher growth rates, superior growth performance and
productivity, and lesser land requirements [6]. Thus, microalgae are crucial sources for
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meeting population needs in terms of omega-3 PUFA and more complex lipids, including
glycolipids and phospholipids.

The extraction of lipids containing omega-3 LC-PUFA from microalgae remains a
challenge. One of the most critical points in this process is the selection of the solvent and
the extraction technique. Microalgae have a dense and firm cell wall, and the extraction
efficiency of the omega-3 lipids is limited by the rigidity of the microalgae matrix [7].
Consequently, a suitable pre-treatment and extraction approach should be carefully selected
to recover the valuable lipids from microalgae and maintain their biological activity [8].

Nannochloropsis spp. are one of the most promising species for producing high-value
lipids containing omega-3 PUFA, specifically EPA [9,10]. Different advanced extraction
techniques have been reported in the literature such as subcritical and supercritical flu-
ids, ultrasound, microwaves, pulsed electric energy, and enzymatic methods, aimed at the
degradation of the complex cell walls of Nannochloropsis spp. [11]. Among these approaches,
enzyme-based methods showed that they were effective, nontoxic, and low in energy con-
sumption procedures when improving the extraction of intracellular compounds [12–14].
Moreover, the combination of different methods could open new alternatives with reduced
time, consumed energy, and less use of toxic solvents. In this regard, enzyme-based alterna-
tives in combination with a widely applied technique in food processing like ultrasounds
could be the key to emerging eco-innovative extraction approaches.

On the other hand, the evaluation of the cytotoxic activity of natural extracts has an
important role in the development of novel ingredients with potential application in the
food and nutraceutical industry. Only a few studies have reported the cytotoxic and/or
biological properties of Nannochloropsis gaditana extracts by in vitro cell-based assays. For
instance, Letsiou et al. [15] investigated the skin protective effects of Nannochloropsis gaditana
extract on human dermal fibroblasts. In a recent study, Carrasco–Reinado et al. [16]
reported the antiproliferative activity of a recombinant protein against tumor cell lines.
Moreover, Ávila–Román et al. evaluated the effect of oxylipins isolated from Nannochloropsis
gaditana against human cancer cell lines and their impact on ATP levels [17]. The same
group also investigated the activity of these oxygenated compounds as TNF-α and NFκB
inhibitors [18,19]. However, to the best of our knowledge, this is the first time that the
cytotoxic activity of omega-3 lipid extracts from Nannochloropsis gaditana is assessed against
human colon cancer and nontumorigenic cells. Additionally, the impact of eco-friendly
approaches on the biological activities of produced extracts remains unexplored.

Therefore, the present study aimed to investigate the use of enzyme-based alternatives
in combination with ultrasounds as novel methods to produce high-quality lipid extracts
from Nannochloropsis gaditana. The effect of eco-friendly approaches on the fatty acid
profile was also evaluated by gas chromatography–mass spectrometry (GC–MS). Moreover,
the cytotoxicity activity of produced microalgal lipids was investigated by a spectrum
of in vitro human cell-based assays as a first attempt to evaluate the potential of these
valuable lipids in health and food applications.

2. Results and Discussion

2.1. Effect of Ultrasound-Assisted Extraction on the Lipid Recovery from Nannochloropsis gaditana

In a first step, ultrasound-assisted extraction (UAE) and ethanol were evaluated as
green alternatives to the traditional Folch method. Figure 1 shows the effects of UAE
treatment time (15 and 30 min) and temperature (30, 40, and 50 ◦C) on lipid yield in
comparison with the traditional extraction method. Significant differences were found
in the lipid yield between the different UAE conditions investigated, ranging from 14 to
21%. Increasing the extraction time from 15 to 30 min improved the lipid recovery for
all temperatures investigated except for the extraction carried out at 30 ◦C, wherein the
extraction time did not affect the lipid yield (p > 0.05). For the extraction time of 30 min,
raising the temperature from 30 ◦C to 50 ◦C exhibited an increasing trend in lipid yield
(p < 0.05), showing a notable effect of the temperature on this process. Despite the positive
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effect of the extraction temperature, the conditions tested were not suitable for archiving
the lipid recovery obtained by the traditional Folch method (27.3% ± 0.7).
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Figure 1. Effect of ultrasound-assisted extraction (UAE) process parameters (time and temperature)
on lipid recovery. Results are expressed as a percentage of dry weight. Error bars denote the standard
deviation of three independent extractions (n = 3). Different letters indicate statistically significant
differences at p < 0.05 (one-way ANOVA with post-hoc Tukey, a–e).

The use of ultrasounds has been recognized as an efficient extraction technique to dis-
rupt the cell wall of different microalgae (for example Chlorella vulgaris [20], Schizochytrium li-
macinum [21], Chlamydomonas reinhardtii [21], Isochrysis galbana [22,23], Desmodesmus sp. [24].
etc.); however, for the specific case of Nannochloropsis gaditana and under the conditions
tested, it was not enough to achieve a complete lipid recovery. The presence of a thick and
rigid cell wall in Nannochloropsis gaditana composed of a bilayer structure with a cellulose-
based inner layer protected by an outer hydrophobic algaenan layer could explain the
inefficiency of the ultrasounds and ethanol [25]. For that reason, aiming to find efficient
alternatives to disrupt the microalgal cell wall, enzyme-based alternatives in combination
with ultrasounds were further evaluated.

2.2. Enzyme-Based Approaches as Green Alternatives to the Conventional Extraction of Lipids from
Nannochloropsis gaditana

In a second step, the use of different enzymatic solutions was investigated to develop
efficient and sustainable alternatives to extract the omega-3 lipids from Nannochloropsis
gaditana. The alternative approaches are based on the application of three commercial
enzymatic solutions (Viscozyme® L, Celluclast® 1.5 L, Saczyme® Yield) and a mix of them
(1:1:1 v/v) (Figure 2).

Interesting results were found during the use of the enzyme-based alternatives. The
lipid recovery ranged from 20 to 26% depending on the enzymatic solution applied. Unex-
pectedly, the use of Viscozyme and the enzymatic mix did not achieve an improvement
of the lipid yield (21.1% ± 0.6 and 21.9% ± 1.6, for Viscozyme and the mix, respectively)
in comparison with the control experiment (20.2% ± 0.7) (no enzymatic solution added)
(p > 0.05). These results were in contrast with those of Blanco–Llamero et al., who reported
a synergic effect when different hydrolytic enzymes were used simultaneously for the same
microalgae species [26].
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Figure 2. Lipid extraction yield using enzyme-based alternatives with different commercial enzymatic
solutions: Viscozyme® L, Celluclast® 1.5 L, Saczyme® Yield, and a mix of the enzymatic solutions
(1:1:1 v/v). A control assay was done without enzymatic solution (control). Results are expressed as a
percentage of dry weight. Error bars denote the standard deviation of three independent extractions
(n = 3). Different letter indicates statistically significant differences at p < 0.05 (one-way ANOVA with
post-hoc Tukey, a–d).

A different behavior was exhibited for the enzymatic solution Saczyme, which seems
to be the most effective strategy to extract the omega-3 lipids from Nannochloropsis gaditana.
The lipid yield using Saczyme was 25.7% ± 0.5, comparable to the result obtained with the
traditional Folch method (27.3%± 0.7) (p > 0.05). Saczyme is an enzymatic blend containing
glucoamylase, acid amylase, and cellulase. It has been recently used for the valorization
of lignocellulosic residues from the olive oil industry [27] or the valorization of industrial
bark residues [28], among other applications in the food and beverage industry according
to the manufacturer. However, to our knowledge, this is the first time that Saczyme
is efficiently used to extract the lipids from microalgae. Thus, a new and promising
green extraction approach was developed by using UAE with the commercial preparation
Saczyme, achieving a lipid yield comparable to the traditional method.

Other green extraction methods have been used for the lipid extraction of Nannochlorop-
sis gaditana. For instance, Molino et al. [29] and Taher et al. [30] reported the use of super-
critical CO2 as an emerging technology for the extraction of these compounds. Ho et al. [31]
used a similar strategy to extract the omega-3 EPA but using subcritical water. The use
of pressurized liquids has also been reported by several authors [10,32,33]. Moreover, in
a recent study, Jiménez Callejón et al., [34] investigated the simultaneous extraction and
fractionation of polar lipids by using supercritical and pressurized liquids. The use of
these advanced technologies minimizes the energy costs and the environmental impact.
However, the price and initial investment of the main equipment (supercritical fluid or
pressurized liquids extractors) need to be considered, and ultrasounds or enzyme-based
approaches could result in a lower economic cost. Heredia et al. [35] and Jiménez Callejón
et al. [36] also aimed to develop energy-efficient processes for recovering the lipids from
Nannochloropsis gaditana, nevertheless, by using the wet paste biomass. Microalgal wet
pastes usually contain more than 70–80% water, which makes the extraction process more
challenging compared to the use of dry biomass (as in the present study).

2.3. Fatty Acid Profile of Lipid Extracts from Nannochloropsis gaditana Produced by Green
Extraction Alternatives

One of the objectives of the present study was to evaluate the influence of the green
extraction approaches on the fatty acid profile of Nannochloropsis gaditana. For that reason,
all microalgal lipid extracts produced in this study were analyzed by GC–MS. Table 1 shows
the fatty acid composition (as percentage of total fatty acids) of lipid extracts obtained from
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Nannochloropsis gaditana comparing the different enzymatic solutions with the traditional
Folch method. The fatty acids identified were lauric acid (12:0), myristic acid (14:0), palmitic
acid (16:0), palmitoleic acid (16:1 cis-9), stearic acid (18:0), vaccenic acid (18:1 cis-7), oleic
acid (18:1 cis-9), linoleic acid (18:2 cis-cis-9,12), arachidonic acid (20:4 cis-5,8,11,14), and
eicosapentaenoic acid (20:5 cis-5,8,11,14,17).

Table 1. Fatty acid composition determined by GC–MS of the lipid extracts obtained from Nan-
nochloropsis gaditana comparing different extraction techniques.

Fatty Acid RT (min) % Fatty Acids

Folch Control Viscozyme Celluclast Saczyme Mix

12:0 6.2 0.4 ± 0.0 0.6 ± 0.1 0.5 ± 0.0 0.5 ± 0.1 0.4 ± 0.1 0.6 ± 0.0
14:0 10.0 4.3 ± 0.1 4.5 ± 0.1 4.3 ± 0.1 4.4 ± 0.1 4.3 ± 0.2 4.4 ± 0.1
16:1 n-7 14.6 26.1 ± 0.6 a 22.9 ± 0.8 b 24.6 ± 0.7 a,b 24.0 ± 0.8 a,b 24.9 ± 1.1 a,b 23.2 ± 0.6 b

16:0 15.1 23.0 ± 0.8 a 18.3 ± 1.3 b 21.7 ± 1.3 a,b 19.7 ± 1.6 a,b 21.5 ± 1.7 a,b 19.1 ± 0.7 a,b

17:1 16.3 0.7 ± 0.0 0.7 ± 0.2 0.5 ± 0.2 0.7 ± 0.1 0.5 ± 0.3 0.3 ± 0.1
18:2 isomer
n.i. 17.1 0.7 ± 0.1 0.5 ± 0.2 0.7 ± 0.1 0.6 ± 0.1 0.7 ± 0.0 0.7 ± 0.0

18:2 n-6 19.7 3.2 ± 0.1 b 3.5 ± 0.0 a 3.5 ± 0.0 a 3.5 ± 0.0 a 3.5 ± 0.0 a 3.5 ± 0.0 a

18:1 n-9 19.8 4.8 ± 0.1 4.7 ± 0.0 4.7 ± 0.0 4.8 ± 0.0 4.8 ± 0.0 4.7 ± 0.1
18:1 n-7 20.0 0.7 ± 0.1 0.6 ± 0.0 0.5 ± 0.1 0.6 ± 0.0 0.5 ± 0.1 0.5 ± 0.0
18:0 20.6 0.2 ± 0.0 a 0.2 ± 0.0 b 0.2 ± 0.0 b 0.2 ± 0.0 b 0.2 ± 0.0 b 0.2 ± 0.0 b

20:4 n-6 24.2 5.9 ± 0.7 b 7.1 ± 0.0 a 6.8 ± 0.1 a,b 7.0 ± 0.2 a 6.8 ± 0.2 a,b 7.3 ± 0.1 a

20:5 n-3 24.5 29.3 ± 0.8 34.5 ± 1.9 30.6 ± 1.9 32.7 ± 2.1 30.2 ± 2.4 33.8 ± 1.1
20:5 isomer
n.i. 24.6 0.6 ± 0.2 0.9 ± 0.1 1.1 ± 0.1 1.1 ± 0.2 1.1 ± 0.5 1.2 ± 0.4

20:5 isomer
n.i. 25.8 n.d. 1.1 ± 0.1 0.6 ± 0.2 0.7 ± 0.4 0.6 ± 0.2 0.4 ± 0.2

SFA 27.9 ± 1.0 a 23.5 ± 1.3 b 26.5 ± 1.4 a,b 24.7 ± 1.7 a,b 26.4 ± 1.9 a,b 24.3 ± 0.8 a,b

MUFA 32.4 ± 0.9 a 28.9 ± 1.2 b 30.4 ± 1.1 a,b 30.0 ± 1.1 a,b 30.8 ± 1.7 a,b 28.8 ± 1.2 b

PUFA 39.7 ± 2.0 b 47.6 ± 2.5 a 43.1 ± 2.5 a,b 45.6 ± 2.8 a,b 42.8 ± 3.6 a,b 47.0 ± 1.7 a

n-3 29.3 34.5 30.6 32.7 30.2 33.8
n-6 9.1 10.6 10.3 10.5 10.2 10.8
n-6/n-3

ratio 0.3 0.3 0.3 0.3 0.3 0.3

RT, retention time; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty
acids; n.i., not identified; n.d., not detected. Results expressed as percentage over the total content (relative
content). Values are the mean ± SD of three determinations. Different letters indicate statistically significant
differences between extraction methods at p < 0.05 (one-way ANOVA with post-hoc Tukey, a–b).

The major fatty acids were palmitic, palmitoleic, and the omega-3 EPA, which were
detected in ranges of 18.3%± 1.3 to 23.0%± 0.8, 22.9%± 0.8 to 26.1%± 0.6, and 29.3% ± 0.8
to 33.8% ± 1.1, respectively. Additionally, Nannochloropsis gaditana lipid extracts were
characterized by a high percentage of PUFA (39.7–47.0%) and a low n-6/n-3 ratio (0.3),
showing the excellent nutritional properties of this microalgae. These results are in line
with previous studies reporting a comparable fatty acid profile [10,32,37,38].

The fatty acid compositions of extracted lipids were very similar in percentage re-
gardless of the enzymatic solution used. Only slight variations were found in certain
fatty acids, for instance, palmitic and palmitoleic acid. Regarding the omega-3 content, no
significant differences were found between the different techniques used (p > 0.05). The
overall impact of the enzyme-based approaches on the lipid composition was negligible
Previous studies have also reported that there were no significant changes in the fatty acid
composition using different extraction methods and experimental conditions [39]. Thus,
we can conclude that the green extractions techniques developed in this work are efficient
alternatives to extracting the high-value lipids of Nannochloropsis gaditana without affecting
the fatty acid profile.
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2.4. Cytotoxic Activity of Lipid Extracts from Nannochloropsis gaditana

To evaluate the cytotoxic properties of Nannochloropsis gaditana lipid extracts, a spec-
trum of in vitro human cell-based assays was performed. Cell viability was assessed by
metabolic activity (CellTiter-Blue (CTB) assay), protein content (sulforhodamine B (SRB)
assay), and lactate dehydrogenase (LDH) release (CyQuant LDH assay). The lipid extract
obtained with the enzymatic solution Saczyme was selected because it was the most effec-
tive strategy among the enzyme-based approaches investigated and was compared with
the lipid extract produced by the traditional method. The cytotoxic activity of both lipid
extracts was assessed by comparing human colon cancer cells (HCT-116) and epithelial
nontumorigenic immortalized cells (HCEC-1CT). The lipid extracts were incubated for 24 h
in a range of concentrations from 0.1 µg/mL to 200 µg/mL.

According to the CTB assay (Figure 3), both lipid extracts significantly reduced the
metabolic activity of the tumorigenic cell line (HCT-116) at the highest concentrations
tested (100 and 200 µg/mL) (Figure 3a). Surprisingly, Nannochloropsis gaditana lipid extracts
did not alter the metabolic activity of HCEC-1CT cells—i.e., the nontumorigenic cells
(Figure 3b). These results suggest that the omega-3 lipid extracts from Nannochloropsis
gaditana have a selective cytotoxic effect, acting preferably against the tumor cell line, but
appear not to affect the nontumor cells.
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A similar trend of cell proliferation was observed in the SRB assay (Figure 4). The
protein content was significantly reduced in HCT-116 cells treated with concentrations
above 25 µg/mL for the lipid extract obtained with the traditional method (Figure 4a) and
above 100 µg/mL for the lipid extract produced by the green strategy (Figure 4b). In this
case, the cytotoxic effect appears to be more evident for the lipid extract produced by the
traditional method. Nonetheless, the protein content of HCEC-1CT cells was not affected
regardless of the extract type or concentration used.
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Figure 4. Cell viability of HCT-116 cells (a) and HCEC-1CT (b) after 24 h incubation with different
concentrations of the omega-3 lipid extracts produced by the traditional method (traditional extract)
and the green method by using Saczyme (green extract) measured by SRB assay. Triton X (Tx; 0.005
or 0.003%) was used as positive control. Results are presented as mean + SD normalized to DMSO
solvent control (0.5%; T/C in %) (n = 5). Statistical differences compared to the DMSO solvent control
were calculated with a one-sample Student’s t-test (* p, *** p < 0.05, 0.01, 0.001). Significant differences
among the test concentrations were calculated with one-way ANOVA (p < 0.05, a–c).

Moreover, for selected experimental conditions (HCT-116 cell line and selected con-
centrations: 1, 25, 50, 100, and 200 µg/mL), the LDH release assay was also performed to
investigate potential effects on cell membrane integrity (Figure 5).
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Figure 5. Release of lactate dehydrogenase (LDH) from HCT-116 cells after 24 h incubation with
different concentrations of the omega-3 lipid extracts produced by the traditional method (traditional
extract) and the green method by using Saczyme (green extract). LDH positive control (control +)
used was provided by the kit. Maximum LDH release was determined by lysing the cells by using
Triton-X100 for 45 min. Results are presented as mean + SD normalized to the maximum LDH
(n = 3). Statistical differences compared to the maximum LDH were calculated with a one-sample
Student’s t-test (* p, *** p < 0.05, 0.01, 0.001). Significant differences among the test concentrations
were calculated with one-way ANOVA (p < 0.05, a–c).

LDH is a soluble cytoplasmic enzyme present in nearly all cells, and it is released
into the extracellular space when the cell membrane is damaged [40]. Significant LDH
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release was observed for both lipid extracts, being 10.4% ± 4.5 and 9.8% ± 2.4, the highest
LDH level detected for the lipid extract produced by the traditional and green methods,
respectively. Moreover, a significant concentration-dependent increase in LDH release
was observed for cells treated with the lipid extract produced with the traditional method
(p < 0.05). Unfortunately, this trend was not observed for the green extract because no
significant differences were found between the different concentrations tested.

The findings of the present work are supported by previous studies reporting that
omega-3 PUFA causes selective cytotoxicity towards cancer cells with little or no toxicity on
normal cells [41,42]. EPA and DHA have been described to induce apoptosis in vitro in tu-
mor cell lines derived from a wide range of tumors, including colorectal carcinoma [43–45],
esophageal [46], pancreatic cancer [47], and lung cancer [48], among others. The differ-
ences between the two lipid extracts in terms of cytotoxic effects exhibited by the SRB and
LDH assay could be related to the composition of the extract. Because the Folch and the
enzyme-based method are based on different extraction mechanisms, the lipid composi-
tion could differ between them. Further analyses regarding the lipidomic composition
of the extracts are currently being investigated in our laboratory to clarify the different
behaviors observed.

Additionally, in a first attempt to understand the cytotoxicity mechanism of the
microalgal extracts in the tumorigenic cells, the effect of omega-3 lipid extracts on cellular
ROS levels of HCT-116 cells was investigated with the DCF assay (Figure 6).
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Figure 6. ROS levels in HCT-116 cells after different incubation times (15, 30, 45, 60, and 90 min) with
different concentrations of the omega-3 lipid extracts produced by the traditional method (a) and the
green method by using Saczyme (b) measured by the dichlorofluorescein (DCF) assay. Hydrogen
peroxide (H2O2) was used as positive control. Results are presented as mean + SD normalized to
DMSO solvent control (0.5%; T/C in %) (n = 6). Statistical differences compared to the DMSO solvent
control were calculated with a one-sample Student’s t-test (* p, ** p, *** p < 0.05, 0.01, 0.001).

Different studies have shown that the accumulation of certain PUFAs leads to increased
lipid peroxidation and the generation of intracellular radical species that may be toxic to
cancer cells [42,47,49,50]. However, in this study and under the conditions tested, the
incubation of HCT-116 cells with the microalgal lipid extract did not result in a significant
increase in intracellular ROS levels regardless of the concentration or type of extract used
(p > 0.05). Moreover, a modified version of the DCF assay, with an extended incubation
period (24 h) to allow gene expression, was used to evaluate the ability of microalgal lipids
to strengthen the antioxidant defense of cells and thus offer protection from H2O2-induced
ROS production (Figure 7); nevertheless, no significant effects were detected. Then, further
in-depth studies are needed to elucidate the mechanisms responsible for the cytotoxicity of
Nannochloropsis gaditana lipid extracts in tumor cells.
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3. Materials and Methods
3.1. Materials

The lyophilized microalgal biomass of Nannochloropsis gaditana (batch L3250520) was
purchased from Cianoalgae SI (Gipuzkoa, Spain). Enzymatic solutions (Viscozyme® L,
Celluclast® 1.5 L, Saczyme® Yield) were kindly donated by Novozymes A/S (Bagsvaerd,
Denmark). The main components of the enzymatic preparations and their activities are
reported in Table 2.

Table 2. Characteristics, components, and activities of the enzymatic solutions used a.

Product Name Component Name Side Activities Activity pH Range T a Range

Viscozyme® L
Beta-glucanase
(endo-1,3(4)-)

xylanase, cellulase
and hemicellulase 100 FBG/g 3.3–5.5 40–50 ◦C

Celluclast® 1.5 L Cellulase no reported 700 EGU/g 4.0–6.0 50–60 ◦C

Saczyme® Yield
Glucoamylase (glucan
1,4-alpha-glucosidase)

alpha-amylase, cellulase,
beta-glucosidase, cellulose
and 1,4-beta-cellobiosidase

900 AGU/g 3.5–5.5 30–60 ◦C

a Information provided by the manufacturer.

Chloroform, methanol, and ethanol were purchased from Fisher Scientific GmbH
(Wien, Austria). Sodium hydrogen carbonate, potassium hydroxide, Triton X, and dimethyl-
sulfoxide (DMSO) were purchased from Carl Roth (Karlsruhe, Germany). Cell culture
media and respective supplements were obtained from Gibco Thermo Fisher Scientific
(Waltham, MA, USA) and Szabo Scandic (Vienna, Austria). CellTiter-Blue (CTB) 10× con-
centrate was purchased from Promega (Waldorf, Germany). Sulforhodamine B sodium
salt (SRB) and 2′,7′-dichlorofluorescin diacetate (DCFH-DA) were purchased from Sigma-
Aldrich (München, Germany). Invitrogen CyQuant LDH Cytotoxicity Assay Kit was
bought from Thermo Fisher Scientific (Waltham, MA, USA). Fatty acid methyl esters
standard (Supelco 37 FAME Mix) was from Supelco (Bellefonte, PA, USA).



Molecules 2022, 27, 3710 10 of 15

3.2. Lipid Extraction of Microalgal Biomass
3.2.1. Traditional Folch Method

The Folch extraction method was done following the original procedure described
by Folch et al. [51]. A total of 1 g of microalgal biomass was extracted with 20 mL of
chloroform:methanol (2:1) vortexing for 2 min. The mixture was centrifuged at 3000 rpm
for 10 min and the organic layer was collected. The extraction process was carried out
3 times on the same biomass. The collected organic layers were purified by washing with
water and centrifuged at 4000 rpm for 10 min. Finally, the chloroform layer contained the
extracted lipids. Samples were evaporated in a rotary evaporator (Heidolph Hei-Vap Value
HB/G3, Schwabach, Germany) under reduced pressure at 40 ◦C. The lipid content was
determined gravimetrically and was calculated as a weight percentage of dry biomass.
Lipid extracts obtained were stored in dark vessels with an argon atmosphere at 4 ◦C until
their analysis.

3.2.2. Ultrasound-Assisted Extraction

UAE was carried out with an ultrasound bath (Elmasonic P 30H, Elma Schmidbauer
GmbH, Singen, Germany) with automatic control of time and temperature. Extractions
were done by using an ultrasound frequency of 37 kHz and ultrasonic power of 100 W.
Dried microalgal biomass were dispersed in ethanol at a ratio of 1:10 (w/v). Different
experiments were carried out by using different parameters like temperature (30, 40, and
50 ◦C), and time (15 and 30 min). After the treatment, samples were filtrated, evaporated,
and treated as previously described for the other extraction methods.

3.2.3. Enzyme-Based Extraction

The enzymatic pre-treatment of microalgae was done following the procedure pre-
viously described by Castejón and Señoráns [10] with some modifications. Briefly, 1 g of
dry microalgae biomass was dispersed in 10 mL of acetate buffer (pH 4.5) and different
commercial enzymatic solutions (Viscozyme® L, Celluclast® 1.5 L, Saczyme® Yield, and a
mix of the enzymatic solutions (1:1:1 v/v)) were added with an enzyme dosage of 15 mg
of protein per gram of biomass [12]. The mixture was incubated at 50 ◦C with constant
shaking (500 rpm) for 1 h by using an Eppendorf Thermomixer C (Hamburg, Germany).
Then, the samples were centrifuged at 4000 rpm for 10 min. The enzymatic solution was
removed and the pretreated biomass was used for lipid extraction by using ultrasounds
(see Section 3.2.1) for 30 min at 50 ◦C. A control experiment without an enzymatic solution
was also done. After the treatment, samples were filtrated, evaporated, and treated as
previously described for the other extraction methods.

3.3. Fatty Acid Composition by GC-MS

Fatty acid composition of all microalgal extracts was analyzed by GC–MS by using an
Agilent 7890A connected to an Agilent 5975C Inert XL EI/CI MSD (Palo Alto, CA, USA).
Prior to analysis, fatty acid methyl esters (FAMEs) were freshly prepared by base-catalyzed
methanolysis of the glycerides (KOH in methanol). FAMEs were separated by using an
HP-5ms ultra-inert column (30 m × 250 µm × 0.25 µm) (Palo Alto, CA, USA). A total of
1 µL of the sample was injected in spitless mode and an injector temperature of 280 ◦C. The
initial oven temperature was set at 150 ◦C for 1 min and the temperature was gradually
raised to 220 ◦C at 3 ◦C/min with a final increase to 300 ◦C for 3 min. Helium was used
as carrier gas at a constant column flow rate of 2.52 mL/min. The GC to MS interface
temperature was fixed at 280 ◦C and an electron ionization system was set on the MS in
scan mode. The mass range evaluated was 50–600 m/z, where the MS quad and source
temperatures were maintained at 150 ◦C and 230 ◦C respectively. Fatty acids were identified
by comparing their retention times and mass spectrum profiles with known standards
(FAME mix supelco) and the NIST mass spectral library (Version 2.2).
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3.4. Cell Culture and Treatment

The human colon cancer cell line HCT-116 were purchased from the American Type
Culture Collection (ATCC). The epithelial nontumorigenic immortalized cell line HCEC-
1CT was kindly provided by Professor Jerry W. Shay (UT Southwestern Medical Center,
Dallas, TX, USA). HCT-116 cells were cultivated in Dulbecco’s Modified Eagle Medium
(DMEM) GlutaMAXTM medium supplemented with 10% heat-inactivated fetal calf serum
(FCS) and 1% v/v penicillin (5000 units/mL)/streptomycin (5000 µg/mL) (P/S). HCEC-1CT
cells were cultivated in high-glucose DMEM combined with 10X medium 199 (2%) and sup-
plemented with cosmic calf serum (2%), HEPES 20 mM, gentamycin (50 µg/mL), insulin–
transferrin–selenium-G supplement (10 µl/mL), recombinant human EGF (20 ng/mL),
and hydrocortisone (1 µg/mL). Both cell lines were cultivated in humidified incubators
(95% humidity) at 37 ◦C and 5% CO2 and regularly tested for mycoplasm.

Test compounds were dissolved in DMSO and added to the incubation media at
different concentrations (0.1–200 µg/mL), resulting in a final concentration of 0.5% (v/v)
DMSO for all experiments.

3.5. Cell Viability Assays
3.5.1. CellTiter-Blue (CTB) Assay

The CellTiter-Blue (CTB) assay was used to assess changes in the proportion of viable
cells. It uses the indicator dye resazurin to measure the metabolic capacity of cells. Briefly,
22,000 HCT-116 cells per well or 15,000 HCEC-1CT cells per well were seeded in 96-well
plates and allowed to attach for 24 h. Thereafter, cells were incubated with solvent control
(0.5% DMSO) and respective concentrations of the omega-3 lipid extracts for 24 h. After
incubation, the medium was removed, and a 1:10 dilution of CellTiter-Blue solution in
DMEM medium was added for 1 h. Then, fluorescent signals (excitation 560 nm, emission
590 nm) of supernatants were measured by utilizing a Synergy H1 hybrid multimode
reader (BioTek, Bad Friedrichshall, Germany).

3.5.2. Sulforhodamine B (SRB) Assay

The sulforhodamine B assay (SRB assay) was performed according to a modified
method of Skehan et al. [52]. The assay measures the optical density (absorbance) of cellular
protein stained with the dye sulforhodamine B, showing a high linear correlation between
protein content and optical density. Briefly, 22,000 HCT-116 cells per well or 15,000 HCEC-
1CT cells per well were seeded in 96-well plates and allowed to attach for 24 h. Thereafter,
cells were incubated with solvent control (0.5% DMSO) and respective concentrations
of the omega-3 lipid extracts for 24 h. After incubation, cells were fixed by addition of
trichloroacetic acid and subsequently stained with SRB solution (0.4% w/v in 1% acetic
acid). After washing with water and 1% v/v acetic acid, the color was eluted with Tris
buffer (10 mM, pH 10). Absorbance was measured at 570 nm with a Synergy H1 hybrid
multimode reader (Biotek, Bad Friedrichshall, Germany).

3.5.3. Lactate Dehydrogenase (LDH) Assay

A lactate dehydrogenase (LDH) leakage assay was carried out by using the CyQUANT™
LDH Cytotoxicity Assay kit (Invitrogen™, Waltham, MA, USA). The assay was performed
according to manufacturer instructions. Briefly, 22,000 HCT-116 cells per well were seeded
in 96-well plates and allowed to grow for 24 h prior to incubation. Thereafter, cells were
incubated with solvent control (0.5% DMSO) and respective concentrations of the omega-3
lipid extracts for 24 h. A maximum LDH release was determined by lysing the cells by
using the lysis buffer provided by the kit (Triton-X100) for 45 min. After the incubation
time, 50 µl of the supernatant of the treated cells was transferred to a fresh 96-well plate
and mixed with 50 µl of the LDH reaction mixture. The plate was incubated at room
temperature and protected from light for 30 min. Then, the reaction was stopped by adding
50 µl of the stop solution and the absorbance was measured at 490 nm and 680 nm with a
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Synergy H1 hybrid multimode reader (Biotek, Bad Friedrichshall, Germany) to determine
LDH activity.

3.6. Dichlorofluorescein (DCF) Assay

The formation of ROS was quantified fluorometrically by using DCFH-DA following
the method described by Wang and Joseph [53]. Briefly, 35,000 HCT-116 cells per well
were seeded in 96-well plates and allowed to attach for 24 h. Cells were incubated with
DCFH-DA for 15 min at 37 ◦C and washed two times with PBS prior incubation with
solvent control (0.5% DMSO) and respective concentrations of the omega-3 lipid extracts
for 90 min. After excitation at λ = 485 nm DCF emits light at λ = 528 nm, which was detected
with a Synergy H1 hybrid multimode reader (Biotek, Bad Friedrichshall, Germany). The
emitted light directly reflects the ROS production in the cells. Fluorescence was detected
every 15 min over a period of 90 min. H2O2 (1 mM) was used as a positive control.

3.7. Protective Dichlorofluorescein (pDCF) Assay

A modified version of the DCF assay was used to assess the ability of microalgal lipids
to strengthen the antioxidant defense of cells and thus offer protection from H2O2-induced
ROS production. HCT-116 cells (22,000 cells per well) were incubated with the omega-3
lipid extracts for 24 h prior to oxidative stress induction by 1 mM H2O2 for up to 90 min.
ROS levels were determined as described above with the DCF assay.

3.8. Statistical Analysis

All extraction experiments were performed in triplicate and the results were expressed
as mean± standard deviation. The effect of extraction method and extraction conditions on
the lipid recovery were analyzed by using one-way ANOVA followed by Tukey post-hoc
test (differences were considered statistically significant at p < 0.05).

Presented data for the cell-based assays are the means + SD of at least three indepen-
dent biological replicates. Statistical differences compared to the solvent were calculated
with a one-sample Student’s t-test (p < 0.05, p < 0.01 and p < 0.001). Significant differences
among the test concentrations were calculated by using one-way ANOVA followed by
Tukey post-hoc test (results were considered as statistically different at p < 0.05).

Outliers were eliminated from raw data of experiments with more than five replicates
by using the Nalimov test. Statistical analysis was performed with OriginPro 2021 (9.8.0.200)
(OriginLab Corporation, Northampton, MA, USA).

4. Conclusions

This work provides relevant results for new eco-friendly approaches using enzyme-
based alternatives in combination with ultrasounds to extract omega-3-rich lipids from
microalgae, avoiding the use of toxic and hazardous solvents. Amongst the different
commercial enzymatic solutions investigated, Saczyme showed a high lipid recovery com-
parable to the traditional Folch method, without affecting the fatty acid profile. Moreover,
our preliminary study of cell viability suggests that the omega-3 lipid extract from Nan-
nochloropsis gaditana has a selective effect, acting only on the human colon carcinoma cells
but not against the nontumorigenic cells. These results may open new possibilities for the
green production of bioactive ingredients from microalgae with potential health benefits
and applications in the food and nutraceutical industry.
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