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Characterizing chromatin landscape from
aggregate and single-cell genomic assays using
flexible duration modeling
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ATAC-seq has become a leading technology for probing the chromatin landscape of single
and aggregated cells. Distilling functional regions from ATAC-seq presents diverse analysis
challenges. Methods commonly used to analyze chromatin accessibility datasets are adapted
from algorithms designed to process different experimental technologies, disregarding the
statistical and biological differences intrinsic to the ATAC-seq technology. Here, we present a
Bayesian statistical approach that uses latent space models to better model accessible
regions, termed ChromA. ChromA annotates chromatin landscape by integrating information
from replicates, producing a consensus de-noised annotation of chromatin accessibility.
ChromA can analyze single cell ATAC-seq data, correcting many biases generated by the
sparse sampling inherent in single cell technologies. We validate ChromA on multiple
technologies and biological systems, including mouse and human immune cells, establishing
ChromA as a top performing general platform for mapping the chromatin landscape in
different cellular populations from diverse experimental designs.
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he genome of eukaryotic cells is tightly packed into chro-

matin! with only a fraction of chromosomal regions

accessible within any given cell population at a particular
developmental stage. Chromosomal accessibility plays a central
role in several nuclear processes, including the regulation of gene
expression and the structure and organization of the nucleus?.
Chromatin remodelers modify chromatin state creating structural
changes that affect gene expression®*. Transcription factor pro-
teins (TFs) are key transcriptional regulators and chromatin
remodelers, binding to accessible DNA regions to control the
expression of genes® and to inaccessible chromatin, altering the
accessibility of targeted regions®. Differential expression and
regulation of TFs act as a combinatorial code that gives rise to the
wide repertoire of cellular phenotypes observed in mammalian
organisms”>8.

The development of high-throughput chromatin accessibility
assays (e.g., ATAC-seq) has enabled the analysis of chromatin
accessible regions, the discovery of nucleosome positions and the
characterization of transcription factor occupancy with almost
single base-pair resolution’. In part due to the small initial
starting material required (on the order of 10,000 cells) and from
a desire to query the chromatin structure of particular rare cel-
lular types, ATAC-seq has become widely adopted. Recent
advances have improved the technique and enabled the mapping
of the accessible chromatin landscape of individual cells!®. Fol-
lowing the same trend, low starting material techniques to probe
the methylome landscape and different chromatin features have
evolved from bulk assays to the single-cell domain!!~13. These
techniques raise the possibility of both describing the variability
of chromatin accessibility, methylation states and chromatin
fragments, and enable the study of epigenomic heterogeneity by
classifying cellular types based on their chromatin structure!3-1°.

Here, we present ChromA, a Bayesian statistical approach to
characterize the chromatin landscape of aggregated and single
cells and apply the method to multiple experimental technologies.
In the case of ATAC-seq experiments, ChromA infers chromatin
accessibility landscape and annotates accessible and inaccessible
chromatin regions. ChromA harnesses recent developments in
hidden semi-Markov models (HSMM) to create a scalable sta-
tistical inference method that can be applied to genome-wide
experiments'®. ChromA is able to integrate information from
different experiments, and draw statistical power to create con-
sensus chromatin annotations. To validate our method, we use
Th17 bulk!”-18, A20 and GM12878 single-cell data sets (the Data
availability section), identifying accessible chromatin and estab-
lishing ChromA as an effective platform for mapping the chro-
matin landscape in different cellular populations. We show that
the method is readily adaptable to different experimental designs
and technologies.

Results
A hidden semi-Markov model for chromatin accessibility
annotation. ChromA is a probabilistic graphical model developed
to annotate chromatin regions as open (accessible) or closed
(inaccessible) when experiments are performed on pooled (bulk),
single cells, or a combination of both bulk samples and single
cells. We first describe the results aimed at delineating accessible
regions, and then illustrate extensions of the method to other
tasks and technologies. Our algorithm takes as an input ATAC-
seq-aligned sequencing reads (.bam files) or locations of Tn5-
binding events (.tsv files) and produces chromatin accessibility
annotations and quality control metrics for the data set (Fig. 1a).
ChromA is based on a Bayesian statistical model that
encompasses a set of latent variables (S) representing chromatin
states (namely chromatin accessibility) at each base (b) and a set

of observations (O) composed by the reads (Fig. 1b). In our
chromatin accessibility model, the chromatin state of each base is
a binary variable representing two chromatin configurations,
open (S,=1) and closed (S,=0). Bayesian inference creates
posterior estimates of model’s parameters by combining our prior
belief about parameter values with the likelihood of the
observations being generated by the model. In our case, ChromA
aims to estimate posterior chromatin state by combining our
prior belief on the accessibility of each base with the likelihood of
generating the observed reads.

To model the duration of accessible regions from ATAC-seq
experiments, we reason that contextual information plays a key
role in defining each base’s annotation. To improve upon the
duration behavior of standard hidden Markov models (HMM)!?,
we model the duration (d) of each accessible region through an
HSMM that exhibits a flexible negative binomial (NB) duration
distribution?? as follows.

d ~ NB(d;r,p) < P(d =1+ 1|r,p)

= (lﬂlfl)p’(l—p)l g

The NB distribution has two parameters: an integer parameter
r>0, and a probability parameter 0<p<1. We use this
distribution to capture the notion that cis-regulatory transcrip-
tional machineries, necessary for accessing DNA-binding
domains, might occupy a certain characteristic length. This
length is in turn reflected in the size of chromatin accessible
regions. The maximum or mode of a NB distribution is given by

its parameters (mode :I’((l%pl))). This is contrary to models based

on the geometric distribution (like previous HMMs) for which
the maximum is fixed and always reached at 1 (Supplementary
Fig. 1a).

Recent developments in approximate posterior calculation
provide efficient techniques for the estimation of HSMM
parameters. These techniques are advantageous when the
duration of HSMM states are distributed according to a NB
distribution!®. To harness the advantage of such developments,
we focus on the parameter that encodes the duration of each state
in HMMs and HSMMs: the transition matrix. The transition
matrix of a HSMM, A/, ;, under the assumption of independence
on the previous state duration, can be written using two terms:
the probability of transitioning into a new state (j) from a current
state (i), A;j and the probability of dwelling in the new state for a
duration of d bases, P(t = d|S, =j) as follows.

P(S[b,b+d] =jISy-1 = i) =A;; =P =dlS,=)A; (2)

To facilitate inference, we begin by re-writing the NB
distribution as a sum of shifted geometric distributions

d~NB(d;r,p) & d=1+30, 2, (3)
z; ~ ShiftedGeo(1 — p)

where the probability mass function of a ShiftedGeo(1 - p) is
p(z|p) = pA(1 - p) with z an integer z>0. Equality 5 permits to
write an HSMM’s transition matrix with NB distributed states,
establishing a correspondence to a transition matrix, in which
each state solely dependent on the previous one (HMM) (Fig. 1c).
The new formulation creates an HMM embedding of a HSMM.
An HMM embedding permits the use of inference machinery
developed for the estimation of parameters in HMMs with a
computational complexity that scales as O(r) for each state.
Next, we model the data-generating distribution that represents
the likelihood that reads in a certain genomic region are
generated by open or closed chromatin. The core element of
the ATAC-seq assay is a modified version of the Tn5 transposon®.

where
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Fig. 1 Overview of chromatin accessibility annotation algorithm. a ChromA is an easy to use algorithm that combines single and multiple BAM files (raw
reads) or TSV files (list of Tn5-binding events) to create chromatin accessibility annotations. b Probabilistic graphical model describing ChromA's
structure. In this representation, nodes describe random variables and arrows depict dependencies among the variables. ChromA models the number of
Tn5-binding events observed at each base using observed variables O (representing the number of binding event), and latent variables S (representing
chromatin state). Subscripts denote base position, ranging from 1 to the length of a chromosome, B. Observed variables O are modeled using a geometric
distribution with parameter p,. Chromatin-state variables S are subjected to semi-Markovian dynamics, depending on the previous chromatin state.

7 described the initial chromatin state, and p and r characterize the semi-Markovian transition matrix dictating chromatin-state context. ¢ Our ATAC-seq
pipeline using bulk measurements annotates chromatin using two states, open Op or closed Cl. Both states are characterized by semi-Markovian dynamics.
The probability of annotating chromatin in bases b to b + d given previous chromatin states depends on two factors: the probability of transitioning
between states, symbolized by transition matrix a, and the probability of dwelling in the new states during d bases. When the duration is characterized by a

NB distribution with parameters p and r, the transition matrix can be re-written using an embedding matrix A. In the figure, we reproduce a simple
transition matrix A, in which p and r are the NB parameters, a is the transition matrix between states, and B represents the binomial coefficient.

After preferential binding to accessible DNA, Tn5 transposase
tagments DNA, leaving behind a DNA adaptor. A correctly
oriented second event can be used to sequence the intervening
fragment and to identify tagmented locations?!. However, we lack
information about the total number of cells in the assay and the
maximum number of binding events available to each cell on a
base pair per chromosome level. Due to the sparse nature of each
binding event (especially in the case of small sample size and
single-cell data sets, Supplementary Fig. 1a), we observed that a
geometric distribution effectively represents the number of events
present at each base of open and closed chromatin, completely
specifying our initial Bayesian approach. In summary, the
presented probabilistic graphical model provides predictive
insight into chromatin state and as such defines its accessibility.

Validating chromatin accessibility annotations. We focused on
validating our method on the data collected from Th17 cells for
which a validated regulatory network delineating their differ-
entiation has been identified!”!8, ATAC-seq, several histone
marks, and ChIP-seq on focal transcription factors all of which
play a deterministic role in cell fate commitment have been
assayed in FACS-sorted Th17 cells!”-18. We combine this infor-
mation and manually annotate ten well-studied loci for this cell
type, each ~100kb in size, consisting of regulatory regions sur-
rounding highly expressed genes and master regulator TFs
(Fig. 2a). We based our curated annotations on the integration of
information from (i) the existence of ATAC-seq regions with

higher number of binding events than background, (ii) the
occurrence of H3K27 acetylation marks?2, and (iii) the presence
of an accumulation of ChIP-seq-binding events (Supplementary
Fig. 2). Three experimental experts annotated each region and
only fully concordant bases were taken as ground-truth values for
comparison to evaluate our model’s performance. We use these
annotations to illustrate model development and initial perfor-
mance evaluation.

Next, to assay chromatin annotations (Fig. 2b), we use three
different metrics: the fraction of the total number of manually
annotated peaks that contains at least one peak generated by
the algorithm under consideration (fraction of peaks covered),
the average fraction of coverage of each peak (average peak
coverage), and F1 score. We used these metrics to compare
ChromA annotations against PeaKDeck??> and MACS2%4, two of
the most commonly used tools to annotate the ATAC-seq data. In
addition, we contrast ChromA against a recently developed tool
to annotate accessible chromatin based on HMMs, HMMRatac?°.
Against PeaKDeck and Macs2, ChromA annotations not only
recovered a higher fraction of correctly annotated peaks but also
on average generated better coverage of each of the accessible
regions (Fig. 2c-e). In addition, ChromA’s annotations control
false discovery rate, particularly noticeable when compared
against HMMRAtac. ChromA creates each base’s annotations
by inferring the expected posterior mean of chromatin state using
approximate Bayesian inference (additional computational accel-
eration is achieved through biologically inspired approximations;
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Fig. 2 Validation of ChromA on ground-truth data sets. a Genomic loci were selected to create a validation data set from highly expressed and

transcription factor genes regulating Th17 development. To manually curate genomic regions, information from ChlP-seq and ATAC-seq experiments were
combined. b Example of curated genomic locus flanking the Irf4 gene in the mouse genome. ATAC-seq, ChIP-seq, PeaKDEck (PD), MACS2 (M2), ChromA,
and manual annotations are displayed. ChromA algorithm recovers a greater number of ground-truth peaks than competing algorithms and covers each
peak more thoroughly. € Fraction of manually annotated peaks covered with at least one peak. d Average fraction of peaks covered per genomic loci (mean

+/— s.e.m., the number of regions equals 10). e F1 score.

Supplementary Note 2, Supplementary Figs. 3-4). Posterior
chromatin state is then thresholded by a fixed value set a priori
(during our previous computational experiments, we set the
threshold to 0.05). This algorithmic parameter does not play a
major factor in ChromA’s annotations, as the number of regions
recovered remain constant throughout a wide threshold range,
highlighting the robustness of our model (Supplementary Fig. 5).

Next, we examine ChromA’s performance genome wide on
Th17 cells. In this case, manual annotation is not feasible for
computing a ground-truth metric (with changes in chromatin
accessibility spanning the full genome!”-18). Instead, we reasoned
that ChIP-seq locations can be used as a proxy to indicate
chromatin accessible regions and therefore used the ChIP-seq
data for validation experiments. Compared with other existing
methods, ChromA’s predictions faithfully recover the greatest
number of ChIP-seq calls while maintaining a comparable total
number of peaks while controlling false discovery rate (Fig. 3a, b).
We summarize algorithmic performance using a precision recall
curve and F1 score (see Supplementary Methods). ChromA
outperforms competing approaches in these metrics (Fig. 3¢
Supplementary Fig. 6). While, MACS2 and ChromA exhibit

4

NB distributed sizes, PeaKDEck exhibits a discontinuous size
distribution, in which an algorithmic parameter (peak size
parameter) is a major determinant of its shape (Fig. 3d).

Lastly, we validated ChromA’s performance on four additional
data sets, two of them consisting of Th17 cells and the remaining
two consisting of CD4+ cells differentiated into Th17 cells
(Supplementary Table 1). To differentiate CD4+ into Thl7,
CD4+sorted cells were purified by cell sorting and cultured for
48h in Th17 differentiating medial”. On these data sets,
ChromA’s recovered on average 45% more peaks than MACS2,
considering our genome-wide validation assays (Supplementary
Fig. 6). Taken together, these results established ChromA as a top
performing tool for discovering accessible chromatin regions
from ATAC-seq data sets.

Chromatin annotations from single-cell measurements. We
extend ChromA’s core model beyond bulk processing to char-
acterize chromatin accessibility in single cells (Fig. 4a). Here, we
focus our analysis on single-cell data sets of mouse B lymphocyte
A20 and human lymphoblastoid GM12878 cells (data set
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Fig. 3 Genome-wide validation of chromatin accessibility annotations. a-c ChromA effective genome-wide performance recalls the highest number of
ChlIP-seq calls maintaining a comparable number of peaks and controlling false positives. a The number of ChlP-seg-binding events recalled. b The total
number of peaks annotated. ¢ F1 score computed as the harmonic mean between precision and recall. d Distribution of accessible regions for different
chromatin annotation algorithms. Histograms depicting the size of accessible chromatin regions annotated by PeaKDEck, MACS2, HMMRAtac, and
ChromA. Posterior size distribution of ChromA's accessible regions resembles a NB distribution, also observed in MACS2 and HMMRAtac. PeaKDEck
distribution is highly dependent on algorithmic parameters, such as window size, etc.

obtained from 10x Genomics, see Supplementary Methods sec-
tion for a description of the samples). In addition to often-
discussed sampling and technical issues, we find that single-cell
ATAC-seq data sets also exhibit higher dynamic range (DR) than
their bulk counterparts (bulk DR ~4 bits, single-cell DR ~11 bits;
Supplementary Fig. 7). To characterize single-cell chromatin data
sets and compare them to bulk data sets, we employ a set of
metrics aimed to quantify data set quality. We compute a signal-
to-noise ratio (SNR) centered around gene promoter regions, the
fraction of reads in accessible regions, and a ratio between read
lengths centered around mono-nucleosome and nucleosome-free
regions (Supplementary Table 1, Supplementary Fig. 8).

To study the robustness of ChromA’s single-cell approach, we
varied the total number of cells in our data sets and studied how
chromatin annotations varied as we downsampled this single-cell
data set data to different depths. ChromA’s annotations recovered
the highest number of ChIP-seq calls and annotated the highest
accessible genome fraction at every cell depth, consistent with
ChIP-seq information (Fig. 4b-d). Taken together, our computa-
tional experiments validate our algorithms as an effective platform
for chromatin annotation under different experimental settings.

ChromA consensus integrates replicate information. We
designed ChromA to infer a consensus chromatin-state repre-
sentation by harnessing the statistical power from different
experimental replicates, different clusters of cells, or sets of related
experiments, thus inferring a more confident posterior estimate.
In contrast to methods that select a repertoire of peaks from
individual calculations on each replicate?®, ChromA integrates
information from different replicates on a base-by-base level. Our
model consists of consensus and individual experiment
chromatin-state variables (indicated with letter C and S¢,
respectively; Fig. 5a). We maintain NB HSMM dependencies in
our consensus chromatin-state variable, C. Next, we formulate
variables S¢ such that they behave under semi-Markovian

dynamics and incorporate a dependency on the state of the
consensus representation (Fig. 5b). To model this dependency, we
resort to the HMM NB embedding of the HSMM.

We augment individual experiment NB embedding to include
a transition matrix, depending on the consensus representation.
The link between each experiment and the consensus representa-
tion is possible because the HMM NB embedding, indicated with
C, S¢ below, creates a base-by-base dependency as follows.

P <Sfb,b+d]|sg—1’ C[b,b+d]> = [P (r=dIS; =j) “i.;}P <S[eb,b+d]|c[b,b+d]>
(4)

where the letter e is an index for each experimental replicate.
Equation (6) represents the HSMM probability of transitioning
from a state at base b — 1 into a state spanning bases b to b+ d,
given consensus variables at those bases. This probability factorizes
into a HSMM transition term times a term linking each
experiment to the consensus variables. We re-write the previous
equality by using the HMM NB-embedding transition matrix, A¢,
and a base-by-base consensus link transition matrix H.

P(S, =jlS;-1 = i,C, = k) = Aj;Hy; ()

To demonstrate the model’s efficacy in integrating information
from replicate experiments, we apply this new statistical tool to an
ATAC-seq data set comprised two biological replicates of Th17-
sorted cells (Fig. 5d). The raw signals of replicates are highly
correlated (correlation coefficient = 0.99, deepTools?’). In addi-
tion, to study the model’s robustness to outliers, we select a lower
correlation data set (CD4 + T cells cultured in Th17 conditions
for 48 h, correlation coefficient = 0.68, Fig. 5c).

To assess our model’s performance, we measured the level of
correlation among data sets based on the number of Tn5
transposition events occurring at each accessible chromatin
region. In this case, replicates continue to be highly correlated,
as expected (correlation coefficient =0.99, accessible regions

NATURE COMMUNICATIONS | (2020)11:747 | https://doi.org/10.1038/s41467-020-14497-5 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-020-14497-5

qD qE1

mm10 - chr11: 100,838 - 100,950 kb

Too 100,880 kb | 12kb | 100,910 kb
1o n-““um IM
528
. S i i T
g I; 121
T e b A d
o l I A
o |‘I| 1 ] TR ITNMT K dm un ddbh b w ||‘
|y A TN w
b l o owndd on b ot ll o fhh 1
Gen - ——H e s i
Stat5b Statba Stat3
10k H | B | N . | i
[2]
T [ B | I 1T H 1 | 10
= k)
Swi m 1 m 1 1.
500 | [ . | 1 N
b c
2
g 5 400k [
g 200k | é
< 2
0 0
10k 5k 1k 500 10 k 5k 1k 500
PD M2 ChromA PD M2 ChromA
d e 11
c
c S 004 ® o5
-% o 8 Gm12878 data set
S % é T ChromA
g 8 M2
]
| T ;
ol BN BRENE EREWE BNERE 05 °
500 10 k 5k 1k 500
PD M2 ChromA A20 data set

Fig. 4 ChromA annotations generalize to single-cell data sets. a Annotations of mouse A20 single-cell data sets at the Stat3 genomic locus. Cells
are downsampled from 10,000 to 500 cells. ChromA annotations are consistent at different cell depths. b-e ChromA extends its effective genome-wide
performance to single-cell data sets, again, recalling the highest number of ChlP-seq calls in GM12878 single-cell data sets. ChromA is particularly effective
at low cell depths. b The number of ChIP-seq peaks recalled, ¢ the total number of peaks and (d) fraction of the genome annotated as accessible for each
downsampled data set. e Correlation between annotations at different cell depths calculated against the entire data set possessing 10,000 cells.

6 NATURE COMMUNICATIONS | (2020)11:747 | https://doi.org/10.1038/s41467-020-14497-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

b c
Consensus level state variables o
< ® | 1500
2 K
3 g
© | =
c, Op o €
c ©
[ o
c
o | #
3000 3000
Bin reads replicate 1 Bin reads replicate 1
Experiment leve| state variables € jgx10* 6x 107"
o
< E
© ]
< 2
2 g
S5
o 3
o
Experimente = 1...M x 10 6x 104
Counts replicate 1 Counts replicate 1
pi21 qitl qi22
mm10 - chr3: 94,300 — 94,400 kb
o~ 106 kb -+
‘ 94,340 kb | | 94,380 kb
t t H i H-H = ] =
Genes Them4 Them5 C2cd4d Rorc Lingo4
Rep. 1 L
. ORI P N
- S T - S S SR ST U T
=
=
Rep. 2 L N
< - 1o il Bal e d et fl L FRTR FIRRTTEN Sy .........1....1...... rad . -.L.H‘I.L I VIR
£
Rep.1+2 & | (]
&)
48 h '
PR ldria, b il bk et bl s swdelt gt rvston A sl Sl ¢ el s i e J.uﬁnd.hnuu.ml"mhuuur. PP T
<<
48h g | 01 NI (.
9]
Rep.1+2 5
p1+20 1 1 i

+48h

Fig. 5 Consensus ChromA integrates information from different data sets and replicates. a Consensus ChromA probabilistic hierarchical graphical model.
The model is divided into a top (light brown) and a bottom layer (light blue). The bottom layer shows ChromA'’s probabilistic model for each data set analyzed
(akin to Fig. 1b). The top layer schematic shows how consensus variables, C, are explicitly linked to latent-state variables for each replicate (or integrated
experiment) according to Markovian dynamics. 7, p,, and A variables are as in Fig. 1b. b Consensus and experiment variables C and S¢ evolve alternating
between open, Op, and closed, Cl, states. The top and the bottom layers are linked by introducing into each experiment a dependency on the state of the
consensus variable. ¢ Raw read correlation between replicates of sorted Th17 cells’ data sets (right) and Th17 cells against CD4+ cells incubated in Th17
differentiation media for 48 h (left). d Consensus-ChromA annotations integrates information from different replicates creating and deleting accessible regions
based on the context. Raw reads from sorted Th17 cells’ replicates and sorted CD4+ cells at a genomic locus. ChromA annotations for single CD4+ data set.
Consensus-ChromA annotations for Th17 replicates and Th17 replicates and CD4+ cells are shown in red. e Consensus ChromA creates a common
representation of chromatin accessible regions. When both Th17 replicates are combined together with CD4+ cells, the resulting consensus representation
maintains the high correlation observed only when both Th17 cells’ replicates are used. CD4 + peaks are filtered, and only correlated peaks survived.

calculated with consensus-ChromA run only on Thl7 cells
replicate 1 and 2). This correlation remains unaltered even, when
the outlier is included into the analysis (correlation coefficient =
0.99, accessible regions calculated with consensus-ChromA run
on Th17 cells replicate 1, 2, and 48 h cultured CD4+; Fig. 5e).
Although consensus ChromA builds accessible regions common
to the three data sets, this common basis does not alter the fact
that 48 -h cultured CD4+ cells correctly stand as an outlier, the
individual model, S, for the 48h cultured CD4+ cells is not
perturbed (correlation coefficient replicate 1 vs 48 h =0.651,
correlation coefficient replicate 2 vs 48 h=0.655; accessible
regions calculated with consensus-ChromA run on Th17 cells
replicate 1, 2, and 48 -h cultured CD4+).

A plethora of novel high-throughput technologies are emerging
to characterize different layers of epigenomic regulation, includ-
ing techniques that harness the ability of the Tn5 transposon to
randomly integrate in the genome, nucleases, and other
biomolecular methodologies?®-32. A common first step shared

among studies using these techniques is the identification of
relevant regulatory regions, either in bulk or single-cell experi-
ments. ChromA represents a general framework for the
recognition of regulatory and functional regions that can be
easily extended to annotate different experimental technologies.
We adapt our algorithms to identify transcription factor-binding
events from Cut&Run sequencing experiments33 and to annotate
accessibility from DNAse-seq experiments (Supplementary Figs. 9,
10), illustrating a broad utility across diverse experimental designs
and technologies.

Discussion

A major goal in epigenomic analysis is to systematically characterize
the different layers of epigenetic regulation in cell types at different
developmental time points and under different conditions. To
address these challenges, we developed ChromA, a powerful
probabilistic model for the analysis of the unstructured epigenetic
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landscape, and demonstrated its ability to annotate chromatin
accessible areas in the genome when tackling ATAC-seq experi-
ments. We validated our approach with curated regions in the
mouse genome and by assessing our algorithm performance against
chromatin immunoprecipitation binding events, a proxy of acces-
sible chromatin. We demonstrate that our probabilistic algorithm is
useful both in single-cell and aggregate populations, being able to
integrate information from replicates. These analyses show that our
method can be readily extended to more complex models and
experimental designs as new technologies emerge.

Our algorithm has several advantages over previous approa-
ches. ChromaA is the first algorithm to model entire genomes that
handles state duration in a principled and data-driven manner,
performing annotations at base-pair level via an explicit statistical
model enabling variable-state length. A previous HSMM
approach annotates small genomic segments via a windowing
approach, limits state duration by a hard threshold, and it is not
thoroughly validated (or validated on any of the newer genomic
technologies described here)>*. ChromA also improves over
HMM-based algorithms?>3%3¢ by handling replicates and vali-
dating single-cell experimental designs. Some prior algorithms
summarize genomic information in bins and are not designed to
process ATAC-seq information. Semi-automatic segmentation
methods, ChromHMM and Segway37-3%, are also related to
ChromA. ChromHMM is designed to process data sets using
200 bp bins. Segway introduces duration assumptions into its
postulates, however, it does so by complex heuristics and many
latent variables. Neither method is validated in the context of
analysis of single data sets of any experimental technologies, such
as ATAC-seq or Cut&Run. These methods are developed to
aggregate information from a variety of different experimental
assays, requiring user input to interpret their results. Finally,
approaches modeling ATAC-seq information at the single-cell
level39-40 or performing transcription factor footprinting#!42 are
complementary to ChromA and benefit from a method that pre-
selects relevant regulatory regions.

Focusing here on ATAC-seq experiments, ChromA exhibits
several prominent features. First, by recovering wider accessible
regions, ChromA captures valleys in read density associated with
transcription factor footprinting. ChromA also exhibits higher
sensitivity allowing for the recovery of less prominent peaks. As a
result, single cells data sets, exhibiting an extended dynamic range
compared with bulk measurements, can also be analyzed with our
software. Finally, by integrating different experiments, ChromA is
able to create a consensus annotation and thereby increase the
signal-to-noise ratio (while still tolerating outlier regions or even
mislabeled/outlier experiments/replicates). This analysis indicates
that additional insights can be extracted by integrating different
sources of information. In the future, we plan to extend ChromA
to integrate different experimental procedures, extracting and
combining information in a hierarchical fashion from a wide
range of approaches.

Methods

Bulk ATAC-seq libraries and preprocessing. ATAC-seq libraries were down-
loaded from NCBI's GEO Database under accession GSE113721. The following
preprocessing pipeline was used to generate aligned reads. Adapters were trimmed
using cutadapt. Reads were aligned using Bowtie2 to the murine mm10 reference
genome and then filtered for mapping quality greater than Q30. Duplicates were
removed using Picard (http://picard.sourceforge.net), and subsequently, mito-
chondrial, unmapped and chromosome Y reads were removed. For peak-calling,
ChromA corrects the read start sites to represent the center of the tagmentation
binding event, the +strand were offset b +4 bp, and all reads aligning to the—
strand were offset —5 bp. In addition, ChromA filters peaks using a custom list that
combines blacklisted genomic regions from the ENCODE project (http://mitra.
stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/mm10.blacklist.
bed.gz). This filtering step takes place when building the set of transposition events
by removing all the events falling into the blacklisted regions.

Single-cell ATAC-seq Libraries. Single-cell data sets were downloaded from 10x
genomics https://support.10xgenomics.com/single-cell-atac/datasets/1.0.0/
atac_vl_hgmm_10k. Briefly, they consist of a mixture of fresh-frozen human
(GM12878) and mouse (A20) cells collected with the Chromium Single Cell ATAC
platform, and demultiplexed and pre-processed with the single-cell ATAC Cell
Ranger platform. Cells were sequenced on Illumina NovaSeq with ~42 k read pairs
per cell. Downsampled data sets are provided from the online website. TSV files are
provided listing Tn5-binding events. ChromA incorporates the ability of importing
TSV and Tabix files directly from Cell Ranger pipelines.

Data set metrics. ChromA reports different quality control metrics to assess data
set quality. Given ChromA annotations, the fraction of reads in peaks (FRIP) is
calculated as the number of reads laying within peaks versus the total number of
reads in chromosome 1. This is calculated using properly paired and mated reads.
SNR is calculated by defining promoter regions in the mouse or human genome as
regions spanning 1 kb upstream, 3 kb downstream from gene start sites. Insert size
distribution is reported as an additional file, and insert size metric is computed as
the ratio between the number of reads with insert size between 190 and 210 bp to
the number of reads with insert size between 60 and 80 bp for chromosome 1.
Finally, we extrapolate the number of properly paired and mated reads by com-
puting that number for chromosome 1 and multiplying by the total length of the
genome and then dividing by the length of chromosome 1.

Detection of chromatin accessible regions. To perform experiments to validate
our algorithm, we ran ChromA in each sample individually using standard priors
(described below). An example of running ChromA on a wild-type data set of Th17
cells, using the mouse genome with our bulk model is detailed next: ChromA -i
“Th17_1_noMito.bam” -species mouse -sb th17_wtl.bed. We ran PeaKDEck
(parameters -bin 75, -STEP 25, -back 10000, -npBack100000). Peaks were iden-
tified using the MACS2 software. We run MACS?2 using two sets of parameter, and
always compare against the best-performing set (parameters: -m 10,30 -g
1865500000 -bw = 200 or -nomodel -shift -100 -extsize 200 -broad -keep-dup all).

Transcription factor-binding prediction. TF ChIP-seq and control sequencing
data were downloaded from GEO (GSE40918), mapped to the murine genome
(mm10) with Bowtie2 (2.2.3), filtered based on mapping score (MAPQ > 30,
SAMtools (0.1.19)), and duplicates removed (Picard). Peaks were identified using
the MACS2 software (version 1.4.2) using the settings (parameters: -m 10,30 -g
1865500000 -bw = 200) and retained for raw p-value <1010, All data sets were
processed against an appropriate control. We retained summit locations to create a
binding event localizing at a particular base pair.

Transcription factor-binding events for GM12878 were downloaded from
ReMap?® (http://pedagogix-tagc.univ-mrs.fr/remap/celltype.php?CT=gm12878) by
filtering the database for the cell type GM12878. There are 131 TFs in this database
that correspond to the particular cell line, among which we can find CTCF, Pou
factors, and members of the Pax, Stat, and Etv families.

Validation of ChromA annotations. To compare ChromA against different
algorithms, we used different metrics, the fraction of peaks covered, average peak
coverage, and total coverage. We compute each metric from the intersection of bed
files originating from the manually annotated regions versus algorithmically
annotated regions. To compute the fraction of peaks covered (fpc), each manually
annotated peak is intersected with the list of peaks algorithmically generated. If the
intersection returns non-empty bases, the peak is considered intersected and
recorded as such. The final metric value is computed by dividing the number of

# of intersected peaks To
# manually annotated peaks / *

compute the average peak coverage (apc), we again intersect each manually
annotated peak and count the base pairs in the intersection over the total number

intersected peaks over the number of peaks (fpc =

# bases in the intersection
# bases in the manually annotated peak

of base pairs in the peak (pc = ) The apc is computed

as the mean of the pc for every manually annotated peak. We report the apc as
mean +/— s.e.m. To compute the total coverage (tc), we add all the intersected
bases and divide by the total number of bases in manually annotated peaks

_ Z# bases in the intersection
(tC - Z# bases in the manually annotated peak
lapping peaks serves as a recall metric. To compute algorithmic precision, we
compute the number of peaks containing at least one ChIP-Seq event divided by
the total number of peaks.

). The number of ChiP-seq events over-

DNAse-seq annotations. Data sets for DNAse-seq experiments for cell lines
GM12878 and K562 were downloaded from the Encode project (wgEnco-
deUwDnaseGm12878AlnRep1.bam/Rep2.bam and wgEncodeUwDnase-
K562AlnRepl.bam/Rep2.bam). For each corresponding cell line, we download
ChIP-Segs experiments from the encode project and merge them. For each binding
event, we keep the center base-pair location and consider that a peak captures the
binding event if it superimposed with this base-pair location. ChromA annotated
peaks with option “dnase”. For Macs2, we use the following command: macs2
callpeak -t $file -f BAM -g mm -n $name -p le-2 -nomodel -shift -75 -extsize
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150 -keep-dup all. For hotspot2, we first generate a reference for the hgl9 genome
by running extractcentersize.sh and then we annotate each file by using: hotspot2.
sh -c $fchrom -C $fCenter -P -f 0.01 $file $outdir.

ChromA model and core algorithm. Here, we present in more detail the entire
ChromA’s generative process. The observed number of Tn5-binding events X, at
each base b is drawn independently through the process here described.

pi ~ Beta(ay, by)
m; ~ Dir(ay)C ©)
6
Sy ~ Mult(Ag, )
X, ~ Geo(Xy; p,)
S, denotes the chromatin state at base b, and it is distributed according to the
transition matrix at the previous state. p is the probability of observing X;, number
of binding events at base b given the current chromatin state. a,, by, &, are prior

parameters. A denotes the HMM embedding of the HSMM and for a two-state
model with 3 and 2 states it is written as:

Pclosed 1= Peiosed
Pciosed
1= Pioed .
Paiosed (1= Petosed)B(L: 1 Popen) (1= Pctosea) B(0: 1. Popen)
Popen 1= Popen
(1= Popen) B(2:2: Pctose) (1= Popen) B(1; 2, Pctose) (1= Popen ) B(0: 2: o) Popen
7)

we used 5 and 2 as our fixed number of states, and although we perform
computational experiments to fit p, these values were fixed at 1 x 1074 a, and b,
parametrize pseudocounts for the probability of observing a number of binding
events in a particular base. We set these values to (1, 50) for the state that
represents closed chromatin and (20, 10) for the state that represents open,
however, the results are insensitive to these values. &, denotes the prior
pseudocounts for the initial state of the Markov process. Given our strategy that
identifies batches surrounded by empty regions, we assume that the process starts
in the closed state, ap = (1000, 1). Again, the algorithm is insensitive to this value,
as only the first few bases will be affected by it.

ChromaA single-cell data sets. To run ChromA on single-cell data sets, tsv files
should be entered as input data, either as a raw file or as a tabix index file (this last file
type is preferred for fast calculations). ChromA automatically builds an observation
vector recognizing the type of input data by pooling single-cell information.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The accession number for the bulk ATAC-seq data reported in this paper is GSE113721.
The accession number for the cut&run experiments is GSE104550. As reported above,
single-cell data sets were downloaded from: https://support.10xgenomics.com/single-cell-
atac/datasets/.

Code availability

A Python implementation of ChromA is available for download on GitHub: http://
github.com/marianogabitto/ChromA. Within the main page, detailed installation
instructions are described. The website will be updated periodically with new versions.
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